
Practical Formal Verification for Model Based

Development of Cyber-Physical Systems

Tasuku Ishigooka

Center for Technology Innovation – Controls,

Research & Development Group, Hitachi Ltd.,

Ibaraki, Japan

tasuku.ishigoka.kc@hitachi.com

Habib Saissi, Thorsten Piper, Stefan Winter,

Neeraj Suri

Technical University of Darmstadt,

Darmstadt, Germany

{saissi, piper, sw, suri}@cs.tu-darmstadt.de

Abstract— The application of cyber-physical systems (CPSs)

in safety-critical applications requires rigorous verification of

their functional correctness and safety-relevant properties. We

propose a practical verification framework which enables to fill

the gaps between model-based development and the formal

verification process seamlessly connecting them. The verification

framework consists of (a) a model transformation method, which

automatically transforms the plant models of CPSs including

differential algebraic equations (DAE) to equivalent models

without DAE to reduce verification complexity induced by DAE

solver execution, and (b) a model simplification method, which

automatically simplifies bond-graph models by replacing

complex bond-graph components with simpler components for

further verification overhead reductions.

We successfully applied the proposed verification framework

for safety verification of an automotive brake control system. The

results of the study demonstrate that the automated model

transformations of the CPS models yield significant verification

complexity reductions without impairing the ability to detect

unsafe behavior of the brake control system in a formal

verification based on symbolic execution.

Keywords— Formal verification, model-based development,

model transformation, bond-graph model, signal-flow model, cyber-

physical systems

I. INTRODUCTION

 A cyber-physical system (CPS) is an embedded control
system that strongly links computing and physical systems
[1][2]. For example, automotive safety-critical CPSs consist of
controllers (cyber), called electronic control units (ECU), and
control targets, such as mechanical components (physical),
called plants. The ECU software measures plant behavior
through sensors and controls actuators by issuing control
commands in real time in accordance with the sensed state of
the plant. Automotive safety-critical CPSs implement a highly
collaborative control process between electronic and
mechanical components.

Automotive CPSs have stringent safety requirements,
because system failures may cause critical damage to users.
Therefore, the development process for CPSs requires
rigorous verification steps. In automotive CPSs, the model
based development (MBD) approach prevails. The approach
requires controller models, which execute discrete processing,
and plant models, which have continuous behavior based on

the physical laws, as shown in Figure 1. Concretely, the
controller model comprises control algorithms described by
ordinary differential equations and the plant model replicates
physical control target behavior described by differential
algebraic equations (DAE) for the energy conservation
theorem, in which power of action to the physical object and
power of reaction from the object are equal.

 There are modeling tools that aid the design of controller
or plant models. For example, the controller model design is
commonly conducted by signal-flow diagram based modeling
tools such as MATLAB/Simulink®[3]. For the plant model
design, bond-graph modeling tools such as AMESim™[4],
Simscape™[5], and Modelica® [6] -compliant tools are
predominant.

 These models are used to validate the system design of
automotive CPSs prior to building an actual prototype. The
system behavior is simulated by numeric solvers, such as
ordinary differential equation (ODE) solvers and DAE solvers.
However, it is difficult for users to identify subtle design faults
which occur only upon rare combinations of specific
conditions, because these constitute a vanishingly small
fraction of all possible test cases. This makes the selection of
such cases in the testing process very unlikely. Nevertheless, if
these rare conditions occur during operation of the system, any
unidentified defects can severely threaten the safety of its
users.

There exist various formal verification approaches based
on hybrid system checking [7][8][9][10][11]. Unfortunately,
these approaches have not seen wide spread adoption in
industry, as the creation and verification of suitable hybrid
system models in real mass production projects requires
extensive knowledge of formal verification by engineers, who

Figure 1. Control system

mostly have an exclusive mechanical engineering background.
In order to address that, there are practical formal verification
approaches which comply with model-based development
processes [12][13][14]. These approaches reduce hybrid
system modeling efforts for the engineers. However, these
approaches only work with systems based on ODE.

 Unfortunately, for a large class of safety-critical CPSs
solely ODE-based models are not sufficiently expressive. In
many cases models of these systems contain DAE to reflect
the energy conservation theorem. In numerical simulation, the
plant behavior is simulated by leveraging a DAE solver. The
DAE solver is executed at every calculation step in the
simulation in order to find a set of suitable values of specific
variables, such as a set of action and reaction forces by
convergence calculation. Thereby, the DAE solver enables
correct physical simulation but produces excessive
computation load, which complicates automated verification
beyond practicability.

While approaches exist to remove DAE by formula
manipulation of partial differentiation and substitution, they
are difficult for engineers to manually apply without
introducing errors into the transformed models and, thereby,
threatening the validity of the verification. Thus, we propose a
practical verification framework for safety-critical CPSs,
which are modeled by bond-graphs, and a model
transformation method. In this approach, we transform bond-
graph models with DAE into signal-flow models without DAE.
To avoid the overhead for manually creating additional
models for correctness and safety verification (as necessitated
by hybrid automata based approaches), our proposed
framework is capable of reusing plant models developed in
MBD processes. Since the plant models are originally
developed for sophisticated simulation purposes, the plant
models are accurate and complex. As a consequence, the reuse
of these complex plant models for verification purposes yields
prohibitive computational complexity. In order to address the
issue, we also propose a model simplification method
complying with MBD. In summary, this paper makes the
following contributions to the state of the art in CPS
verification.

 A practical verification framework complying with
MBD for cyber-physical systems

 An automatic model transformation method from
bond-graph plant models with DAE into signal-flow
models without DAE

 An automatic model simplification method to reduce
computation load by domain-knowledge-based
replacement of complex model components and
approximation of the model behavior by model
parameter configuration based on feedback of
simulation results.

II. BACKGROUND

We start with an overview of mechanical electronic control

systems in Section II-A, before we present the usage of bond-

graph modeling in Section II-B.

A. A Cyber Physical System Example

To discuss the specifics of CPSs modeling, we consider
the simplified automotive brake control system presented in
Figure 2. The brake control system produces a brake force in
accordance with the moving amount of the brake pedal stroke
operated by a driver. As shown in Figure 2, the system
consists of mechanical components, such as brake calipers,
which is a speed reducer, hydraulic circuits and motors, and
electronic components such as ECUs controlling the motors.
In the system, an ECU controls the brake force by monitoring
the movement of the brake pedal stroke operated by the driver
and assisting the pedal force by controlling the motor in
synchronization with the moving amount of the stroke. The
assistance enable users to lightly push the brake pedal.

The example of Figure 2 shows how current piston force F
is determined. Current piston force F is the sum of the pedal
force produced by the driver Fdriver, force produced by the
motor Fmotor, and the reactive force from hydraulic circuit
Freactive. Freactive is the result of applying function g with
argument F. These formulae reflect the law of energy
conservation resulting in the plant of the brake control system
being modeled as equations with an algebraic loop. As a
consequence, the plant model includes DAE, which impose a
challenge to automated or computer-assisted verification.

B. Bond-Graph Modeling

Bond-graph modeling enables users to design plant models
by combining physical components such as spring, mass, and
hydraulic circuit. Each component can be mapped to a real
physical component and has a specific equation, such as a
motion or constraint equation, and specific configurable
parameters, such as weight, length, and so on.

 As shown in Figure 3, a bond-graph model consists of
elements which translate to components, effort, flow and
stroke. Effort and flow are domain-independent in bond-graph
notation. For example, in the mechanical domain, effort means
force and flow means velocity. In the hydraulic domain, effort
means pressure and flow means volume or flow rate. Stroke
means flow direction. In the example, the flow value

Figure 3. Notation of bond-graph

Figure 2. An example automotive brake system

calculated by the left element is an input to the right one. The
stroke reflect the causality in the calculation order of equations
of each component. Finally, arrows describe energy direction.

III. OUR PROPOSED APPROACH

We present a verification framework, automatic model
transformation method and automatic model simplification
method in Section III-A, Section III-B, and Section III-C,
respectively.

A. Verification Framework

We propose a verification framework which enables the
safety verification of CPSs. Figure 4 shows an overview of the
framework, which consists of a model simplification phase, a
model transformation phase, and a phase for system model
construction and formal verification.

As Figure 4 shows, a bond-graph plant model with DAE,
which is an input file, is automatically simplified at the model
simplification phase, which is presented in Section III-C, and
then is transformed into the signal flow plant model with ODE
at the model transformation phase, which is presented in
Section III-B. After our framework obtains the transformed
model with ODE, it leverages the framework proposed in [15]
to efficiently enable to verify the control system. The
framework from [15] comprises a system model construction
phase, where the virtual system model is constructed by
combination of software, safety requirement, and the plant
code which is converted from the plant model with ODE, and
a formal verification phase, where automated formal
verification, such as symbolic execution, is applied to verify
the safety of the system model.

 The purpose of safety verification is to prove CPS safety in
specific situations where potential safety violations might
occur. The specific situations means system state transitions,
such as a state transition, in which a driver strongly pushes a
brake pedal immediately after the brake pedal was released.
We assume that the verification engineers verify individual
safety properties by using the verification framework from
[15]. Although the verification framework employs bounded
state search algorithm, the verification is conducted in
carefully chosen internal simulation time, which can cover the
duration of the specific situation.

In our verification framework, we propose to do the model
simplification before the model transformation because it is

easier to simplify the bond-graph plant model than the signal-
flow plant model.

B. Model Transformation Method

Elimination of DAE from bond-graph models is known to
be difficult because it entails the elimination of energy
exchange in the bond-graph models which follows the law of
conservation of energy. There is an approach in which the
engineers design ODE model by manually transforming the
DAE models, which requires deep knowledge about formulae
translations in physics. We assume that software engineers
take over the verification process and conduct the safety
verification as part of the system test process. Therefore, the
engineers conducting safety verification cannot be expected to
have the intimate knowledge about physics required for
manual model transformation. Thus, we propose a model
transformation method, which transforms the bond-graph
model to the signal-flow graph model and converts the model
with DAE to ODE by adding delay blocks in between blocks
with energy exchange.

A simple model transformation would replace a bond
graph model with an equivalent signal flow model. However,
the transformed model will still contain the algebraic loop
from bond-graph model. Our approach can eliminate the
algebraic loop by inserting one-step-delay blocks into
feedback loops between components. The purpose of delay
blocks is to make the connected block use the signal value
generated at the previous period. In the first calculation step,
the delay block produces an initial value defined by the user.
The initial value should be copied corresponding parameters
of the components calculated at the beginning of the specific
situation of simulation. Consequently, our proposed method
can remove the algebraic loop from the plant model.

The delay block produces calculation errors at every
simulation step. However, our evaluation results presented in
Section V-A show that these errors remain negligibly small for
the short simulation times commonly required for the
assessment of individual safety properties.

In order to reduce the effort and avoid human errors during
the model transformation, we propose an automatic model
transformation method which automatically transforms bond-
graph plant models to signal-flow plant models. Figure 5
shows an overview of our automatic model transformation
method. This method automatically analyzes input files which
store bond-graph plant models and extracts structural
information on the plant models. In parallel, the method
generates signal-flow subsystems according to the equation of
each element in the bond-graph model. Each subsystem

Figure 4. An overview of our proposed verification framework for CPS

Figure 5. An overview of automatic model transformation method

corresponds to exactly one element in the bond-graph model.
The method places these subsystems according to the
previously extracted structural information. Hence, it links
each subsystem according to our proposed connection rule.
Ultimately, this method outputs signal-flow graph plant
models.

We defined connection rules of signal-flow-graph
subsystems to preserve semantic equivalence with bond-graph
component interactions. Figure 6 shows our proposed
connection rules. In bond-graphs, there are two data types,
flow and effort. Moreover, there are two connection types,
direct and multiple. The direct connection connects one
element to another. The multiple connection involves more
than 3 elements. The connection is implemented by a 0
junction or a 1 junction (see Figure 6 (c) and (d)). The
connection rule (a) is used for the direct connection situation
when E1 outputs flow signals to E2 and E2 feedbacks effort
signals to E1. The effort signals are delayed by one period
through a one-step-delay block. The connection rule (b) is
used in the opposite situation. The connection rule (c) is used
for the multiple connection situation when E1 and E2 output
flow signals to E3 and E3 feedbacks effort signals to E1 and E2.
The connection rule (d) is used in the opposite situation from
(c).

C. Model Simplification Method

We assume that the bond-graph plant models, which are
originally developed in MBD for simulation purposes, are
reused for verification purposes. These plant models are
highly sophisticated because they are designed to check
whether the controller model (see Figure 1) meets functional
and real-time requirements such as the increase of a parameter
value by a specific amount within specific time. Unfortunately,
formal verification approaches are commonly very sensitive to
the complexity of the verification target. Luckily, the
verification of safety properties can commonly be conducted

on dramatically less complex models that overapproximate the
original model’s properties. However, as we mentioned in
Section III-B, most verification engineers do not have the deep
knowledge of physics or plant modeling in MBD that is
needed to create such sound overapproximations for
verification. As a consequence, the construction of additional
simpler models for the sole purpose of verification does not
only require redundant work, but it is also error-prone if
conducted by engineers who have limited experience in
crafting such models. Therefore, we propose an automated
simplification method for bond-graph plant models to reduce
computation load without requiring manual model redesign by
verification engineers.

The idea of the simplification approach is to find elements,
which produce excessive computational load but have little
impact on verification-relevant parameters and replace them
with functionally equivalent elements that create lesser
computational load during verification. Figure 7 shows an
overview of this simplification approach using an example of
a sophisticated plant model. In this example, the plant model
for simulation includes an advanced piston, which
dynamically calculates friction force according to the current
velocity. This dynamic calculation approach can provide
highly accurate physical simulation.

Our proposed approach replaces advanced elements, such
as the advanced piston, by simple elements, such as the simple
piston. Which element should be replaced depends on the
target system. For example, in a brake control system the
advanced piston is a candidate element for replacement
because the physical size of the piston and its amount of
produced friction force are relatively small. In this case, a
simple piston with a configurable constant friction force
parameter is a viable substitute. The parameter is configured
to approximate the plant behavior. The configuration is based
on simulation results, which are calculated before the
replacement procedure. Two examples for such configurations
are (1) the constant configuration of a parameter value as its
maximum assumed in simulation and (2) the definition of a
mapping table for a series of values the parameter assumes in
simulation depending on some other parameter. The two
options are illustrated in the lower left of Figure 7.

Figure 8 illustrates the simplification approach by 1:1
element replacement. In this example, a sophisticated mass Iso
of a mass spring model is replaced with a simple mass Isi The
left bond graph model is equal to the right simplified mass

Figure 6. Connection rule

Figure 7. An overview of simplification approach using

an example of sophisticated plant model

spring model at the symbolic level. Our proposed
simplification method replaces an element by a simpler
instance of the same element type such as Iso and Isi in Figure 8
and configures the parameter of the replaced element
according to fixed parameters of the original elements (such as
weight) and variable parameters, which are dynamically
calculated. Dynamically changing parameter values are based
on simulation results.

Figure 9 shows the simplification approach by N:1 element
replacement. In this case we replaces target elements by the
same procedure as 1:1 element replacement. Furthermore, we
remove irrelevant elements. In this brake control system
example in Figure 9, the simplification method replaces a
sophisticated mass including a relative element with a simple
mass. The velocity of sophisticated mass is measured by
leveraging TF, which represents a force sensor to monitor
mass force calculated on the basis of mass velocity, and
dynamically calculates friction force of the mass according to
its velocity. The friction force is used for calculation of precise
mass force. For example, if we want to replace a sophisticated
mass with a simple mass, the simplification method replaces
Isi of the above bond-graph model. The method also removes
TF as an irrelevant element because the simplified Isi uses
fixed friction force instead.

The selection of suitable approximate elements for
simplification requires deep application domain knowledge of
the plant characteristics. Out automated method is based on
domain expert knowledge so that verification engineers can
utilize the element selection options without prior knowledge
of physics.

Figure 10 shows our proposed automatic model
simplification method. The replacement and configuration
knowledge from experts is implemented as a replacement
table. Our proposed method conducts automatic simplification

according to this table. The replacement table stores
information on the relationship of complex elements to their
simpler replacement candidates in the target system and
information on the recommended configuration approach for
variable parameters.

Our method extracts structural information from a bond-
graph plant model stored in an input file. Then, the method
conducts element replacement by identifying candidate
elements for replacement in the bond-graph according to the
replacement table and structural information, replacing them
by simple ones, and setting the simpler elements’
configuration parameters. In Figure 10, the maximum value of
dynamic friction force observed in simulation results is used
as a constant value of static friction force.

IV. EXPERIMENT

We conducted experiments to evaluate our proposed
methods. In this section, we present our experiment
environment, the obtained experimental results, and a
discussion about how to interpret them.

A. Experiment Environment

Figure 11 shows an overview of the experiments. To
validate the feasibility of the proposed methods, three
experiments have been conducted. In the first experiment, we
measured how much our model simplification method reduces
computation load without tolerating any decrease of
verification accuracy. In the second experiment, we measured
to which degree our model transformation method introduces
behavioral deviations between the bond-graph model and the
signal-flow model. In the third experiment, we measured time
for conducting automated safety verification of the
transformed model and checked whether the verification

Figure 8. An example of simplification approach by 1:1 element replacement

Figure 9. An example of simplification approach by N:1 element replacement

Figure 10. Automatic model simplification method

Figure 11. An overview of experiments

enable failure detection after our proposed transformation and
simplification method. As a verification tool, we chose KLEE
[16] with default configuration of the symbolic execution
engine and the STP solver [16] for solving path constraints. In
the first and second experiments, the operating system is
Windows® 7 32-bit and in the third experiment it is Ubuntu®
12.04 32-bit. The first and second experiments ran on a
machine with 2.80 GHz Intel® Core i5 quad-core processors
and 2 GB of RAM and in the third experiment it with 3.0 GHz
Intel® Core i7 quad-core processors and 16 GB of RAM.

We applied the above experiments to an automotive brake
control CPS. We implemented our proposed model
simplification method and model transformation method as
two prototype tools. For the model transformation tool, the
insertion of delay blocks has been conducted manually.
Additionally, in the second experiment the model generation
procedure, which is shown in Figure 5, is also conducted
manually, in the sense that signal-flow subsystems for model
transformation were developed manually before the model
transformation tool execution. The tool makes use of these
manually developed subsystems in the component placement
procedure shown in Figure 5. As the manually identified (but
automatically applied) subsystems are reusable for other
models that contain the same subsystems, we consider this a
one-time effort. For example, since the signal-flow piston
subsystem is frequently used in many plant models of the
same domain, we consider the subsystem replacements to be
reusable at least for the same domain, i.e., the product family.

For these experiments, we developed a brake control
system model, shown in Figure 2, which consists of a
controller model implemented in C, and a plant model
designed in AMESim. The plant model is discretized using
100 micro seconds intervals. This means that one-step delay
blocks delay the target signals for 100 micro seconds. In the
first experiment we measured the effect assessed by
simulation and reused the plant model of the real mass
production development with the same discrete time intervals
instead of our developed model in order to measure the
accurate effect.

We embedded a subtle fault, which results in unintended
brake force, in the control software. In the third experiment,
the verification must detect this fault by checking the resulting
violation of the safety requirement, i.e., unintended braking
does not occur. We implemented three conditions to detect the
safety requirement violation as assertion code according to
[15]. If all of these conditions are satisfied, the safety
requirement is violated. The first condition is that the brake
pedal is not actuated. The second condition is that the elapsed
time is at least 500ms after the pedal released. The time
prevents the verification tool from misdetections caused by the
response delay of the plant. The third condition is that the
amount of piston displacement, which means distance from
initial piston position, increases, i.e., the brake force increases.
A brake pedal operation, which is a system input, is defined as
a symbol supplied by KLEE each second through symbol re-
definition [15]. We generated the system model combined by
the control software, the plant code, and the assertion code

[10]. The model replicates the system behavior during 5
seconds in internal time and is structured by 2000 lines in C.
We verified the safety of the model according to [15].

B. Experiment Results

Figure 12, Table 1, and Figure 13 show the first
experimental results of the model simplification method. The
simplification tool found an advanced mass and replaced it to
simple mass and configured it for approximation according the
replacement table (see Figure 12). This single replacement
yields approximately 35% computation load reduction in
simulation (see Table 1).

Additionally, in order to compare the simplified plant
model behavior with the original one, we plot their behaviors
in Figure 13 for an easy visual comparison. As the result
shows, there is no recognizable difference. This means our
model simplification method did not adversely affect the
accuracy of the model.

Figure 14 shows the second experimental result on the
model transformation method. The model transformation tool
could transform the bond-graph plant model of the brake
control system described in AMESim into a signal-flow plant
model for MATLAB/Simulink. The plotted simulation result
shows the brake piston displacement of the original model
(left) and the transformed model (right) with changing brake
force. To achieve a sound comparison, we applied the same
settings for the numeric solver method and configuration
parameter in both AMESim and MATLAB/Simulink. As the
result in Figure 13 illustrates, there was no recognizable error.

Figure 12. The first experimental result on the model

simplification method

Table 1. Comparison results of simulation time

 Figure 15 shows the third experimental result on the safety
verification. In the upper part of the figure illustrating the
driver brake pedal operation, ON indicates pedal actuation.
OFF indicates pedal release. The piston displacement in the
lower part of the figure shows, there is an increase (indicating
brake engagement) despite pedal release between seconds 4
and 5. This means that unintended braking occurred even
though the driver did not actuate the brake pedal. This failure
was detected by spending 23 minutes 15 seconds of
verification time. This failure condition is the expected result
of the fault we embedded. Therefore, the result confirms that
the verification tool was able to properly verify the safety of
the system model including the plant model transformed by
our prototype tool. After the failure was fixed, we conducted
the safety verification. The safety was verified by spending 23
minutes 44 seconds of verification time.

V. DISCUSSION

In order to facilitate the automated verification of safety

properties in critical CPSs, we have proposed model

transformations and simplifications. Obviously, none of the

proposed modifications to the CPS models should affect the

validity of the verification. In the following we discuss the

effects of our modifications on the system behavior in

simulation.

A. Effects from the Model Transformation Approach

Our model transformation approach inserts one-step delay
blocks between components. In order to clarify the impact
caused by the blocks, we measured each output signal value of
the transformed plant model in Simulink in the case of one-

step delay, which our approach inserts, and in the case of two-
step delay for the comparison to extract the difference. We did
not measure the signal value of the model with no delay
blocks because the model did not work in Simulink due to the
algebraic loops. As we mentioned earlier, one step means 100
micro seconds. The measurement was done at the same
condition of the second experiment in Simulink. The result
showed that the maximum difference of plant output signal
was 0.1 %.

Bond-graph modeling enables us to design the plant model
by connecting physical components. Our transformation
method inserts a delay block into a feedback loop between two
components. The block delays one simulation step such as 100
micro seconds to the value of the feedback. This means each
component state is individually updated by the current input
signal and the previous output signal as reaction value.
Therefore, the delays caused by the blocks do not sum up.
Consequently, the effect from our model transformation
approach is acceptable.

B. Effects from the Model Simplification Approach

The purpose of our safety verification method is to check
software logical error resulting in the safety violation from the
view of the system behavior. In order to reduce the
verification complexity of the plant model, our model
simplification approach abstracts the target plant model. In
general, the model abstraction approach may cause false
positives. Our approach can reduce the complexity as
preserving the number of the system state and the plant
behavior. Therefore, our simplification approach provides a
sound overapproximation of the system model.

VI. RELATED WORK

There are related work for multi-domain model-based

design and verification approach. The study enables users to

ensure consistency between heterogenous models such as

control models, plant models and process algebraic models

[17] by developing a system architecture, in which these

models are encapsulated, and each corresponding component

is connected [18]. The architecture model maintains structural

and semantical consistency on logical constraint of model

parameters [19][20]. Moreover, the environment in [22] can

generate verification models which are described by finite

state processes (FSP) or liner hybrid automata (LHA) [21].

Figure 13. Comparison results of plant behavior before and

after simplification

Figure 14. The second experimental result on the model

transformation method

Figure 15. The third experimental result on the safety verification

FSP models can be analyzed by Labelled Transition System

Analyzer (LTSA) tool [17]. LHA models can be analyzed by

Polyhedral Hybrid Automaton Verifier (PHAVer) [9].

However, multi-domain model-based design and verification

approach may cause non-negligible efforts to users because all

aspect of the heterogenous models must be correctly

connected. Furthermore, it is difficult to reduce the

verification complexity by the model abstraction as

maintaining these consistencies because if the model is

modified at one side for verification complexity reduction the

models on the other side also has to be modified to maintain

the consistency. In order to achieve the efficient verification

process complying with MBD, our approach automatically

generates system models by integration according to only

signal information between controller models and plant

models [15]. Moreover, it can reduce the verification

complexity by flexible component replacement method.

VII. CONCLUSION

In this paper, we proposed a practical verification
framework for safety-critical CPSs that leverages automated
model transformations and simplifications. The developed
model transformation method automatically transforms bond-
graph plant models with algebraic loops into signal-flow
models without algebraic loops to make them applicable for
existing automated verification approaches. The model
simplification method automatically simplifies the plant model
by replacing complex components by simpler ones that exhibit
equivalent behavior to a sufficient degree. The replacement is
based on expert knowledge, which is captured in replacement
libraries for reusability, and application-specific parameter
tuning based on simulation. We applied the proposed
verification framework for the safety verification of a safety-
critical automotive brake control CPS. The experimental
results showed that the model simplification method yields
approximately 35% computation load reduction in simulation
and the model transformation method yields equivalent signal-
flow models without recognizable errors. Additionally, the
proposed framework was able to correctly detect unsafe
behavior of the brake control system. In future work, we plan
to develop an error localization method to aid debugging when
safety violations are indicated by the presented verification
approach.

ACKNOWLEDGMENT

Research supported in part by TUD CySEC. We also thank
Hitachi Automotive Systems for providing the application
examples.

REFERENCES

[1] ACATECH (Ed.). Cyber-Physical Systems - Driving Force for
Innovation in Mobility, Health, Energy and Production. 2011.

[2] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems,
A Cyber-Physical Systems Approach. http://LeeSeshia.org. ISBN 978-0-
557-70857-4. 2011.

[3] The MathWorks Inc. Simulink R2015b. 2015.
http://www.mathworks.com/products/simulink/

[4] Siemens PLM Software. Amesim version 13. 2014.
http://www.plm.automation.siemens.com/en_us/products/lms/imagine-
lab/amesim/

[5] The MathWorks Inc. Simscape R2015b. 2015.
http:www.mathworks.com/products/simscape/

[6] The Modelica Association. The Modelica Specification, Version 3.3
Revision 1, July 2014. https://www.modelica.org/

[7] R. Alur. Formal Verification of Hybrid Systems. In Proceedings of the
11th International Conference on Embedded Software, 2011.

[8] T. A. Henzinger, P. Ho, and H. Wong-toi. HyTech: A model checker for
hybrid systems. In Proceedings of the 9th International Conference on
Computer Aided Verification, 1997.

[9] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past
Hytech. In proceedings of the 8th International Workshop on Hybrid
System: Computation and Control, 2008.

[10] A. Tiwari. HybridSAL Relational Abstracter. In proceedings of the 24th
International Conference on Computer Aided Verification, 2012.

[11] A. Platzer and J. Quesel. KeYmaera: A Hybrid Theorem Prover for
Hybrid Systems. In proceedings of the 4th International Joint
Conference on Automated Reasoning, 2008.

[12] F. Lerda, J. Kapinski, H. Maka, E. M. Clarke, and B. H. Krogh. Model
Checking In-The-Loop: Finding Counterexamples by Systematic
Simulation. In proceedings of American Control Conference, 2008.

[13] H. Nakajima, S. Furukawa and Y. Ueda, Co-Analysis of SysML and
Simulink Models for Cyber-Physical Systems Design, In proceedings of
the 18th International Conference on Embedded and Real-Time
Computing Systems and Application, 2012.

[14] R. Majumdar, I. Saha, K. C. Shashidhar, Z. Wang. CLSE: Closed-Loop
Symbolic Execution. In Proceedings of the 4th International Symposium
on NASA Formal Methods, 2012.

[15] T. Isihgooka, H. Saissi, T. Piper, S. Winter, and N. Suri. Practical Use of
Formal Verification for Safety Critical Cyber-Physical Systems: A Case
Study. In proceedings of the 2nd International Conference on Cyber-
Physical Systems, Networks, and Applications, 2014.

[16] C. Cadar, D. Dunbar and D. Engler. KLEE: Unassisted and Automatic
Generation High-Coverage Tests for Complex Systems Programs. In
proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation, 2008.

[17] J. Magee and J. Kramer. Concurrency: State Models and Java
Programing, Second Edition. Wiley, 2006.

[18] A. Bhave, B. Krogh, D. Garlan, B. Schmerl. Multi-domain Modeling of
Cyber-Physical Systems Using Architectural Views. In proceedings of
the 1st Analytic Virtual Integration of Cyber-Physical Systems
Workshop, 2010.

[19] A. Bhave, B. H. Krogh, D. Garlan, B. Schmerl. View Consistency in
Architectures for Cyber-Physical Systems. In proceedings of the 2nd
ACM/IEEE International Conference on Cyber-Physical Systems, 2011

[20] A. Rajhans, A. Bhave, S. Loos, B. H. Krogh, A. Platzer, D. Garlan.
Using Parameters in Architectural Views to Support Heterogeneous
Design and Verification. In proceedings of 50th IEEE Conference on
Decision and Control and European Control Conference, 2011

[21] T. A. Henzinger. The theory of hybrid automata. In proceedings of 11th
Annual IEEE Symposium on Logic in Computer Science, 1996.

[22] A. Bhave, D. Garlan, B. H. Krogh, A. Rajhans, B.Schmerl. Augmenting
Software Architecture with Physical Components. In proceedings of the
Embedded Real Time Software and Systems Conference, 2010

