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Abstract— The application of cyber-physical systems (CPSs) 

in safety-critical applications requires rigorous verification of 

their functional correctness and safety-relevant properties. We 

propose a practical verification framework which enables to fill 

the gaps between model-based development and the formal 

verification process seamlessly connecting them. The verification 

framework consists of (a) a model transformation method, which 

automatically transforms the plant models of CPSs including 

differential algebraic equations (DAE) to equivalent models 

without DAE to reduce verification complexity induced by DAE 

solver execution, and (b) a model simplification method, which 

automatically simplifies bond-graph models by replacing 

complex bond-graph components with simpler components for 

further verification overhead reductions. 

We successfully applied the proposed verification framework 

for safety verification of an automotive brake control system. The 

results of the study demonstrate that the automated model 

transformations of the CPS models yield significant verification 

complexity reductions without impairing the ability to detect 

unsafe behavior of the brake control system in a formal 

verification based on symbolic execution. 

Keywords— Formal verification, model-based development, 

model transformation, bond-graph model, signal-flow model, cyber-

physical systems 

I.  INTRODUCTION 

 A cyber-physical system (CPS) is an embedded control 
system that strongly links computing and physical systems 
[1][2]. For example, automotive safety-critical CPSs consist of 
controllers (cyber), called electronic control units (ECU), and 
control targets, such as mechanical components (physical), 
called plants. The ECU software measures plant behavior 
through sensors and controls actuators by issuing control 
commands in real time in accordance with the sensed state of 
the plant. Automotive safety-critical CPSs implement a highly 
collaborative control process between electronic and 
mechanical components. 

Automotive CPSs have stringent safety requirements, 
because system failures may cause critical damage to users. 
Therefore, the development process for CPSs requires 
rigorous verification steps. In automotive CPSs, the model 
based development (MBD) approach prevails. The approach 
requires controller models, which execute discrete processing, 
and plant models, which have continuous behavior based on 

the physical laws, as shown in Figure 1. Concretely, the 
controller model comprises control algorithms described by 
ordinary differential equations and the plant model replicates 
physical control target behavior described by differential 
algebraic equations (DAE) for the energy conservation 
theorem, in which power of action to the physical object and 
power of reaction from the object are equal. 

 There are modeling tools that aid the design of controller 
or plant models. For example, the controller model design is 
commonly conducted by signal-flow diagram based modeling 
tools such as MATLAB/Simulink®[3]. For the plant model 
design, bond-graph modeling tools such as AMESim™[4], 
Simscape™[5], and Modelica® [6] -compliant tools are 
predominant. 

 These models are used to validate the system design of 
automotive CPSs prior to building an actual prototype. The 
system behavior is simulated by numeric solvers, such as 
ordinary differential equation (ODE) solvers and DAE solvers. 
However, it is difficult for users to identify subtle design faults 
which occur only upon rare combinations of specific 
conditions, because these constitute a vanishingly small 
fraction of all possible test cases. This makes the selection of 
such cases in the testing process very unlikely. Nevertheless, if 
these rare conditions occur during operation of the system, any 
unidentified defects can severely threaten the safety of its 
users. 

There exist various formal verification approaches based 
on hybrid system checking [7][8][9][10][11]. Unfortunately, 
these approaches have not seen wide spread adoption in 
industry, as the creation and verification of suitable hybrid 
system models in real mass production projects requires 
extensive knowledge of formal verification by engineers, who 

Figure 1. Control system 



mostly have an exclusive mechanical engineering background. 
In order to address that, there are practical formal verification 
approaches which comply with model-based development 
processes [12][13][14]. These approaches reduce hybrid 
system modeling efforts for the engineers. However, these 
approaches only work with systems based on ODE. 

 Unfortunately, for a large class of safety-critical CPSs 
solely ODE-based models are not sufficiently expressive. In 
many cases models of these systems contain DAE to reflect 
the energy conservation theorem. In numerical simulation, the 
plant behavior is simulated by leveraging a DAE solver. The 
DAE solver is executed at every calculation step in the 
simulation in order to find a set of suitable values of specific 
variables, such as a set of action and reaction forces by 
convergence calculation. Thereby, the DAE solver enables 
correct physical simulation but produces excessive 
computation load, which complicates automated verification 
beyond practicability. 

While approaches exist to remove DAE by formula 
manipulation of partial differentiation and substitution, they 
are difficult for engineers to manually apply without 
introducing errors into the transformed models and, thereby, 
threatening the validity of the verification. Thus, we propose a 
practical verification framework for safety-critical CPSs, 
which are modeled by bond-graphs, and a model 
transformation method. In this approach, we transform bond-
graph models with DAE into signal-flow models without DAE. 
To avoid the overhead for manually creating additional 
models for correctness and safety verification (as necessitated 
by hybrid automata based approaches), our proposed 
framework is capable of reusing plant models developed in 
MBD processes. Since the plant models are originally 
developed for sophisticated simulation purposes, the plant 
models are accurate and complex. As a consequence, the reuse 
of these complex plant models for verification purposes yields 
prohibitive computational complexity. In order to address the 
issue, we also propose a model simplification method 
complying with MBD. In summary, this paper makes the 
following contributions to the state of the art in CPS 
verification. 

 A practical verification framework complying with 
MBD for cyber-physical systems 

 An automatic model transformation method from 
bond-graph plant models with DAE into signal-flow 
models without DAE 

 An automatic model simplification method to reduce 
computation load by domain-knowledge-based 
replacement of complex model components and 
approximation of the model behavior by model 
parameter configuration based on feedback of 
simulation results. 

II. BACKGROUND 

We start with an overview of mechanical electronic control 

systems in Section II-A, before we present the usage of bond-

graph modeling in Section II-B. 

A. A Cyber Physical System Example 

To discuss the specifics of CPSs modeling, we consider 
the simplified automotive brake control system presented in 
Figure 2. The brake control system produces a brake force in 
accordance with the moving amount of the brake pedal stroke 
operated by a driver. As shown in Figure 2, the system 
consists of mechanical components, such as brake calipers, 
which is a speed reducer, hydraulic circuits and motors, and 
electronic components such as ECUs controlling the motors. 
In the system, an ECU controls the brake force by monitoring 
the movement of the brake pedal stroke operated by the driver 
and assisting the pedal force by controlling the motor in 
synchronization with the moving amount of the stroke. The 
assistance enable users to lightly push the brake pedal.  

The example of Figure 2 shows how current piston force F 
is determined. Current piston force F is the sum of the pedal 
force produced by the driver Fdriver, force produced by the 
motor Fmotor, and the reactive force from hydraulic circuit 
Freactive. Freactive is the result of applying function g with 
argument F. These formulae reflect the law of energy 
conservation resulting in the plant of the brake control system 
being modeled as equations with an algebraic loop. As a 
consequence, the plant model includes DAE, which impose a 
challenge to automated or computer-assisted verification.  

B. Bond-Graph Modeling 

Bond-graph modeling enables users to design plant models 
by combining physical components such as spring, mass, and 
hydraulic circuit. Each component can be mapped to a real 
physical component and has a specific equation, such as a 
motion or constraint equation, and specific configurable 
parameters, such as weight, length, and so on.  

 As shown in Figure 3, a bond-graph model consists of 
elements which translate to components, effort, flow and 
stroke. Effort and flow are domain-independent in bond-graph 
notation. For example, in the mechanical domain, effort means 
force and flow means velocity. In the hydraulic domain, effort 
means pressure and flow means volume or flow rate. Stroke 
means flow direction. In the example, the flow value 

Figure 3. Notation of bond-graph 

Figure 2. An example automotive brake system 



calculated by the left element is an input to the right one. The 
stroke reflect the causality in the calculation order of equations 
of each component. Finally, arrows describe energy direction. 

III. OUR PROPOSED APPROACH 

We present a verification framework, automatic model 
transformation method and automatic model simplification 
method in Section III-A, Section III-B, and Section III-C, 
respectively. 

A. Verification Framework 

We propose a verification framework which enables the 
safety verification of CPSs. Figure 4 shows an overview of the 
framework, which consists of a model simplification phase, a 
model transformation phase, and a phase for system model 
construction and formal verification.  

As Figure 4 shows, a bond-graph plant model with DAE, 
which is an input file, is automatically simplified at the model 
simplification phase, which is presented in Section III-C, and 
then is transformed into the signal flow plant model with ODE 
at the model transformation phase, which is presented in 
Section III-B. After our framework obtains the transformed 
model with ODE, it leverages the framework proposed in [15] 
to efficiently enable to verify the control system. The 
framework from [15] comprises a system model construction 
phase, where the virtual system model is constructed by 
combination of software, safety requirement, and the plant 
code which is converted from the plant model with ODE, and 
a formal verification phase, where automated formal 
verification, such as symbolic execution, is applied to verify 
the safety of the system model. 

 The purpose of safety verification is to prove CPS safety in 
specific situations where potential safety violations might 
occur. The specific situations means system state transitions, 
such as a state transition, in which a driver strongly pushes a 
brake pedal immediately after the brake pedal was released.  
We assume that the verification engineers verify individual 
safety properties by using the verification framework from 
[15]. Although the verification framework employs bounded 
state search algorithm, the verification is conducted in 
carefully chosen internal simulation time, which can cover the 
duration of the specific situation.  

In our verification framework, we propose to do the model 
simplification before the model transformation because it is 

easier to simplify the bond-graph plant model than the signal-
flow plant model. 

B. Model Transformation Method 

Elimination of DAE from bond-graph models is known to 
be difficult because it entails the elimination of energy 
exchange in the bond-graph models which follows the law of 
conservation of energy. There is an approach in which the 
engineers design ODE model by manually transforming the 
DAE models, which requires deep knowledge about formulae 
translations in physics. We assume that software engineers 
take over the verification process and conduct the safety 
verification as part of the system test process. Therefore, the 
engineers conducting safety verification cannot be expected to 
have the intimate knowledge about physics required for 
manual model transformation. Thus, we propose a model 
transformation method, which transforms the bond-graph 
model to the signal-flow graph model and converts the model 
with DAE to ODE by adding delay blocks in between blocks 
with energy exchange. 

A simple model transformation would replace a bond 
graph model with an equivalent signal flow model. However, 
the transformed model will still contain the algebraic loop 
from bond-graph model. Our approach can eliminate the 
algebraic loop by inserting one-step-delay blocks into 
feedback loops between components. The purpose of delay 
blocks is to make the connected block use the signal value 
generated at the previous period. In the first calculation step, 
the delay block produces an initial value defined by the user. 
The initial value should be copied corresponding parameters 
of the components calculated at the beginning of the specific 
situation of simulation. Consequently, our proposed method 
can remove the algebraic loop from the plant model. 

The delay block produces calculation errors at every 
simulation step. However, our evaluation results presented in 
Section V-A show that these errors remain negligibly small for 
the short simulation times commonly required for the 
assessment of individual safety properties. 

In order to reduce the effort and avoid human errors during 
the model transformation, we propose an automatic model 
transformation method which automatically transforms bond-
graph plant models to signal-flow plant models. Figure 5 
shows an overview of our automatic model transformation 
method. This method automatically analyzes input files which 
store bond-graph plant models and extracts structural 
information on the plant models. In parallel, the method 
generates signal-flow subsystems according to the equation of 
each element in the bond-graph model. Each subsystem 

Figure 4. An overview of our proposed verification framework for CPS 

Figure 5. An overview of automatic model transformation method 



corresponds to exactly one element in the bond-graph model. 
The method places these subsystems according to the 
previously extracted structural information. Hence, it links 
each subsystem according to our proposed connection rule. 
Ultimately, this method outputs signal-flow graph plant 
models. 

We defined connection rules of signal-flow-graph 
subsystems to preserve semantic equivalence with bond-graph 
component interactions. Figure 6 shows our proposed 
connection rules. In bond-graphs, there are two data types, 
flow and effort. Moreover, there are two connection types, 
direct and multiple. The direct connection connects one 
element to another. The multiple connection involves more 
than 3 elements. The connection is implemented by a 0 
junction or a 1 junction (see Figure 6 (c) and (d)). The 
connection rule (a) is used for the direct connection situation 
when E1 outputs flow signals to E2 and E2 feedbacks effort 
signals to E1. The effort signals are delayed by one period 
through a one-step-delay block. The connection rule (b) is 
used in the opposite situation. The connection rule (c) is used 
for the multiple connection situation when E1 and E2 output 
flow signals to E3 and E3 feedbacks effort signals to E1 and E2. 
The connection rule (d) is used in the opposite situation from 
(c). 

C. Model Simplification Method 

We assume that the bond-graph plant models, which are 
originally developed in MBD for simulation purposes, are 
reused for verification purposes. These plant models are 
highly sophisticated because they are designed to check 
whether the controller model (see Figure 1) meets functional 
and real-time requirements such as the increase of a parameter 
value by a specific amount within specific time. Unfortunately, 
formal verification approaches are commonly very sensitive to 
the complexity of the verification target. Luckily, the 
verification of safety properties can commonly be conducted 

on dramatically less complex models that overapproximate the 
original model’s properties. However, as we mentioned in 
Section III-B, most verification engineers do not have the deep 
knowledge of physics or plant modeling in MBD that is 
needed to create such sound overapproximations for 
verification. As a consequence, the construction of additional 
simpler models for the sole purpose of verification does not 
only require redundant work, but it is also error-prone if 
conducted by engineers who have limited experience in 
crafting such models. Therefore, we propose an automated 
simplification method for bond-graph plant models to reduce 
computation load without requiring manual model redesign by 
verification engineers. 

The idea of the simplification approach is to find elements, 
which produce excessive computational load but have little 
impact on verification-relevant parameters and replace them 
with functionally equivalent elements that create lesser 
computational load during verification. Figure 7 shows an 
overview of this simplification approach using an example of 
a sophisticated plant model. In this example, the plant model 
for simulation includes an advanced piston, which 
dynamically calculates friction force according to the current 
velocity. This dynamic calculation approach can provide 
highly accurate physical simulation. 

Our proposed approach replaces advanced elements, such 
as the advanced piston, by simple elements, such as the simple 
piston. Which element should be replaced depends on the 
target system. For example, in a brake control system the 
advanced piston is a candidate element for replacement 
because the physical size of the piston and its amount of 
produced friction force are relatively small. In this case, a 
simple piston with a configurable constant friction force 
parameter is a viable substitute. The parameter is configured 
to approximate the plant behavior. The configuration is based 
on simulation results, which are calculated before the 
replacement procedure. Two examples for such configurations 
are (1) the constant configuration of a parameter value as its 
maximum assumed in simulation and (2) the definition of a 
mapping table for a series of values the parameter assumes in 
simulation depending on some other parameter. The two 
options are illustrated in the lower left of Figure 7. 

Figure 8 illustrates the simplification approach by 1:1 
element replacement. In this example, a sophisticated mass Iso 
of a mass spring model is replaced with a simple mass Isi The 
left bond graph model is equal to the right simplified mass 

Figure 6. Connection rule 

Figure 7. An overview of simplification approach using 

an example of sophisticated plant model 



spring model at the symbolic level. Our proposed 
simplification method replaces an element by a simpler 
instance of the same element type such as Iso and Isi in Figure 8 
and configures the parameter of the replaced element 
according to fixed parameters of the original elements (such as 
weight) and variable parameters, which are dynamically 
calculated. Dynamically changing parameter values are based 
on simulation results. 

Figure 9 shows the simplification approach by N:1 element 
replacement. In this case we replaces target elements by the 
same procedure as 1:1 element replacement. Furthermore, we 
remove irrelevant elements. In this brake control system 
example in Figure 9, the simplification method replaces a 
sophisticated mass including a relative element with a simple 
mass. The velocity of sophisticated mass is measured by 
leveraging TF, which represents a force sensor to monitor 
mass force calculated on the basis of mass velocity, and 
dynamically calculates friction force of the mass according to 
its velocity. The friction force is used for calculation of precise 
mass force. For example, if we want to replace a sophisticated 
mass with a simple mass, the simplification method replaces 
Isi of the above bond-graph model. The method also removes 
TF as an irrelevant element because the simplified Isi uses 
fixed friction force instead. 

The selection of suitable approximate elements for 
simplification requires deep application domain knowledge of 
the plant characteristics. Out automated method is based on 
domain expert knowledge so that verification engineers can 
utilize the element selection options without prior knowledge 
of physics. 

Figure 10 shows our proposed automatic model 
simplification method. The replacement and configuration 
knowledge from experts is implemented as a replacement 
table. Our proposed method conducts automatic simplification 

according to this table. The replacement table stores 
information on the relationship of complex elements to their 
simpler replacement candidates in the target system and 
information on the recommended configuration approach for 
variable parameters. 

Our method extracts structural information from a bond-
graph plant model stored in an input file. Then, the method 
conducts element replacement by identifying candidate 
elements for replacement in the bond-graph according to the 
replacement table and structural information, replacing them 
by simple ones, and setting the simpler elements’ 
configuration parameters. In Figure 10, the maximum value of 
dynamic friction force observed in simulation results is used 
as a constant value of static friction force.  

IV. EXPERIMENT 

We conducted experiments to evaluate our proposed 
methods. In this section, we present our experiment 
environment, the obtained experimental results, and a 
discussion about how to interpret them. 

A. Experiment Environment 

Figure 11 shows an overview of the experiments. To 
validate the feasibility of the proposed methods, three 
experiments have been conducted. In the first experiment, we 
measured how much our model simplification method reduces 
computation load without tolerating any decrease of 
verification accuracy. In the second experiment, we measured 
to which degree our model transformation method introduces 
behavioral deviations between the bond-graph model and the 
signal-flow model. In the third experiment, we measured time 
for conducting automated safety verification of the 
transformed model and checked whether the verification 

Figure 8. An example of simplification approach by 1:1 element replacement 

Figure 9. An example of simplification approach by N:1 element replacement 

Figure 10. Automatic model simplification method 

Figure 11. An overview of experiments 



enable failure detection after our proposed transformation and 
simplification method. As a verification tool, we chose KLEE 
[16] with default configuration of the symbolic execution 
engine and the STP solver [16] for solving path constraints. In 
the first and second experiments, the operating system is 
Windows® 7 32-bit and in the third experiment it is Ubuntu® 
12.04 32-bit. The first and second experiments ran on a 
machine with 2.80 GHz Intel® Core i5 quad-core processors 
and 2 GB of RAM and in the third experiment it with 3.0 GHz 
Intel® Core i7 quad-core processors and 16 GB of RAM. 

We applied the above experiments to an automotive brake 
control CPS. We implemented our proposed model 
simplification method and model transformation method as 
two prototype tools. For the model transformation tool, the 
insertion of delay blocks has been conducted manually. 
Additionally, in the second experiment the model generation 
procedure, which is shown in Figure 5, is also conducted 
manually, in the sense that signal-flow subsystems for model 
transformation were developed manually before the model 
transformation tool execution. The tool makes use of these 
manually developed subsystems in the component placement 
procedure shown in Figure 5. As the manually identified (but 
automatically applied) subsystems are reusable for other 
models that contain the same subsystems, we consider this a 
one-time effort. For example, since the signal-flow piston 
subsystem is frequently used in many plant models of the 
same domain, we consider the subsystem replacements to be 
reusable at least for the same domain, i.e., the product family. 

For these experiments, we developed a brake control 
system model, shown in Figure 2, which consists of a 
controller model implemented in C, and a plant model 
designed in AMESim. The plant model is discretized using 
100 micro seconds intervals. This means that one-step delay 
blocks delay the target signals for 100 micro seconds. In the 
first experiment we measured the effect assessed by 
simulation and reused the plant model of the real mass 
production development with the same discrete time intervals 
instead of our developed model in order to measure the 
accurate effect. 

We embedded a subtle fault, which results in unintended 
brake force, in the control software. In the third experiment, 
the verification must detect this fault by checking the resulting 
violation of the safety requirement, i.e., unintended braking 
does not occur. We implemented three conditions to detect the 
safety requirement violation as assertion code according to 
[15]. If all of these conditions are satisfied, the safety 
requirement is violated. The first condition is that the brake 
pedal is not actuated. The second condition is that the elapsed 
time is at least 500ms after the pedal released. The time 
prevents the verification tool from misdetections caused by the 
response delay of the plant. The third condition is that the 
amount of piston displacement, which means distance from 
initial piston position, increases, i.e., the brake force increases. 
A brake pedal operation, which is a system input, is defined as 
a symbol supplied by KLEE each second through symbol re-
definition [15]. We generated the system model combined by 
the control software, the plant code, and the assertion code 

[10]. The model replicates the system behavior during 5 
seconds in internal time and is structured by 2000 lines in C. 
We verified the safety of the model according to [15]. 

B. Experiment Results 

Figure 12, Table 1, and Figure 13 show the first 
experimental results of the model simplification method. The 
simplification tool found an advanced mass and replaced it to 
simple mass and configured it for approximation according the 
replacement table (see Figure 12). This single replacement 
yields approximately 35% computation load reduction in 
simulation (see Table 1). 

Additionally, in order to compare the simplified plant 
model behavior with the original one, we plot their behaviors 
in Figure 13 for an easy visual comparison. As the result 
shows, there is no recognizable difference. This means our 
model simplification method did not adversely affect the 
accuracy of the model. 

Figure 14 shows the second experimental result on the 
model transformation method. The model transformation tool 
could transform the bond-graph plant model of the brake 
control system described in AMESim into a signal-flow plant 
model for MATLAB/Simulink. The plotted simulation result 
shows the brake piston displacement of the original model 
(left) and the transformed model (right) with changing brake 
force. To achieve a sound comparison, we applied the same 
settings for the numeric solver method and configuration 
parameter in both AMESim and MATLAB/Simulink. As the 
result in Figure 13 illustrates, there was no recognizable error. 

Figure 12. The first experimental result on the model 

simplification method 

Table 1. Comparison results of simulation time 



 Figure 15 shows the third experimental result on the safety 
verification. In the upper part of the figure illustrating the 
driver brake pedal operation, ON indicates pedal actuation. 
OFF indicates pedal release. The piston displacement in the 
lower part of the figure shows, there is an increase (indicating 
brake engagement) despite pedal release between seconds 4 
and 5. This means that unintended braking occurred even 
though the driver did not actuate the brake pedal. This failure 
was detected by spending 23 minutes 15 seconds of 
verification time. This failure condition is the expected result 
of the fault we embedded. Therefore, the result confirms that 
the verification tool was able to properly verify the safety of 
the system model including the plant model transformed by 
our prototype tool. After the failure was fixed, we conducted 
the safety verification. The safety was verified by spending 23 
minutes 44 seconds of verification time. 

V. DISCUSSION 

In order to facilitate the automated verification of safety 

properties in critical CPSs, we have proposed model 

transformations and simplifications. Obviously, none of the 

proposed modifications to the CPS models should affect the 

validity of the verification. In the following we discuss the 

effects of our modifications on the system behavior in 

simulation. 

A. Effects from the Model Transformation Approach 

Our model transformation approach inserts one-step delay 
blocks between components. In order to clarify the impact 
caused by the blocks, we measured each output signal value of 
the transformed plant model in Simulink in the case of one-

step delay, which our approach inserts, and in the case of two-
step delay for the comparison to extract the difference. We did 
not measure the signal value of the model with no delay 
blocks because the model did not work in Simulink due to the 
algebraic loops. As we mentioned earlier, one step means 100 
micro seconds. The measurement was done at the same 
condition of the second experiment in Simulink. The result 
showed that the maximum difference of plant output signal 
was 0.1 %.  

Bond-graph modeling enables us to design the plant model 
by connecting physical components. Our transformation 
method inserts a delay block into a feedback loop between two 
components. The block delays one simulation step such as 100 
micro seconds to the value of the feedback. This means each 
component state is individually updated by the current input 
signal and the previous output signal as reaction value. 
Therefore, the delays caused by the blocks do not sum up. 
Consequently, the effect from our model transformation 
approach is acceptable. 

B. Effects from the Model Simplification Approach 

The purpose of our safety verification method is to check 
software logical error resulting in the safety violation from the 
view of the system behavior. In order to reduce the 
verification complexity of the plant model, our model 
simplification approach abstracts the target plant model. In 
general, the model abstraction approach may cause false 
positives. Our approach can reduce the complexity as 
preserving the number of the system state and the plant 
behavior. Therefore, our simplification approach provides a 
sound overapproximation of the system model.  

VI. RELATED WORK 

There are related work for multi-domain model-based 

design and verification approach. The study enables users to 

ensure consistency between heterogenous models such as 

control models, plant models and process algebraic models 

[17] by developing a system architecture, in which these 

models are encapsulated, and each corresponding component 

is connected [18]. The architecture model maintains structural 

and semantical consistency on logical constraint of model 

parameters [19][20]. Moreover, the environment in [22] can 

generate verification models which are described by finite 

state processes (FSP) or liner hybrid automata (LHA) [21]. 

Figure 13. Comparison results of plant behavior before and 

after simplification 

Figure 14. The second experimental result on the model 

transformation method 

Figure 15. The third experimental result on the safety verification 



FSP models can be analyzed by Labelled Transition System 

Analyzer (LTSA) tool [17]. LHA models can be analyzed by 

Polyhedral Hybrid Automaton Verifier (PHAVer) [9]. 

However, multi-domain model-based design and verification 

approach may cause non-negligible efforts to users because all 

aspect of the heterogenous models must be correctly 

connected. Furthermore, it is difficult to reduce the 

verification complexity by the model abstraction as 

maintaining these consistencies because if the model is 

modified at one side for verification complexity reduction the 

models on the other side also has to be modified to maintain 

the consistency. In order to achieve the efficient verification 

process complying with MBD, our approach automatically 

generates system models by integration according to only 

signal information between controller models and plant 

models [15]. Moreover, it can reduce the verification 

complexity by flexible component replacement method. 

VII. CONCLUSION 

In this paper, we proposed a practical verification 
framework for safety-critical CPSs that leverages automated 
model transformations and simplifications. The developed 
model transformation method automatically transforms bond-
graph plant models with algebraic loops into signal-flow 
models without algebraic loops to make them applicable for 
existing automated verification approaches. The model 
simplification method automatically simplifies the plant model 
by replacing complex components by simpler ones that exhibit 
equivalent behavior to a sufficient degree. The replacement is 
based on expert knowledge, which is captured in replacement 
libraries for reusability, and application-specific parameter 
tuning based on simulation. We applied the proposed 
verification framework for the safety verification of a safety-
critical automotive brake control CPS. The experimental 
results showed that the model simplification method yields 
approximately 35% computation load reduction in simulation 
and the model transformation method yields equivalent signal-
flow models without recognizable errors. Additionally, the 
proposed framework was able to correctly detect unsafe 
behavior of the brake control system. In future work, we plan 
to develop an error localization method to aid debugging when 
safety violations are indicated by the presented verification 
approach. 

ACKNOWLEDGMENT 

Research supported in part by TUD CySEC. We also thank 
Hitachi Automotive Systems for providing the application 
examples. 

REFERENCES 

[1] ACATECH (Ed.). Cyber-Physical Systems - Driving Force for 
Innovation in Mobility, Health, Energy and Production. 2011. 

[2] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems, 
A Cyber-Physical Systems Approach. http://LeeSeshia.org. ISBN 978-0-
557-70857-4. 2011. 

[3] The MathWorks Inc. Simulink R2015b. 2015. 
http://www.mathworks.com/products/simulink/ 

[4] Siemens PLM Software. Amesim version 13. 2014. 
http://www.plm.automation.siemens.com/en_us/products/lms/imagine-
lab/amesim/ 

[5] The MathWorks Inc. Simscape R2015b. 2015. 
http:www.mathworks.com/products/simscape/ 

[6] The Modelica Association. The Modelica Specification, Version 3.3 
Revision 1, July 2014. https://www.modelica.org/ 

[7] R. Alur. Formal Verification of Hybrid Systems. In Proceedings of the 
11th International Conference on Embedded Software, 2011. 

[8] T. A. Henzinger, P. Ho, and H. Wong-toi. HyTech: A model checker for 
hybrid systems. In Proceedings of the 9th International Conference on 
Computer Aided Verification, 1997. 

[9] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past 
Hytech. In proceedings of the 8th International Workshop on Hybrid 
System: Computation and Control, 2008. 

[10] A. Tiwari. HybridSAL Relational Abstracter. In proceedings of the 24th 
International Conference on Computer Aided Verification, 2012. 

[11] A. Platzer and J. Quesel. KeYmaera: A Hybrid Theorem Prover for 
Hybrid Systems. In proceedings of the 4th International Joint 
Conference on Automated Reasoning, 2008. 

[12] F. Lerda, J. Kapinski, H. Maka, E. M. Clarke, and B. H. Krogh. Model 
Checking In-The-Loop: Finding Counterexamples by Systematic 
Simulation. In proceedings of American Control Conference, 2008. 

[13] H. Nakajima, S. Furukawa and Y. Ueda, Co-Analysis of SysML and 
Simulink Models for Cyber-Physical Systems Design, In proceedings of 
the 18th International Conference on Embedded and Real-Time 
Computing Systems and Application, 2012. 

[14] R. Majumdar, I. Saha, K. C. Shashidhar, Z. Wang. CLSE: Closed-Loop 
Symbolic Execution. In Proceedings of the 4th International Symposium 
on NASA Formal Methods, 2012. 

[15] T. Isihgooka, H. Saissi, T. Piper, S. Winter, and N. Suri. Practical Use of 
Formal Verification for Safety Critical Cyber-Physical Systems: A Case 
Study. In proceedings of the 2nd International Conference on Cyber-
Physical Systems, Networks, and Applications, 2014. 

[16] C. Cadar, D. Dunbar and D. Engler. KLEE: Unassisted and Automatic 
Generation High-Coverage Tests for Complex Systems Programs. In 
proceedings of the 8th USENIX Symposium on Operating Systems 
Design and Implementation, 2008. 

[17] J. Magee and J. Kramer. Concurrency: State Models and Java 
Programing, Second Edition. Wiley, 2006. 

[18] A. Bhave, B. Krogh, D. Garlan, B. Schmerl. Multi-domain Modeling of 
Cyber-Physical Systems Using Architectural Views. In proceedings of 
the 1st Analytic Virtual Integration of Cyber-Physical Systems 
Workshop, 2010. 

[19] A. Bhave, B. H. Krogh, D. Garlan, B. Schmerl. View Consistency in 
Architectures for Cyber-Physical Systems. In proceedings of the 2nd 
ACM/IEEE International Conference on Cyber-Physical Systems, 2011 

[20] A. Rajhans, A. Bhave, S. Loos, B. H. Krogh, A. Platzer, D. Garlan. 
Using Parameters in Architectural Views to Support Heterogeneous 
Design and Verification. In proceedings of 50th IEEE Conference on 
Decision and Control and European Control Conference, 2011 

[21] T. A. Henzinger. The theory of hybrid automata. In proceedings of 11th 
Annual IEEE Symposium on Logic in Computer Science, 1996. 

[22] A. Bhave, D. Garlan, B. H. Krogh, A. Rajhans, B.Schmerl. Augmenting 
Software Architecture with Physical Components. In proceedings of the 
Embedded Real Time Software and Systems Conference, 2010

 


