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Abstract—Cyber-Physical Systems (CPS) linking computing to
physical systems are often used to monitor and control safety-
critical processes, i.e. processes that bear the potential to cause
significant damage or loss in the case of failures.

While safety-critical systems have been extensively studied in
both the discrete (computing) and analog (control) domains, the
developed techniques apply to either one domain or the other.
As cyber-physical systems span both domains, the focus on an
individual domain leaves a gap on the system level, where complex
interactions between the domains can lead to failures that cannot
be analyzed by considering only the physical or the digital part
of the integrated CPS.

We discuss such a complex failure condition in a real-world
brake control system, and demonstrate its detection using a
formal verification approach specifically targeting CPS.

I. INTRODUCTION

Cyber-Physial Systems (CPS) are seeing increasing usage
in transportation, power and other safety-critical systems [1].
The CPS is used to monitor and control (analog) physical
phenomenon through physical actuators which are, in turn,
operated by a (digital) safety critical computing system [2].
The processing needs to correctly monitor the target system
behavior and to accurately operate the actuators in order to
guarantee the system’s safety to avoid damage to either the
system or its operational environment.

Consequently, for safety critical CPS, rigorous verification
technologies to ensure correct operations have been studied to
consider both the discrete and continuous aspects. However,
as these technologies typically only focus on an individual
aspect, the complex interactions between discrete processing
and continuous behavior has potential to cause complex system
level malfunctions.

For example, an automotive brake control system may
exhibit the difficult-to-find safety-related malfunctions caused
only by a specific combination of specific driver operation
and specific vehicle behavior given a specific combination
of sequence and timing. While the requirement for safety
verification for critical CPS is easy to state, i.e., ensuring
coverage of all possible computing and control interactions,
it is infeasible to achieve using conventional engineering
approaches. Complicated control/computing interactions often
result in timing and sequence malfunctions that are particularly
hard to uncover. Additionally, as a design engineer often only
has detailed knowledge of either the control or computing
domain, resolving such issues is further complicated.

Differing from conventional statistical, experimental or
simulation based approaches, the formal methods community
has developed rigorous techniques, such as model checking,
that target automated and comprehensive coverage of a sys-
tem’s states to discover complex malfunctions, such as timing
faults. Amongst the varied model checking technologies, there
exists an approach for hybrid model checking which can
express both discrete and continuous aspects [3]. However,
hybrid system modeling is often not easy for most engineers
because they are only conversant with their own design aspects,
such as software or mechanical design.

Recently researchers have started investigating formal ver-
ification methods, which construct practical hybrid system
models by combining achievements from different domains
to conduct hybrid system verification [4], [5], [6]. Especially,
methods that combine model checking of software and sim-
ulation of plant models are being studied. However, as the
verification of control systems with analog input values has
to explore an enormous state space, the verification method
needs huge efforts and long verification time. It is difficult to
achieve the verification, taking into account effects caused by
difference of analog value, such as sensor value of system input
or of signal timing. Consequently, the development of a verifi-
cation method, which can verify system behavior/misbehavior
on exhaustive system input and timing, is challenging.

As a suitable approach for such challenging scenarios, sym-
bolic execution based formal verification is being advocated as
a high coverage testing method [7]. Symbolic execution guar-
antees the coverage of reachable paths and suggests relevant
test cases. Verification properties are described in the form
of assertion instructions. Once an unsatisfied assertion, i.e.,
a malfunction, is encountered, the symbolic execution engine
outputs a test case with concrete input values that exhibit the
detected defect during execution.

This paper proposes a practical formal verification process
for safety critical CPS. We developed a formal verification
framework that implements our proposed verification process.
Thanks to developed framework can find system level malfunc-
tions by checking safety relevant properties of system models,
which simulate control system behaviors by combining control
software and plant source code, on the basis of symbolic
execution based formal verification.

Our main contributions are the following:

1) construction of a practical formal verification process
for safety critical CPS based on symbolic execution,
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2) implementation and evaluation of the proposed ap-
proach using a case study example from the automo-
tive industry.

II. BACKGROUND

An overview of a model-based development is presented
in Section II-A. A general symbolic execution based formal
verification is explained in Section II-B.

A. Model-based Development

Figure 1 shows a simplified model of a feedback control
system, which consists of a controller model and a plant model.
The controller model implements the system control logic
and sends commands to the plant model which simulates the
reactions of the physical component of the system. The com-
bination of each model’s sequential and iterative interactions
constitutes the simulation of the system behavior.

Model-based development strongly supports the controller
model design including discrete state transitions and the plant
model design including differential equations. The approach
has been extensively used in the industry and proven to be
beneficial to the development of safety critical systems.

For example, Simulink R⃝ is an established model-based
development tool, which supplies not only the controller model
or plant model design supports, but also code generation
functions assuring automatic translation of the controller model
into a runnable program. Furthermore, it enables hardware-less
system testing called hardware-in-the-loop simulation (HILS)
as shown in Figure 2. The HILS technology uses micro-
controllers, which implement control software involving the
controller logic and basic software, and special devices, which
simulate the plant model, and some wiring to physically
connect these components. The plant code is generated by
discretization of the continuous plant model and translation
into C source code. In the discretization process, the sampling
rate is chosen according to the Nyquist sampling theorem
[8] such that the equivalence between the continuous plant
model and the resulting discretized model is guaranteed. HILS
enables the engineers to test control systems with their actual
product’s control software using system inputs without real
hardware and is extensively used in the industry. However, as
typical HILS has no synchronization mechanism between the
micro-controller and the special device for HILS, it is difficult
to conduct a system test on exhaustive values, timings, and
sequence of system inputs.
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Fig. 2: Hardware-In-the-Loop Simulation Process

B. Symbolic Execution based Formal Verification

Symbolic execution based formal verification helps users
to identify input values resulting in errors of target source
code. The reason is that the verification can investigate all
possible effects caused by changes in the values of variables,
which users define as symbols. Consequently, if users define
input variables of verification targets as symbols and insert
assertions describing the verification property, the symbolic
execution engine can find an input causing errors if the target
does not satisfy the property specified in the assertions.

Figure 3 shows an example of symbolic execution based
formal verification. In this example, we consider a function
written in the C language (see Figure 3(a)). The target conducts
a simple calculation at line 2 and an assertion code which
catches the error behavior by comparing the result of the
calculation to the assumed error condition at line 3, in which
case the assertion is violated (see line 4). As shown in Figure
3(b), the symbolic execution based formal verification analyzes
program logics of the verification target and extracts a formula
describing constraints on the symbolic variables for specific
paths in the code. In every step, the constraints are updated to
describe the changes affecting the symbolic variables. When
a branching statement is encountered, two constraint systems
are created, one where the branching condition is evaluated to
false and one where it’s evaluated to true. Upon the execution
of an assert statement the current constraint system is checked
for satisfiability using a constraint solver. If it is not satisfiable,
the search is resumed, otherwise an assignment of the symbolic
variables is returned. The returned concrete values can be used
as a test case to reproduce the found malfunction. Once all
possible paths in the program are investigated, one can assume
that the system satisfies the properties.

III. OUR FORMAL VERIFICATION APPROACH

We propose a formal verification process in Section III-A.
Our construction method of a verification target and property
definition for control system verification are explained in
Section III-B and Section III-C, respectively.
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1  void func(int x){

2    int y = x - 10;

3    if(y==0}

4      assert(false);

5    }

6  }

[2] y := x - 10

Symbol: x

[3] x - 10 = 0

Terminated

falsetrue

assert(false)

(a) Example of 

Verification Target

(b) Symbolic Execution Tree

Constraint (x - 10 = 0)

Counterexample (x = 10)

Fig. 3: Symbolic Execution based Formal Verification
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A. Overview

It is important to establish a verification process, which is
compatible with the HILS process (Figure 2), and to enable
the verification by combining achievements from respective
domains. We propose a verification process as shown in Figure
4. Our proposed process enables a verification of the whole
control system. In the process, a system model, which simu-
lates target control system behaviors, is built by combining
the control software, plant code, safety requirements, and
system information, such as system inputs, task execution
periods, and plant discretization time. Next, the system model
behavior is checked using symbolic execution. The system
model construction is detailed in Section III-B. The plant code
is extracted from its HILS counterpart, excluding code which
is dependent on the HILS emulation device.

B. System Model Construction

Figure 5 shows an overview on the system model structure.
Simple integration of control software and plant code cannot
achieve the system model construction because there exists
no synchronization mechanism for coordination in real time.
Therefore, the system model includes a communication module
for data synchronization and a synchronization module for time
synchronization.

The data synchronization coordinates interactions between
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Fig. 5: System Model Structure

the control software and the plant. Specifically, the communi-
cation module forwards the current control command, which
the control software calculates for the actuator control, to the
plant which receives the output value from the controller model
in Simulink. Also, the module forwards the current sensor
values, which reflect the behavior of the plant, to the control
software which receives the output value from the plant model
in Simulink. The interaction between electronic control units
(ECUs) is supported by the communication module as well.

The synchronization module maintains the current states of
the control software and the plant by sequential and iterative
invocation at appropriate timings. Additionally, the module
limits the verification time in the system internal time for
feasibility. The reason is that an unlimited system model shows
infinite behaviors because the control software under control
loops continuously maintains periodic invocations to control
the plant. The user has to determine a sufficiently large bound
for the verification time. For example, if users want to see
the system effect caused by the combination of exhaustive
timings or sequence of system inputs, the bound is deter-
mined according to appropriate time to check the combination.
Consequently, the bounded time should be defined taking into
account properties of the target system.

For symbolic execution based formal verification, we de-
veloped symbol definition modules and assertion modules in
the system model. The symbolic definition module defines
system inputs such as user operations or events from the
environment of the verification target as symbols. To monitor
the exhaustive effect given by the system input value change,
the module needs to redefine them. However, as the redefinition
creates new symbols, the verification time increases. To avoid
the frequent redefinition, we limit the redefinitions to specific
timing, e.g., every 1 second or after the occurrence of a
specific event. The decision of optimal redefinition frequency
is important for the control system verification. A decision
approach is discussed using an example in Section IV-D.
Additionally, as the system model updates its plant behavior at
every discretization time, the decision of optimal discretization
time is important as well. The discretization time should be
determined on the basis of the sampling theorem. The assertion
module, which is an assertion code, checks properties of the
target control system by monitoring variables of the system
model. The property definition method is detailed in Section
III-C.

C. Property Definition for Control System Verification

The property for control system verification should care-
fully be defined taking into account response delays of actuator
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behaviors against system inputs or control commands from
control software because the plant behavior is affected by
physical phenomenon. That means the property should include
waiting time to check the property. Otherwise, the verification
using the property will frequently return false-positives.

Figure 6 shows an example of a false positive in safety
verification of an automotive brake control system. This ex-
ample indicates that the verification using the property without
waiting time causes a false positive detection. As the property
of this example applies that unintended brake doesn’t occur, the
property is defined as a condition where the brake force doesn’t
increase when no braking is happening. However, as the brake
force still increases even though the brakes are not pushed (see
(a)) because of the response delay of the plant behavior (see
(b)), the verification detects false positive. Consequently, it is
required to include waiting time for the response delay (∆d)
in the property definition to get rid of the false positives. In
Section IV-B we discuss our property definition method using
an example.

IV. EXPERIMENT

A. Experiment Environment

We conducted a case study on safety verification of a
simplified automotive brake control system in order to check
the feasibility of our proposed formal verification approach.
We attempted to find difficult-to-find malfunctions in an au-
tomotive brake control system involving the whole control
system. The found malfunction results in faulty unintended
braking behavior which was fortunately found during driving
test of a commercial car.

For this experiment, we constructed a formal verifica-
tion framework, which consists of a system model generator
and a symbolic execution tool, to implement our proposed
verification process. KLEE [9] is well known as a stable
practical symbolic execution tool. The system model generator
was implemented by ourselves from scratch, and KLEE-
MultiSolver [10], which is an extension of KLEE, was applied
for the symbolic execution based formal verification. KLEE-
MultiSolver has mechanisms to support the use of different
satisfiability modulo theories (SMT) solvers such as STP
solver [11] and Z3 solver [12].

In the case study, the control software and the plant model
were implemented by ourselves as a simplified real-world auto-
motive brake control system. Specifically, we firstly abstracted
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a specification of the real product and implemented a simplified
Simulink plant model and C language control software of
two ECUs. Then, we conducted safety verification using our
framework in accordance with given safety requirements. The
details of the brake control system are presented in Section
IV-B. The verification result is discussed in Section IV-D.

Our experiment ran on a machine with 3.60 GHz Intel R⃝

Xeon R⃝ quad-core processors and 8 GB of RAM. Operating
system is Ubuntu R⃝ 12.04 64-bit. KLEE-Multisolver configu-
ration is default. We used the STP solver which is the default
solver of KLEE.

B. Example of Safety Critical CPS: Brake Control System

Figure 7 shows an overview of the simplified brake control
system we used in our case study. There are two ECUs, a
brake control unit (BCU), an electronic stability control unit
(ESC), and a brake caliper which is a speed reducer using
hydraulic pressure. BCU controls the caliper by producing
hydraulic pressure using a brake assist motor in accordance
with the brake pedal position. If the car sideslips, ESC takes
over hydraulic pressure control of BCU and controls the caliper
by producing hydraulic pressure using a pump to stabilize the
car. ESC is only active during phases of sideslip. When ESC
acts, the valve of the hydraulic pressure circuit is closed by
ESC and its pump produces the hydraulic pressure of the ESC
side by absorbing oils from the BCU side (the upstream side)
of the valve. After the car becomes stable, ESC reopens the
valve and returns the hydraulic pressure control to BCU. To
avoid the collision of shared brake actuator control between
the two ECUs, they coordinate each other using an in-vehicle
network called Controller Area Network (CAN) and only one
ECU can control the actuator. The interactions between ECUs,
and between ECUs and hydraulic pressure control add to the
complexity of the system.

Figure 8 shows an overview of the brake control system
model. The model is abstracted at high level data commu-
nication. This means that the interaction between controller
model and plant model is based on control commands, not low
level data communication such as pulses to control the brake
assist motor and so on. The control command is calculated
on the basis of proportion control, which is simplified for the
case study, by the control software. Each ECU executes a 1
millisecond periodic task which calculates the current control
commands.

The hydraulic pressure, the pump, the brake assist motor,
the valve, and the brake caliper were modeled as a plant
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model which contains 121 blocks in Simulink. The plant
code for HILS was generated by Simulink CoderTM at 100
microseconds discretization. These control software, which
consist of the controller and basic software that is only a task
activator of the operating system because of our abstraction,
were manually implemented. We obtained the system model of
the brake control system using our implemented system model
generator.

C. Verification Setting

We present the property and the symbol definition for the
verification target in this section.

In order to find the known malfunctions, we defined
the non-existence of unintended brake behavior in the brake
control system as a property. This property is the most general
safety relevant property in a brake control system. We divided
the property into the following conditions which should be
always satisfied.

1) Driver doesn’t push brake pedal
2) Sideslip of the car doesn’t occur
3) Brake force doesn’t increase in 500 ms under satis-

factions of (1) and (2)

These conditions are implemented as an assertion code. The
500 ms of (3) indicates waiting time for the response delay to
avoid false positives. While the waiting time logically may be
fixed by analysis of Simulink plant models, in the case study,
we fixed the waiting time by trial and error. For example,
we firstly conducted safety verification of the case study by
utilizing 100 ms as the waiting time because we considered
that the time need to be set more than control period of the
software and to be taken into account response delays of the
actuator behaviour. If the verification find false positive, we
added further 100 ms to the waiting time and re-verified until
no false positive appears. By such process, we fixed the waiting
time. We consider that the approach is better than opposite
because the long time may cause false negative.

The system level malfunction of the brake control system
only appears at the specific combination of the driver’s specific
brake and the car’s specific sideslip given a specific combina-
tion of sequence and timing. The brake depends on the brake
pedal stroke which means moving distance from the initial
position and the slideslip depends on the car’s speed. While
we should define these analog system inputs as symbols, the
available symbolic execution tools cannot deal with floating

TABLE I: Symbol definition frequency and malfunction
detection

symbol definition frequency malfunction detection verification time
every 100 µs no (within one day) -
every 100 ms no (within one day) -

every 1 s yes 9 hours 9 minutes
every 2 s yes 31 minutes

point data types for analog data expression in Simulink. For
example, Ariadne can deal with floating point data types, but
is not published yet [13]. Consequently, we transformed the
analog system inputs into binary system inputs such as brake
occurrence and sideslip occurrence. For example, the brake
occurrence is expressed as ON or OFF. ON means to strongly
push the brake pedal like sudden brake. OFF means to release
the brake pedal. In the case of the sideslipe occurrence, ON
means that the car sideslip at high speed and OFF means that
the car is stable. This approach enables the available tools to
define analog system inputs as symbols indirectly.

Additionally, to find the malfunctions given a specific
combination of sequence and timing, we used iterative symbol
definitions of respective system inputs. As the optimal redefi-
nition frequency depend on verification targets, the frequency
was clarified by trial and error. The verification time depends
on the redefinition frequency because we need to define
significant time to check the system behavior affected by the
system input’s changes. In the case study, the verification
time is tentatively limited at 5 seconds taking into account
the response delay of the plant behavior. Furthermore, due
to efficient verification on conditions of overlapping system
inputs, we inserted time offsets into the timing of the brake
occurrence.

The system model generator generated the system model
which consists of the control software of BCU and ESC, the
plant code, the communication module, the symbol definition
module, the assertion module, and the synchronization module.
The system model is approximately 2000 code lines of C
language source code.

D. Verification Results and Discussion

To find the complex system level malfunction, we tried
to conduct the safety verification of the brake control sys-
tem with different symbol definition frequency. Finally, our
proposed formal verification framework detected the expected
malfunction.

Table I shows relationships between the symbol definition
frequency and the malfunction detection. While the verification
with the symbol definition of short time duration could not
finish within one day, in the case of long time duration such
as a second or 2 seconds, the verification finally could find the
complex malfunction. The duration satisfies practical demands
because the second time scale is significant to verify the system
behavior affected by changes of system inputs. The results
clarified that the impact of the symbol definition frequency
and showed the availability of the symbol definition process
taking into account conditions causing the malfunctions which
we want to detect.

To understand the details of the system behavior, we
conducted a simulation using the system input pattern resulting
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in the property violation. Figure 9 shows the simulation result.
As the graph shows, the car’s sideslip occurs during sudden
braking and then once the car becomes stable, unintended
brake force appears. This is the complex system level malfunc-
tion given by a specific combination of sequence and timing.

Figure 10 shows the details of the system behavior in the
error case. BCU involves a diagnostic program which detects
oil leak on the basis of gaps between pedal stroke value and
the amount of hydraulic pressure. As the graph shows, after
the stability control of ESC, there exists a big gap because the
amount of the oil to stabilize the high speed car was more than
the prediction. Therefore, the diagnostic program detected the
oil leak due to the gap which exceeds the error threshold and
then BCU invoked a fail-safe program which automatically
produces hydraulic pressure by making the brake assist motor
pull the brake pedal in order to brake by the rest of the oil.
As the result, unintended brake occurs.

The factor of the system level malfunction is related to gaps
between response delays of the ECU processing (digital) and
the hydraulic pressure behavior (analog). While a conventional
top-down system development process of safety critical CPS
bears the potential to cause the difficult-to-find system level
malfunctions, through this case study, we established that our
proposed formal verification approach can detect them.

V. CONCLUSION

In this paper we proposed a practical formal verification
process for safety critical CPS and developed a formal veri-
fication framework. The framework supplies a system model

generator which automatically generates system models of the
verification target. The framework is capable of verifying the
safety of the system model in accordance with safety relevant
properties by symbolic execution based formal verification.
Through our case study on safety verification of an automotive
brake control system, we showed that our proposed formal
verification framework can detect difficult-to-find system level
malfunctions from the abstracted system model by iterative
symbol definitions and property definitions taking into account
the response delay of the plant behavior. Our approach has an
advantage in system verification in comparison with simulation
approach because the simulation approach requires test cases
causing system level malfunctions even though discovery of
the failure condition is difficult. Our approach produces hybrid
automaton of target control system. In hybrid automaton
modeling, abstraction approach to focus on verification aspects
is mandatory in order to decrease verification time. However,
our approach may contain irrelevant aspects. In our future
work, to apply our approach to safety verification of more
complex safety critical CPS such as mass production, we
will develop abstraction technologies. Furthermore, we plan
to develop calculation methods of response delays of plant
behaviors from a Simulink plant model.
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