
On the Security Assessment of the Cloud

Salman Manzoor

School of Computing and Communications
Lancaster University

This dissertation is submitted for the degree of
Doctor of Philosophy

September 2022

Declaration

I hereby declare that the contents of this dissertation are original and have not been submitted
for consideration for any other degree or qualification at any other university. I also certify
that the presented work is my own, except where specific reference is made to the work of
others.

Salman Manzoor
September 2022

Acknowledgements

First of all, I would like to thank my advisor Neeraj Suri for giving me the opportunity to
work toward a PhD. Thank you for always being open to new ideas and allowing me to
develop and pursue my research interests. I am grateful for your valuable suggestions and
guidance regarding my professional and personal life.

I am also very grateful to Stefan Katzenbeisser and Muhammad Khalid for accepting to
be my external reviewers and to Yang Lu for being my internal reviewer. I would also like to
thank Antonios Gouglidis for chairing the PhD defense.

I want to thank all my colleagues who shared the PhD journey with me both at Lancaster
university and TU Darmstadt. Particularly, I would like to thank Tsveti for always helping
me whenever I struggled to understand German letters by translating them. I enjoyed
our conversations about Bulgaria, Pakistan, and German cultures. I would also like to
acknowledge Olli and Habib, who introduced me to the magic of black coffee. I can
undoubtedly say that coffee breaks were fun. I would also like to thank Jesus, Ruben, Ahmed,
Nico, Habib, Hatem, Kubilay, Heng, and Yiqun for the stimulating research discussions,
group BBQs and the occasional breaks at Herngarten. Thank you, Sabine, for your help with
all the necessary paperwork, and Ute, for sharing your cake recipes with me.

Finally, I am grateful for the support, love, and encouragement I received from my family.
Without their support, I would not have been able to complete this journey. Thank you for
always being with me during stressful and less stressful times.

Abstract

Cloud computing is an enabling technology paradigm that provides access to the geo-
distributed pool of resources that are rapidly and flexibly provisioned at run-time with
minimum management from the user. These benefits have driven the proliferation of the
Cloud over the last decade. Many organizations have migrated to the Cloud or have a Cloud-
first strategy for their businesses. Despite these benefits, the security of the Cloud has been
flagged as among the top concerns by its users.

To address security concerns, Threat Analysis (TA) is often advocated to ascertain a
system’s exposure to threats. A plethora of TA techniques exist that focus on analyzing threats
to targeted assets at the system’s level (e.g., components, hardware) or at the user’s level
(e.g., virtual machine) in the Cloud. These techniques are effective, but their applicability is
limited beyond their targeted asset. However, the Cloud is a complex system entailing both
the physical and virtual resources. Moreover, these resources can instantiate, migrate across
physical hosts, or decommission to provide rapid resource elasticity to the users.

On this background, this thesis aims at assessing the security of the Cloud holistically by
considering the interactions among the services/components involved in the operational stack
of the Cloud. In this regard, a technology-agnostic information flow model is developed that
represents the Cloud’s functionality through a set of conditional transitions. Furthermore,
threats are added to the model to analyze their impact on the Cloud. This enables the
exploration of a threat’s behavior and its propagation across the Cloud and supports assessing
the security of the Cloud by analyzing the impact of multiple threats across various operational
layers/assets. Using public information on threats from the National Vulnerability Database
(NVD), actual Cloud attacks were traced and speculatively postulated alternate potential
attack paths. Furthermore, the thesis also investigates different threats with similar indicators
of compromise (e.g., attack patterns) to be considered in the security assessment along with
the specific user’s requirements. Finally, the thesis also targets the evaluation of potential
violations from the Cloud providers that breach users’ requirements.

The results presented in the thesis demonstrate that by ascertaining the attack paths and
considering the interplay between threats and security requirements, the security of the Cloud
can be comprehensively assessed.

Publications

The following publications have, in parts verbatim, been included in this thesis.

• S. Manzoor, A. Gouglidis, M. Bradbury and N. Suri, "ThreatPro: Multi-Layer Threat
Analysis in the Cloud", ACM Transactions on Privacy and Security (TOPS) (Under
Review).

• S. Manzoor, D. Prince and N. Suri, "Ontologies for Vulnerability Terrain Mapping
and Attack Reasoning", In Proceedings of the International Conference on Network
and System Security (NSS) (Under Review).

• S. Manzoor, H. Zhang and N. Suri, "Threat Modeling and Analysis for the Cloud
Ecosystem", In Proceedings of the IEEE International Conference on Cloud En-
gineering (IC2E), IC2E’18, Orlando, USA, April 17-20, 2018, pp. 278-281, doi:
10.1109/IC2E.2018.56.

• S. Manzoor, T. Vateva-Gurova, R. Trapero, N. Suri, "Threat Modeling the Cloud: An
Ontology based Approach", In: Proc. of the International Workshop on Information
and Operational Technology Security Systems (IOSec) IOSec’18, Crete, Greece,
September 13, pp. 61-72, doi: 10.1007/978-3-030-12085-6_6.

• S. Manzoor, Jesus Luna and Neeraj Suri "AttackDive: Diving Deep into the Cloud
Ecosystem to Explore Attack Surfaces", In: Proc. of IEEE Services Computing (SCC),
SCC’17, Honolulu, USA, June 25-30 2017, pp. 499-502, doi: 10.1109/SCC.2017.74.

• S. Manzoor, A. Taha and N. Suri "Trust Validation of Cloud IaaS: A Customer-centric
Approach", In: Proc. of IEEE IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), TrustCom’16, Tianjin, China,
Aug 23-26 2016, pp. 97-104, doi: 10.1109/TrustCom.2016.0051.

The following publications are related to different aspects covered in this thesis and have
been published during my doctoral studies, but have not been included in the thesis.

https://doi.org/10.1109/IC2E.2018.00056
https://doi.org/10.1007/978-3-030-12085-6_6
https://doi.org/10.1109/SCC.2017.74
https://doi.org/10.1109/TrustCom.2016.0051

x

• T. Vateva-Gurova, S. Manzoor, Y. Huang, and N. Suri. “InfoLeak:Scheduling-Based
Information Leakage”. In: Proc. of the 23rd IEEE Pacific Rim International Sympo-
sium on Dependable Computing (PRDC) PRDC’18, Taipei, Taiwan, December 4-7,
2018. 2018, pp. 44–53, doi: 10.1109/PRDC.2018.00015.

• T. Vateva-Gurova, S. Manzoor, R. Trapero, N. Suri, "Protecting Cloud-Based CIs:
Covert Channel Vulnerabilities at the Resource Level", In: Proc. of the International
Workshop on Information and Operational Technology Security Systems (IOSec)
IOSec’18, Crete, Greece, September 13, pp. 27-38, doi: 10.1007/978-3-030-12085-
6_3.

• H Zhang, S. Manzoor and N Suri, "Monitoring path discovery for supporting indirect
monitoring of cloud services", In: Proc. of the IEEE International Conference on
Cloud Engineering (IC2E), IC2E’18, Orlando, USA, pp. 274-277, April 17-20, 2018,
doi: 10.1109/IC2E.2018.00055.

• A. Taha, S. Manzoor and N. Suri, "SLA-based Service Selection for Multi-Cloud
Environments", In: Proc. of IEEE EDGE Computing (EGDE), EDGE’2017, Honolulu,
USA, June 25-30, 2017, pp.65-72, doi: 10.1109/IEEE.EDGE.2017.17.

https://10.1007/978-3-030-12085-6_3
https://10.1007/978-3-030-12085-6_3
https://doi.org/10.1109/IC2E.2018.00055
https://doi.org/10.1109/IEEE.EDGE.2017.17

Table of contents

List of Figures xv

List of Tables xvii

Nomenclature xix

1 Introduction 1
1.1 A Brief Overview of the Cloud Environment 2
1.2 Security of the Cloud . 4
1.3 Research Questions and Contributions . 8
1.4 Thesis Organization . 13

2 Background & Related Work 15
2.1 VM Life Cycle . 15
2.2 Asset-based Threat Analysis . 17

2.2.1 Creation Stage . 17
2.2.2 Storage Stage . 18
2.2.3 Deployment Stage . 18
2.2.4 Execution Stage . 19
2.2.5 Exit and Deletion Stages . 22
2.2.6 Migration Stage . 22
2.2.7 Categorizing Threats using the STRIDE Model 24

2.3 Graphical Security Models . 27
2.4 Conclusion . 31

3 Designing and Modelling the Cloud 33
3.1 Functional Cloud Model . 33
3.2 Defining the Functional Model of the Cloud 34

3.2.1 Control Layer . 36

xii Table of contents

3.2.2 Infrastructure Layer . 36
3.2.3 Storage Layer . 36
3.2.4 Information Flow in Launching a VM 37

3.3 Conclusion . 40

4 Information Flow Model 41
4.1 A Transition System . 42

4.1.1 Normal Behavior . 43
4.1.2 Incorporating Malicious Inputs to the System 43
4.1.3 Representing a Transition System 44
4.1.4 Information Flow Model Requirements 45

4.2 Modelling the Cloud operations . 47
4.2.1 Instantiation of the Cloud Functional Behavior 50

4.3 Instantiation of a Threat’s Behavior . 55
4.3.1 Reconnaissance Step . 56
4.3.2 Exploit Step . 57

4.4 Connecting the Cloud Model and Threats 58
4.5 Conclusion . 60

5 Threat Analysis 61
5.1 Enumerating the Cloud behavior . 62
5.2 ThreatPro: A Multi-layer Dynamic Threat Analysis 63

5.2.1 Validation: Real-world Case Studies 66
5.2.2 Case II: Availability as a requirement 69

5.3 AttackDive: Exploring Attack Surfaces 71
5.3.1 Insider Attacker vs. Outsider Attackers 71

5.4 Conclusion . 73

6 Requirements-based Threat Analysis 75
6.1 Investigating Variants of Threats . 76

6.1.1 Stage A. Vulnerability Data . 77
6.1.2 Stage B. Feature Extraction . 78
6.1.3 Stage C. Creating Context . 80
6.1.4 Stage D. Clustering . 81
6.1.5 Results and Discussion . 84

6.2 Requirement based Threat Modeling . 85
6.2.1 Users and Requirements Capturing 85

Table of contents xiii

6.2.2 Vulnerability Perspective of the Ontology 86
6.2.3 Using Design Structure Matrix for Threat Analysis 86
6.2.4 Profiling Security of the Cloud . 88
6.2.5 Extracting Influential Actors using DSM 89

6.3 Conclusion . 91

7 A Customer-Centric Approach to Validate the Cloud 93
7.1 Basic Concepts . 94
7.2 Related Work . 95
7.3 Proposed Methodology . 97

7.3.1 Stage A. Requirements Specification 97
7.3.2 Stage B. Monitoring the Selected CSP 98
7.3.3 Stage C. Service Validation . 99
7.3.4 Stage D. Trust State . 102

7.4 Case Study: Trust Assessment of the Cloud 104
7.4.1 Case I: Launching a VM . 104
7.4.2 Case II: VM Migration . 107

7.5 Conclusion . 109

8 Conclusions and Future Work 111
8.1 Conclusions . 112
8.2 Future Work: Proactive Threats Mitigation Techniques 117

References 121

List of Figures

1.1 An overview of the Cloud. 3
1.2 Cloud users and possible attack surfaces 5
1.3 Publicly disclosed vulnerabilities for Xen and vSphere 7
1.4 Threat analysis for assets . 7

2.1 An overview of the VM life cycle in the Cloud. 17
2.2 Difference between Type-I and Type-II hypervisors. 19
2.3 Using virtualization to install malware on a VM. 21
2.4 Man-in-the-middle attack during the VM migration 23
2.5 Using network as an attack surface to launch attacks 24
2.6 An attack tree example . 28
2.7 Example of attack paths of the Cloud . 30

3.1 Multi-layer architecture of the Cloud . 35
3.2 Communication among the services to launch a VM 39
3.3 Communication among the services in migrating a VM 40

4.1 An abstract example of a transition system 42
4.2 An example of a Petri net . 47
4.3 Login system using HLPN . 48
4.4 Snippet of CPN tools of the Login system 50
4.5 Transforming Cloud Model to HLPN . 52
4.6 Snippet of CPN tools of the Final Configurations 54
4.7 Modeling a threat’s behavior using HLPN 56
4.8 Snippet of CPN tools depicting threats behavior 59
4.9 Link between threats and the Cloud Model 59

5.1 Example of valid execution paths in the Cloud environment 63
5.2 Attack paths based on the selected vulnerabilities 65

xvi List of Figures

5.3 Attack path in the Equifax data breach . 68
5.4 Attack path in a resource consumption attack 70
5.5 Visibility of states to attackers . 72

6.1 Stages in the proposed methodology . 78
6.2 Context-based similarity among the Cloud vulnerabilities 83
6.3 Attack mechanism similarity among the Cloud vulnerabilities 84
6.4 Correlation among Services, requirements and threats 86
6.5 Interactions and variants of a vulnerability 87
6.6 Interactions and variants of a vulnerability 88
6.7 Design structure matrix of the case study data 90
6.8 Reordering to extract most influential actor. 91
6.9 Viewpoint of the confidentiality requirement 92

7.1 Cloud SLA hierarchy . 96
7.2 Stages of the proposed methodology . 98
7.3 Effect of impact factor on states of trust 103
7.4 Services and their communication in migrating a VM 108
7.5 Service and root Impact factors of Cloud IaaS 109

8.1 Proposed moving target defense approach 118

List of Tables

2.1 Xen’s (hypervisor) vulnerability map . 20
2.2 Examples of prevalent issues and actions. 26
2.3 Application of the graphical security models 32

3.1 Configurations adopted by Cloud providers 34

4.1 Description and data type of places in Figure 4.3 48
4.2 Description and data type of places in the Cloud Model 51
4.3 Description and data type of places in Figure 4.7 56

5.1 List of vulnerabilities from NVD with CIA consequences indicated 64

6.1 Selected features from the vulnerability databases. 79
6.2 Excerpt of the actors data for profiling threats in the Cloud 89

7.1 The relation of Impact Factor to the severity of the violation(s). 99
7.2 Excerpt of SLA’s from CSPs and customer’s requirements. 105

Nomenclature

Acronyms / Abbreviations

AWS Amazon Web Services

CIA Confidentiality Integrity Availability

CSC Cloud Service Customer

CSP Cloud Service Provider

DSM Design Structure Matrix

HLPN High Level Petri Net

IaaS Infrastructure as a Service

IT Information Technology

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

PaaS Platform as a Service

SaaS Software as a Service

SLA Service Level Agreement

TA Threat Analysis

VMM Virtual Machine Monitor

VM Virtual Machine

Chapter 1

Introduction

Traditional Information Technology (IT) setup consists of installing various parts of the
physical hardware (e.g., servers, computers) on the premises of an organization to provide
access to the organization’s applications and data. Additionally, scaling up an application
requires organizations to plan the hardware requirements to support the scaling operation
and procure the additional hardware. Conversely, scaling down an application/service means
that organizations must decommission the acquired hardware. Thus, both the scaling up and
down operations are cumbersome, time-consuming, and costly for many organizations. In
contrast to this traditional IT setup, Cloud computing is a technology paradigm that provides
on-demand access to the geo-distributed pool of resources (e.g., services, computation,
storage, etc.) as utilities over the Internet. These resources can be rapidly and dynamically
provisioned according to the requirements of an application without direct management from
the users[1].

Moreover, the Cloud utilizes a pay-as-you-go model that helps reduce the users’ capital
and operational expenses. Thus, organizations can rapidly scale up/down their applications
in the Cloud without needing to buy/decommission the hardware. Therefore, the Cloud
proliferation has increased across a wide range of businesses due to the economic benefits it
offers. For example, Amazon, Inc. provides a spectrum of Cloud services (e.g., computing,
data storage, networking, etc.) to users, including individual users, companies, or govern-
ments, through its proprietary Cloud platform known as Amazon Web Services (AWS) [2].
Similarly, Google delivers Cloud services, e.g., building and deploying artificial intelligence
and machine learning models on its Cloud [3], and Microsoft offers more than 200 services
in their Cloud suite Azure [4].

Consequently, Amazon, Microsoft, and Google collectively accumulated more than 60
percent of the global market share [5] in 2022, with an increase of 34 percent in Cloud
adoption compared to the year 2021. In addition to these market leaders in the Cloud,

2 Introduction

numerous small and medium-size Cloud Service Providers (CSPs) offer their services with
distinctive features. For example, Dropbox offers particular file hosting and sharing features
that make file sharing simpler and easier among its users [6]. In contrast, Github [7] offers
specific services for software development. These services include code repositories, version
control, and code review to facilitate software development. TechCrunch has reported that the
Cloud infrastructure market share has already hit $129B in 2020 [8]. According to Gartner,
Inc., the Cloud services industry is projected to increase exponentially over the following
years. The growth is estimated to be approximately three times that of the entire IT services
[9]. It is evident that Cloud services have become prevalent in a wide range of applications
and consequently have penetrated into business organizations and personal lives [10].

1.1 A Brief Overview of the Cloud Environment

This section presents a brief overview of the Cloud environment. Cloud computing is
defined as a model to enable convenient, on-demand access to a shared pool of resources
(e.g., computing, services, networks, applications, and storage) over the Internet as utilities,
according to a definition by the National Institute of Science and Technology (NIST) [1].
Thus, the essential characteristics of the Cloud are flexible billing, resource pooling, on-
demand access, and rapid elasticity of resources to the users. The Cloud Service Providers
(CSPs) have adopted different service delivery models to provide their services to the
users. These are; Software as a Service (SaaS) [11], Platform as a Service (PaaS) [12], and
Infrastructure as a Service (IaaS) [13]. These service models are briefly explained below.

• SaaS: In SaaS, a CSP offers software applications as a service and allows users to
control only the application configurations. Online word processors such as Google
docs and Microsoft Office 365 are examples of SaaS that enable users to access their
documents across a range of devices seamlessly.

• PaaS: PaaS providers host different computing development platforms and offer them
as a service to developers. These provisions enable application developers to instantiate
and manage the platform without the complexity of building and maintaining the
underlying infrastructure. Online games development engines or software development
platforms fall under the category of PaaS offerings.

• IaaS: IaaS provides computing and storage resources where a user controls and
manages its resources. A prominent example of IaaS is the Amazon EC2 which allows
users to rent computing resources as a Virtual Machine (VM). The user controls both

1.1 A Brief Overview of the Cloud Environment 3

the configuration of the VMs and the applications running on these VMs. Moreover,
IaaS provides the flexibility to connect multiple VMs to create a coherent view of the
resources in the Cloud specific to a user.

Each service delivery model offers specific services to the users with varying degrees of
control over the services. As seen from Figure 1.1, IaaS provides the highest control to the
user while SaaS offers the least management control.

Services Orchestration Essential Characteristics

Fl
ex

ib
le

 B
ill

in
g

R
es

ou
rc

e
Po

ol
in

g

O
n-

de
m

an
d

Se
rv

ic
es

R
ap

id
 E

la
st

ic
ity

Software as a Service (SaaS)
Google docs, Office 365, etc

Platform as a Service (PaaS)
Google App Engine, etc

Infrastructure as a Service (IaaS)
Google App Engine, etc

Less

More

C
ontrol

Private Cloud Public Cloud Hybrid Cloud

Fig. 1.1 An overview of the Cloud.

The Cloud can be deployed in various settings according to user requirements. The
standard deployment models for the Cloud are private, public, and hybrid. A private Cloud
deployment entails that the Cloud infrastructure is restricted to an organization that becomes
responsible for managing the Cloud. On the other hand, public Cloud deployments are open
to the public, i.e., the underlying physical hardware is shared among different users, and
therefore, resources belonging to various users/organizations can be hosted on the same
physical server. Architecturally, there are very few differences between private and public
Cloud deployments. However, the security challenges in a public Cloud are more significant
than in a private Cloud [14]. For example, side-channel attacks [15] are more significant
in public Cloud deployments. NIST has published guidelines on dealing with security and
privacy issues in the Cloud [16]. Hybrid Cloud deployment combines the benefits of both

4 Introduction

public and private Cloud deployments. It is particularly beneficial for organizations with
an on-premise Cloud deployment to store sensitive data but can use public deployments for
business intelligence, for instance.

Thus, the rapid flexibility in resource management within the Cloud and the availability
of various Cloud deployment configurations are the driving forces behind the rapid increase
in the Cloud usage. It is evident that many organizations have either migrated to the Cloud or
adopted the Cloud-first strategy for their businesses [17].

1.2 Security of the Cloud

The economic benefits of the Cloud have driven many organizations to either migrate their
operations to the Cloud or adopt a Cloud-first strategy [17]. On the other hand, the security of
the Cloud has been raised as one of the main concerns of the users in a recent survey conducted
by Check Point [18]. The survey found that 75% of the users (including organizations) are
either extremely concerned or concerned about the security of the Cloud. Broadly, these
security concerns relate to the classical Confidentiality, Integrity, Availability (CIA) triad. A
brief overview of these properties is presented below with respect to the Cloud.

• Confidentiality: The Cloud prevents unauthorized disclosure of the resources/data.
The Cloud data should not be leaked either by accident or on purpose to unauthorized
recipients, including the Cloud administrators.

• Integrity: The Cloud configurations and data cannot be altered improperly, and access
to the Cloud is restricted to the authorized entities. This also implies that any incorrect
changes to the Cloud are detected. For instance, the software is only updated after its
signature has been verified to detect any changes to the code.

• Availability: The Cloud is always available to provide services to the users. These
services could be the user’s resources (e.g., VM) or the Cloud offerings such as
applications offered by the Cloud Service Providers (CSPs).

It has been widely known that a violation of any of these properties poses a security threat
to an organization. Specifically, 68% of organizations in the survey regard the misconfigu-
rations in the Cloud as a key contributor to the threats facing the Cloud. A misconfigured
Cloud could potentially leak information to other users on the same physical machine leading
to a violation of the confidentiality property [19]. Furthermore, 58% organizations raised
unauthorized access or modification (a violation of integrity) as their primary concern [18].
Additionally, there have been attacks on the Cloud that target the availability of a service.

1.2 Security of the Cloud 5

For example, Amazon reported that they had thwarted one of the biggest Distributed Denial
of Service (DDoS) attacks [20]. Similarly, GitHub suffered a DDoS attack, and their services
became offline as a result of the attack [21]. On the other hand, Microsoft showed that it
is possible to implement malware in a virtual machine [22]. The authors showed that it is
possible to run malicious software that gives attackers access to the lower layer of the system,
yet the malware remains undetected by the system.

In lieu of the information above, it is evident that a plethora of attack surfaces exists
across the abstraction of the Cloud that an attacker can exploit to undermine the security of
the Cloud. An attack surface is the sum of different system entry points that can be used
to gain access to the system illegitimately [23]. Broadly, the attack surfaces for the Cloud
environment are presented in a taxonomy in [24] and their taxonomy is aligned with the
proposed Cloud architecture published by NIST [25]. These are the: (i) service layer to the
user, (ii) user to the service layer, (iii) service layer to the Cloud management layer, (iv)
Cloud management layer to the service layer, (v) Cloud management layer to the user and
(vi) user to the Cloud management layer. As Figure 1.2 shows, the users invoke services
that subsequently use the Cloud to render their functionality to the users. These services
could belong to either SaaS, PaaS, or IaaS. Furthermore, the users manage these services
according to the control given by the Cloud providers. Thus, the corresponding attack
surfaces belonging to these interfaces are shown in Figure 1.2 and explained in the following.

Service Layer

Users

SaaS
PaaS
IaaS

Business Support
Provisioning

Portability

Cloud Management Layer

invoke service

uses Cloud

management

Fig. 1.2 Cloud users and possible attack surfaces

The first attack surface, i.e., a service layer/instance to the user, is the same as a server-to-
client interface. Thus, it enables all types of attacks conventionally possible in a client-server
architecture. The typical examples of attacks using this attack surface include buffer overflow
and SQL injection attacks. Conversely, the second attack surface enables attacks from a

6 Introduction

user to the Cloud in the same way a user can target a server in the traditional client-server
setup. Prominent classes of attacks include browser-based attacks, such as SSL certificate
spoofing [26]. The third attack surface demonstrates the use of service to attack the Cloud. A
prominent example of such an attack surface is the use of VM to spread malicious software
in the Cloud [22]. On the other hand, the fourth attack surface describes the possibility of
using the Cloud management layer as a potential attack surface. An example of an attack
might include a malicious Cloud provider that starts decreasing the availability of a service
by relieving the assigned resources attached to it. The last two attack surfaces demonstrate
the possibility of attacking the Cloud management layer from the user and vice-versa. The
Cloud provides management access to the users to control their VMs, and they can use the
management interface as a potential attack surface. The set of attacks launched through this
attack surface is the same as attacks based on the user to the service attack surface. The final
attack surface presents the possibility of using the Cloud management layer to victimize a
user. A typical example of using such an attack surface is increasing the bill of the user or a
phishing attempt to violate a security requirement of a user.

Analyzing the Cloud Security

A trend of utilizing an attack surface to violate the Confidentiality, Integrity, and Availability
(CIA) property of key underlying virtualization technology in the Cloud is shown in Fig-
ure 1.3. It is evident from Figure 1.3 that there has been a consistent number of vulnerabilities
reported publicly for these hypervisors. Hypervisors are the software that use virtualization
technology to make sharing of the same physical machine among different hosts as virtual
resources possible. A hypervisor can directly run on top of the hardware or be embedded
in the host operating system as part of the OS. A hypervisor running directly on top of the
hardware is a Type-I (bare metal) hypervisor, and a popular choice of bare metal hypervisor
is the Xen hypervisor [27]. On the other hand, a hypervisor that is a part of the host OS is a
hosted or a Type-II hypervisor. An example of such a hypervisor is the Microsoft virtual PC
[28]. Figure 1.3 depicts the number of vulnerabilities published for two popular hypervisors
Xen [27] and vSphere [29] in the National Vulnerability Database (NVD) [30]. Xen is
an open-source virtualization software, whereas vSphere is a propriety technology from
VMware. Besides, the Cloud entails a plethora of different services/components (both at
the users and management levels), and factoring in these services/components increases the
number of vulnerabilities published manifold. Thus, it is critical that the security of the
Cloud is assessed considering the holistic view of the operations to minimize the likelihood
of a security violation.

1.2 Security of the Cloud 7

0

10

20

30

40

50

60

2021 2020 2019 2018 2017

N
U

M
B

ER
 O

F
V

U
LN

ER
A

B
IL

IT
IE

S

YEAR

Xen vSphere Total

Fig. 1.3 Publicly disclosed vulnerabilities for Xen and vSphere

Among the advocated techniques to address security issues is modeling and analysis
of threats targeting a system. Threat analysis is a process to identify threats targeting an
organization’s assets. These assets could be hardware, services, or an organization’s data,
as shown in Figure 1.4. Microsoft led initial efforts that pioneered STRIDE (Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of service, Elevation of privilege)
classification of threats facing an organization [31, 32]. For instance, a service can be a target
of a Denial of Service (DoS) attack or data can be accessed without authorization; hence,
identifying threats targeting the assets is critical to evaluate the security of the organization.

Fig. 1.4 Threat analysis for assets

To address security concerns in complex Cloud environments, multiple threat analysis
approaches have been proposed that investigate threats at either a systems level [33, 34],
in the context of specific assets/technologies [35], or by exploring potential attack surfaces
in the Cloud that attackers could use to violate security requirements [24]. Examples of
asset-based schemes include, among others, threat analysis for evaluating cache side-channel
attacks [36], analyzing network attacks [37], web attacks [38] or analyzing the impact of

8 Introduction

different threats on Cloud storage systems [39]. These schemes evaluate threats to the
targeted asset in isolation without considering its operational behavior in the system.

The alternate graphical model-based techniques, e.g., attack trees/graphs, have also been
applied to identify attack patterns that could potentially undermine the security of the Cloud.
For instance, the authors in [40] developed a model of the Cloud data center and applied
attack trees to identify potential paths leading to a security violation. Similarly, in [41],
the authors proposed a security assessment methodology targeted specifically at the Cloud
clients.

However, performing threat analysis in the Cloud is challenging given the lack of trans-
parency from Cloud providers and the complexity raised by the existence of both the physical
and virtual components. Additionally, these resources can migrate, instantiate, and decom-
mission on the run-time. While the previously mentioned approaches provide useful threat
analyses, they are either limited to identifying threats in a particular asset or typically assume
the interconnections among the assets to be static. This hinders their effective applicability to
Cloud environments, which are dynamic over their supporting on-demand adaptive resource
provisioning. Furthermore, the limited capabilities of contemporary analysis techniques
in incorporating user/service-specific security requirements within the Cloud threat model
leads to incomplete security analyses. For example, a content delivery application might
prioritize availability, whereas confidentiality may be prioritized instead in a financial or
medical information system. Consequently, this thesis investigates assessing the security of
the Cloud holistically to ascertain attack paths and organize the security threats according to
user’s requirements to prioritize threats accordingly. Moreover, the thesis also investigates
the propagation of threats in complex and dynamic Cloud environments and the potential
violation of users’ requirements signed in the Service Level Agreement (SLA).

1.3 Research Questions and Contributions

This thesis is driven by the research questions stated below, and their investigation extends
the field of research by making the contributions summarized under the respective research
questions. The common theme underlying this work is the dynamic security assessment
of the Cloud at different operational abstractions, proposing threat analysis techniques
independent of the technologies used in the Cloud and assessing violations of users’ SLAs.
To this end, the first question aims to assess the Cloud’s security at different operational
abstractions/layers. The second question investigates the interplay between threat propaga-
tion and the services interaction. The third question explores variants of threats from the
published vulnerability databases to design a requirement-based threat analysis. The fourth

1.3 Research Questions and Contributions 9

question investigates the validation of a service level agreement between a user and a Cloud
Service Provider (CSP).

Research Question 1 (RQ1): How can Cloud Service Providers (CSPs) examine the security
of the Cloud at different abstractions of the operations?

A multitude of issues affects the broader adoption of Cloud computing, with security arguably
among the most significant. To address security concerns, threat analysis is advocated to
assess potential attacks that can undermine security objectives. However, conducting threat
analysis for the Cloud is a non-trivial task, given the complexity of the Cloud environment
entailing both the physical and virtual resources. Moreover, numerous attack surfaces exist
in the multiple layers of the operational stack and the resource/customer interfaces. Con-
sequently, many Threat Analysis (TA) techniques exist that focus on analyzing threats to
targeted technology/services to reveal threats pertinent to them. However, these techniques
are technology-dependent, and their applicability beyond the targeted technology is limited.
Furthermore, these techniques do not contemplate the operational constraints on the technol-
ogy, such as its interaction with other services/technologies in the Cloud. Thus, this question
investigates assessing the security across the operational stack of the Cloud.

Contribution 1 (C1): A Cloud model capable of representing the fundamental operations of
a Cloud in a technology agnostic manner.

The feasibility of assessing the security of the Cloud at different abstractions strongly depends
on the model of the Cloud used. Generally, state-of-the-art focuses on the services layer
of the Cloud, i.e., on modeling an application’s behavior for performance optimization
or assessing the security issues in the application. However, analyzing an application for
security issues does not reveal potential attack surfaces in the underlying operational stack of
the Cloud, which is critical to assessing the security holistically. For example, a Cloud facing
a denial of service attack might inadvertently limit the availability of an application, although
the application is not directly attacked. Thus, to comprehend the threats facing the Cloud,
representing the operations of the Cloud is essential to determine the presence of attack
surfaces at an attacker’s disposal. Furthermore, the model needs to be technology-agnostic
and applicable to the spectrum of Cloud offerings. Therefore, the first contribution this
makes is by proposing and developing a Cloud model that is agnostic to technologies yet
represents the functional operations of the Cloud and is aligned with the existing Cloud
deployments. A multi-layer Cloud model is proposed to highlight different abstractions of

10 Introduction

the operations involved during the life cycle of a VM. The model’s foundation is the set of
common services abstracted from multiple open source Cloud computing environments and
influential stakeholders in the Cloud market, such as Amazon, Microsoft, and Google.

Furthermore, the model supports capturing the services interaction and the flow of in-
formation across the multiple layers. It is achieved by depicting the Cloud’s functionality
through a set of conditional transitions that are triggered after their respective preconditions
are satisfied. Specifically, the model contributes to (a) enabling the exploration of the benign
behavior of the Cloud and (b) analyzing the interactions amongst the services across various
operational layers of the Cloud. This contribution, detailed in Chapters 3 and 4, is based,
partly verbatim, on the material from [42, 43].

Research Question 2 (RQ2): How can the effects of a threat in a service on other intercon-
nected services be identified?

A plethora of highly effective Threat Analysis (TA) techniques exist that focus on analyzing
threats to specifically targeted assets (e.g., components, services), typically considering static
interconnections among them. However, the Cloud is a dynamic environment where new
interconnection occurs at run-time when new resources are instantiated or a resource migrates
across physical hosts. In addition, the increasing number of multi-layer/multi-asset attacks
highlights the need for threat analysis approaches specifically designed for dynamic and
multi-layer Cloud environments. Fundamentally, this question investigates the attack paths
that attackers could use considering the holistic view of the Cloud operations (i.e., services
interactions across the layers in the Cloud) and the visibility of these services to the attacker.
Thus, this question investigates the threat propagation across the Cloud to analyze (a) the
spectrum of malicious behaviors stemming from the vulnerable service interactions across
the multi-level operational stack and (b) correspondingly enumerate the multi-level attack
surface exploitability by the attackers.

Contribution 2 (C2): A path-illustrative approach to profile threats, analyze their impact on
targeted services and the propagation of threats across the multiple layers of the Cloud.

The second contribution of the thesis is the development of threat analysis approaches,
Threatpro [44], and AttackDive [42], that assist in identifying paths that lead to the violation
of the security requirements, i.e., an attack on the system. These approaches propose new
ways to track and trace threats in dynamic systems such as the Cloud. The threats are
introduced to the Cloud model as additional constraints at different services to assess their

1.3 Research Questions and Contributions 11

impact on the operations of the Cloud. The inclusion of threats at different layers/services
enables the investigation of the cause-effect relationship between a threat and a service.
Consequently, it facilitates analyzing the propagation of the threats in the Cloud.

Both ThreatPro and AttackDive simulate (a) the benign Cloud behavior, (b) the impact of
a threat on a single service, and (c) the impact of multiple threats to varied services across
different abstractions of the Cloud. Furthermore, these techniques can perform speculative
analysis using the vulnerabilities reported in the national vulnerability database to identify
the corresponding attack scenarios. The speculative analysis assists in identifying potential
paths that an attacker could use to undermine a security requirement. This contribution,
detailed in Chapter 5, is based, partly verbatim, on the material from [44, 42].

Research Question 3 (RQ3): How can the Cloud service providers gather and organize
knowledge concerning the interplay between security threats and a user’s requirements?

The high number of disclosed vulnerabilities poses a challenge for system administrators to
assess each vulnerability’s potential to compromise a system. The current classification of
vulnerabilities is based on classifying them into general categories such as denial of service,
etc. The sole criterion for this classification is the vulnerability consequence. Consequently,
this research question investigates if there exists a relationship between vulnerabilities that
go beyond their common consequences. If a relationship exists, to what extent are different
vulnerabilities related to each other in terms of their common indicators (e.g., similar attack
mechanisms). This helps system administrators to prioritize the vulnerabilities considering
their potential variants and according to the security requirements of a user. For instance,
a content delivery application might prioritize threats on availability, while an application
dealing with financial records might prioritize threats targeting confidentiality. Thus, this
question investigates the relationship between security requirements, threats, and the targeted
services to perform a requirement-based threat analysis that can (a) prioritize threats ac-
cording to the requirements and (b) considers both the threats and their variants in the analysis.

Contribution 3 (C3): Development of requirement-based threat analysis to prioritize threats
according to the user’s requirements.

An exploration into the relationship between different vulnerabilities reveals a similarity
between the vulnerabilities that go beyond the common consequence. For instance, the
analysis showed that the correlation among the attack mechanisms exploiting the same service
is higher than the attack mechanism exploiting different services. Moreover, an attacker

12 Introduction

relies on reusing the similar attack mechanism to exploit the same service. Therefore, if the
attack mechanism is mitigated, it will compel the attacker to find new and innovative ways
to compromise the system, which is challenging. Thus, the proposed approach considers
vulnerability variants to perform the threat analysis comprehensively.

Moreover, the relationship among different actors involved in the Cloud ecosystem is
also investigated using the Design Structure Matrix (DSM), which comprehensively covers
requirement specifications, interaction among the Cloud services, and vulnerabilities violat-
ing the requirements. The proposed approach obtains security assessments from varied actor
perspectives by applying different algorithms to the design structure matrix to identify the
most critical/influential, for instance. By systematically identifying the Cloud vulnerabilities
and their potential variants, the Cloud can better be protected. This contribution, detailed in
Chapter 6, is based, partly verbatim, on the material from [45, 46].

Research Question 4 (RQ4): How can Cloud users assess that their security requirements
(qualitative and quantitative) are satisfied by the Cloud Service Provider (CSP)?

A multitude of issues affects the broader adoption of Cloud computing, with the perceived
lack of trust in the Cloud Service Providers (CSPs) often listed as a significant concern.
To address this, CSPs typically set up Service Level Agreements (SLAs) that contractually
list what the CSP is obligated to provide to meet the customer requirements. While SLAs
are promising as a concept, the inadequacy of monitoring and validating SLAs’ run-time
compliance limits the user’s capability to evaluate the offered services to assess the actual
trust to put in the CSPs. This question investigates the validation of an SLA and evaluates any
violations from the CSPs. The SLA consists of a list of service attributes that are required
by the user and committed by the CSP. In case of an SLA violation, a user is entitled to
compensation.

Contribution 4 (C4): A customer-centric approach to assess the fulfillment of security re-
quirements by the CSP.

Cloud service providers expect their users to simply trust the CSP services offered to them
but not every user is willing to grant this trust without justification. It should be possible for
users to establish that the CSPs actually fulfil their SLA requirements and that services are
provisioned accordingly. With this aim, a methodology is proposed to validate SLAs and
detect service violations over the life of the service. The SLA consists of a list of service

1.4 Thesis Organization 13

attributes that are required by the user and committed by the CSP. In order to validate an
SLA, each SLA attribute, either qualitatively or quantitatively, is evaluated.

The evaluation provides reproducible assurance to a user for trusting the CSP based on
fulfilling the user’s requirements. In the case of a requirement violation, the severity of the
violation is assessed by calculating an impact factor. The impact factor determines the degree
of deviation of the provided value from the required value and consequently dictates the
change in the level/state of trust in the CSP. The requirement violations are classified into
"trust states" according to user preferences. The CSP can be in varied trust states depending
on the severity level of the violations. The customer can periodically apply the proposed
methodology to assess the behavior of the CSP over the life of the service. An assessment of
the trust state of a CSP based on the services involved in launching and migrating a virtual
machine in an IaaS offering is demonstrated. This contribution, detailed in Chapter 7, is
based, partly verbatim, on the material from [43].

1.4 Thesis Organization

The remainder of the thesis is organized as follows.
Chapter 2 reviews contemporary threat analysis approaches for the Cloud. Threats

affecting individual components/assets at each stage of the VM life-cycle are presented.
Since the VM spends more time at the life cycle’s execution stage, the threats that impact this
stage are specifically focused. Furthermore, the threats are categorized using the STRIDE
threat model to signify their impact. Conversely, threat analysis techniques in the Cloud that
utilize attack graphs/trees as an underlying approach are also discussed.

Chapter 3 presents the design of the Cloud model that sufficiently encompasses services
from the deployment of the Cloud in the wild. For the development of the Cloud functional
model, multiple open-source Cloud computing platforms, as well as Cloud deployments by
leading companies, were surveyed to abstract the common services and develop a multi-layer
model of the Cloud. A sequence diagram is developed highlighting the interactions and
the information flow among the services during the operations of the Cloud. The model
forms the basis for investigating the interactions among the services during the fundamental
operations of the Cloud, i.e., launching a virtual machine at the request of the user.

Chapter 4 translates the functional Cloud model to an information flow model that is
agnostic to the underlying technologies used in the Cloud. Furthermore, the model is formally
developed using Petri nets to represent the functional behavior of the Cloud. Petri nets are
specifically designed for concurrent and dynamic systems as the transitions in Petri nets

14 Introduction

could be fired concurrently as soon as the precondition of the transition is satisfied. The
functional behavior of the model is simulated to enumerate the correct sequence of operations
without the presence of a threat at any service in the Cloud.

Chapter 5 builds on the information flow model presented in Chapter 4 by adding threats
as additional constraints to the information flow model. This assists in identifying the changes
in the system introduced as a result of a threat. The approach is validated by assessing the
capability to trace and analyze real-world attacks. Specifically, two prominent case studies
are used to perform post-mortem analysis using the presented approach. Moreover, the threat
analysis process includes the approach to performing speculative analysis. The Chapter also
discusses the capabilities for predictive analysis, the potential for the plug and play services,
and the limitations of this approach.

Chapter 6 extends the threat analysis approach by including both the variants of a threat
and the user requirements in the process to explore the relationship between threats, security
requirements, and the respective services. A design structure matrix based approach is
developed to perform requirements-based threat analysis. For instance, multiple algorithms
can be applied to the matrix to extract influential actors. Moreover, the use of natural language
processing is presented extract variants of threats that could also potentially pose security
risks to the Cloud.

Chapter 7 focuses on validating the SLA signed between a user and a CSP. A methodology
is presented that compares the SLA attributes provisioned by the CSP and requested by the
user. A violation in any of the attributes results in downgrading the trust state of the Cloud.
A user can periodically run the proposed methodology to validate that the CSP is fulfilling
SLA.

Chapter 8 concludes the thesis and outlines future works.

Chapter 2

Background & Related Work

This Chapter provides an overview of the contemporary threat analysis approaches for the
Cloud. For simplicity, the approaches are broadly categorized into (a) asset-based techniques
used to explore potential threats in specific assets/components and (b) graphical security
models used to identify potential attack paths leading to a security requirement violation.
Furthermore, as mentioned in Chapter 1, the main focus of the thesis is on the IaaS offering
of the Cloud as it provides more flexibility to the users. Therefore, the reviewed approaches
focus on threats during the life cycle of a VM, which is a fundamental operation in the Cloud
IaaS. Before proceeding with the threat analysis, a brief overview of the VM life cycle is
presented.

2.1 VM Life Cycle

Among the primary functions of the Cloud IaaS is offering and managing virtual resources
as VMs [47, 48]. It is achieved by virtualizing the underlying hardware and sharing it with
the users. Therefore, it is essential to investigate threats during the life cycle of a VM. The
typical stages involved in the life cycle are the: creation stage, storage stage, deployment
stage, execution stage, exit stage, and delete stage. Moreover, there are optional stages that
can occur during the execution stage. For instance, a VM can migrate, and a user can suspend
the VM or take a snapshot of the existing VM state. Figure 2.1 shows the VM’s life cycle
stages, briefly described below, before reviewing the threats targeting each stage. The solid
line in the Figure depicts the sequence of the stages in launching a VM. However, in certain
cases, some stages can be skipped. For instance, a user can delete the VM after the creation
stage, as shown in the Figure with dotted lines.

16 Background & Related Work

• Creation stage: The VM is created, and a host Operating System (OS) is installed on
the VM. To expedite the OS installation process, publicly available disk images from
the Cloud providers can be used to set up the host OS.

• Storage stage: During this stage, persistent storage is assigned to the VM. This stage
is optional if a user decides not to have storage assigned.

• Deployment stage: During this stage, the Cloud controller selects a potential server to
host the newly created VM. The controller node is responsible for managing servers,
optimizing load among the servers, and correspondingly identifying the server that
could deploy the VM.

• Execution stage: The VM gets networking capabilities (e.g., IP/MAC address), a
mapping between the virtual and the physical network interfaces, and starts executing
on the host server.

• Exit stage: This stage occurs when a user shuts down the VM. The VM’s data is saved
to persistent storage before shutting the VM down. It is a temporary stage, and the user
can restart the VM.

• Deletion stage: All the contents associated with the VM are permanently deleted. In
contrast to the exit stage, the data is not saved to persistent storage; hence, both the
data and the VM are not recoverable after this stage.

• Suspension stage: This is an optional stage where the VM is suspended, i.e., it relieves
its assigned CPU and memory, but the data is saved to a file in case the user restarts
the VM.

• Migration stage: To optimize the performance of either the host server or the VM,
a VM might migrate to another server which can be cold or hot migration [49]. To
optimize the performance of either the host server or the VM, a VM might migrate
to another server with better performance. The migration can be a cold or hot (live)
migration [49]. The VM is shut down before moving to the alternative server during
the cold migration. On the other hand, a hot (live) migration does not require the
VM to be shut down; thus, it minimizes the cost and interruptions associated with the
process of the migration [50, 51].

• Snapshot stage: The VM operational state is saved to a file that can be used as a
template to create additional VM disk images. A VM snapshot can also be used to roll
back the VM to the saved state.

2.2 Asset-based Threat Analysis 17

Creation Storage Deployment Execution Exit Deletion

Snapshot

Suspending

Mirgration

Fig. 2.1 An overview of the VM life cycle in the Cloud.

It is an overview of states a VM can go to during its life cycle. The optional stages (e.g.,
migration) during the life cycle of a VM are also presented for completely covering the life
cycle. The following sections present threats against each stage and the corresponding threat
analysis approaches.

2.2 Asset-based Threat Analysis

Asset-based threat analysis aims to uncover threats and their impact on discrete assets (e.g.,
components, services, interfaces, data) without factoring in operational considerations. The
initial efforts led by Microsoft introduced a threat modeling approach called STRIDE [52]. It
is an attacker-centric approach, applicable to data flow diagrams to find potential weaknesses
and security flaws that an attacker can exploit. The STRIDE analysis primarily focuses on the
architectural flaws of the system. It classifies threats into spoofing, tampering, repudiation,
information disclosure, denial of service attacks, and elevation of privileges. The holistic
security assessment of the Cloud necessitates understanding the threats during the entire life
cycle of a VM. The following sections review the threats to different stages involved in the
life cycle of a VM.

2.2.1 Creation Stage

As mentioned in Section 2.1, the first stage in launching an instance of VM in the Cloud is the
creation stage. At this stage, the host OS is selected. Therefore, the asset that is considered is
the published disk images of the Cloud provider. However, this could lead to security issues,
as Bugiel et al. [53] explored the threats associated with using public disk images. The
authors analyzed publicly available virtual machine images in Amazon EC2 [2] repository.
Their analysis focused on the public interfaces to extract private information stored in these

18 Background & Related Work

machine images. From the extracted data, further attacks can be launched, such as starting a
botnet or launching an impersonation attack. In some cases, they could access seven different
source code repositories through the extracted credentials. These sources contained highly
valuable information, such as hard-coded passwords for administrators. In a few instances,
the authors extracted the customer’s SSH keys that are used to authenticate the user to the
Amazon EC2. Similarly, in [54, 55], the authors qualitatively analyze infrastructure as a
code script to investigate security issues within the code repositories. Their investigation also
found more than 1200 hard-coded passwords within the code that would allow an attacker to
access the application.

2.2.2 Storage Stage

Several TA approaches exist that target specific technologies such as the storage managed by
the Cloud provider and assigned to the VM. A typical asset considered during this stage is
data at rest and during transmission. The threat facing this stage typically involves data loss
or leakage, which could breach the confidentiality of a user. Moreover, data integrity is also
critical to ensure that the data is not altered or modified without authorization. For example,
the authors analyze the impact of different threats in Cloud brokerage systems in [39]. They
developed an attack tree-based approach to elaborate on the paths an attacker could follow to
compromise the storage system in the Cloud.

Similarly, the Cloud storage deployment options, respective attacks, and the correspond-
ing countermeasures were surveyed in [56]. Additionally, in [57–59], authors discussed
issues concerning the data in the Cloud. They proposed a framework based on the best
practices that could serve as a reference architecture for securing data in the Cloud.

2.2.3 Deployment Stage

During this stage, a server is selected by the controller node that can host the VM. Among the
preconditions to exploit side/covert channel attacks is the co-residency of both the victim and
the attacker on the same physical host. Therefore, the reviewed literature targets exploiting
the VM placement algorithm to achieve co-residency. Among these works are from [60, 61]
that manipulate the VM placement algorithms to co-locate with the victim and subsequently
launch a side-channel attack. The basic premise behind the approach is to use networking
tools (e,g., Nmap [62]) to extract the victim’s location and subsequently manipulate the
controller node to co-locate with the victim.

In a similar effort, the authors show the confidentiality breach of a customer by co-
locating tenants [63]. Their approach exploited the placement algorithm of the Amazon EC2

2.2 Asset-based Threat Analysis 19

to be co-located with the victim’s VM and used side-channel analysis to extract the victim’s
private key.

2.2.4 Execution Stage

This stage is where VM spends most of its time during the life-cycle; therefore, the number
of attacks targeting this stage is manifold. Moreover, this stage involves the co-existence
of both the VM and VMM (hypervisor). Thus, protecting the VM and VMM (hypervisor)
is critical to isolate the VMs from different users. Therefore, VM and VMM are the assets
that are considered during this stage I will discuss both of these aspects of virtualization
technology in the following.

In [64], the authors characterized vulnerabilities in the hypervisor according to their im-
pact on the functionality of the hypervisors. A hypervisor provides around 11 functionalities,
including assigning virtual CPUs to VMs, emulating Input/Output (I/O), and networking
functionality. Moreover, VM exits and hypercalls critical functions of a hypervisor. VM exits
are necessary for fulfilling a guest OS request that requires root privileges, and hypercalls are
the same as system calls in a traditional OS setup. There are two ways a hypervisor can be
used to virtualize the resources.

• Type-I/bare-metal hypervisor: This is the configuration where the hypervisor is directly
installed on top of the hardware. A privileged VM (Dom0) manages the user’s VM
running on the system.

• Type-II/hosted hypervisor: The hypervisor is hosted inside the operating system. Host
OS processes are used to manage the resources of the user.

Both of these configurations are shown in Figure 2.2.

Hardware

Host Operating System (OS)

Host OS
process

Guest VM
Apps

OS

Guest VM
Apps

OS

Hypervisor

Host OS
process

Hardware

Hypervisor

Guest VM
Apps

OS

Guest VM
Apps

OS

Dom VM
control

Type-IType-II

Fig. 2.2 Difference between Type-I and Type-II hypervisors.

The work in [64] analyzed attack vectors that attackers can use to compromise the
functionality of a hypervisor. Table 2.1 presents a triggering source of an attack, the attack

20 Background & Related Work

vector, and the target that can be achieved using the given attack source and the vector. For
instance, if the attack source is OS (marked as ✗ in Table 2.1), a potential attack vector
could be VM exits, and the potential targets of such a scenario could be either the OS or the
hypervisor. The ✗* in the Table 2.1 represents that an attacker can use the source to launch a
second stage of the attack. For example, the attack source user could be used to target VM
management to compromise Dom0, which enables attackers to ultimately compromise the
hypervisor or install malware using the compromised Dom0 [22, 65].

Table 2.1 Xen’s (hypervisor) vulnerability map

Attack Source Attack Vector Attack Target
Network User OS Dom0 OS Dom0 Hypervisor

✗ ✗ Virtual CPUs ✗ ✗

✗ ✗ VM exits ✗ ✗

✗ ✗ ✗ I/O and Networking ✗ ✗

✗ ✗ ✗* VM Management ✗* ✗

✗ Hypercalls ✗

Some recent works have demonstrated the value of threat analysis in evaluating cache
side-channel attacks [36] to explore the possibility of using the cache to compromise the
confidentiality of tenants hosted on the same physical machine. It has been shown that
exploiting the VM placement algorithm to co-locate with the victim and using cache as a
side-channel could lead to a complete breach of confidentiality [63, 66–68].

The security issues of virtualization at the VM level were analyzed by Tsai et al. [69].
They focused on exploring the security issues on VM hopping, VM mobility, VM diversity,
and VM denial of service. They assessed the impact of virtualization (in)security in different
Cloud deployments such as Platform as a Service (PaaS), Software as a Service (SaaS),
and Infrastructure as a Service (IaaS). Authors in [35] made a similar effort to create
a comprehensive survey on threats, their modeling, and the corresponding attacks in a
distributed virtualized system.

On the other hand, authors [22] showed that installing malicious software on the VM is
possible without being detected. Figure 2.3 shows before and after the infection affects the
targeted OS. The fundamental premise behind their approach is to encapsulate the victim’s
OS into a VM, allowing greater control over the system. Since the security layer or the

2.2 Asset-based Threat Analysis 21

security applications are embedded in the OS, creating a VM and moving the entire OS to
the VM evades the security layer of the OS. Therefore, inspecting and analyzing malware
using the traditional technique becomes challenging, consequently giving attackers more
control over the system.

In a similar instance, authors in [65] conducted a survey of possible configurations/settings
that would allow attackers to install malicious software on the VM. The authors proposed a
framework based on the application of dynamic analysis [70] to detect malware in modern
systems, including the Cloud systems that inherently use virtual machines. The proposed
framework suggests running dynamic analysis tools both inside the host OS and inside the
guest OS to understand the deviation in the behavior of the overall system, which could form
the basis for further inspection.

Hardware

Target OS

target
application

target
application

Before infection

Target OS

VMM

Target
application

Target
application

Hardware

Host OS

Malicious
service

Malicious
service

After infection

Fig. 2.3 Using virtualization to install malware on a VM.

Additionally, modeling the application’s behavior and applying probabilistic model
checking to investigate the impact of elasticity on security requirements was investigated
in [71]. Furthermore, the outcome of the analysis can be used as feedback to fine-tune the
behavior of the Cloud for governing its elasticity.

22 Background & Related Work

2.2.5 Exit and Deletion Stages

External attackers to the Cloud are one aspect of the security assessment. However, insider
threats also pose security concerns in the Cloud. For instance, a malicious Cloud admin
could potentially delete the VM [72] and a user could lose all his data. Furthermore, due to
the lack of transparency in the operations of the pubic Cloud deployment, it is challenging to
know how many replicas of the content exist, where they exist, and who has access to them
[73, 74].

2.2.6 Migration Stage

This stage occurs when a controller node migrates the VM to balance the workload among
the servers due to over-provisioning certain servers. Moreover, a VM can also migrate if
it requires additional resources that the existing host cannot provide. As mentioned earlier,
VM migration could be either cold or hot. The difference between these strategies is that
in the latter case, the VM is not shut down before the migration; hence, it minimizes user
interruptions.

A VM can be attacked during the migration phase as the network is a shared environment
among the users. Therefore, these schemes are focused on the shared network as an asset to
be secured. Multiple VMs of a user can be hosted on different hosts that are linked together
through networking to provide a coherent view of the resources to the user. However, since
the network is a shared environment, it is prone to man-in-the-middle attacks as both the
target and attackers share the environment. Moreover, the attacker could also be an insider
attacker that manages the Cloud. Thus, it is critical to understand the security concerns
raised during this stage, as the migration can happen without a user’s intervention. A typical
scenario of man-in-the-middle attack is shown in Figure 2.4. As seen from the Figure, during
the migration phase, the content of the VM is transferred unencrypted over the network,
allowing both passive and attacks to be applied to the data [72, 75, 76]. In a passive attack,
an attacker only sniffs the data and does not modify the data. However, in an active attack,
an attacker can arbitrarily change the VM OS or application running on top of the VM.

Similarly, authors in [77, 78] created two new zero-day attacks using the network as their
primary attack surface to launch their attacks. The basic premise behind the approach is the
exploitation of a shared networking environment among both the victims and attackers. The
VMs are assigned Virtual Network Interface Cards (VNICs) to manage their network stream,
which is then transmitted to the Test Access Point (TAP) device. Typically, the network
traffic from a VM is sent from the VNIC to the Internet through the TAP, veth pair, virtual
interface (virtual switch), and finally, the physical interface of the host. A veth pair directly

2.2 Asset-based Threat Analysis 23

Hypervisor

VM01 VM02 VM03

Hypervisor

VM01 VM02 VM03

unencypted

Host A Host BMan in the middle

Network

Modifies VM OS/state
while in transit

VM01 VM migration started VM01 Modified VM

Fig. 2.4 Man-in-the-middle attack during the VM migration

connects to virtual network interfaces, and a bridge that maps VNICs to the respective MAC
addresses exists that binds a MAC to the respective IP address. Thus, a TAP offers a path
to access the data that is being transmitted through a network. Detailed information on the
networking can be found in [79, 80].

The authors exploited an architecture flaw in the Cloud that allows bridging a TAP
interface with no valid private Ethernet interface with the VM and using it to redirect
the traffic towards that TAP. The resulting attacks from exploiting the vulnerability were
impersonation (sniffing VM content and impersonating it), and privilege escalation attacks
on the VM using return-oriented programming [81, 82]. The steps in their attack are detailed
below with Figure 2.5 showing the visualization of the attack.

• An attacker creates a dummy network device without an active VNIC. It can be easily
achieved by either creating a new networking device or disconnecting an existing
device. It is a precondition of the attack to de-link any existing links between the VM
and the TAP.

• The newly installed device is impersonated as a TAP device. It can be achieved
by removing information about the interface identity and consequently making the
network card act like a TAP device. The primary reason for this impersonation is that
only TAP devices can be mapped to the veth pair. After the impersonation occurs,
connectivity requests are sent to the switch that adds it to the list of the conventional
TAP device. This switch also contains the interfaces of all the other VMs located on the
host. Furthermore, to evade detection by other users, the identity of the impersonated
TAP can be hidden.

• The final step in the attack involves creating a network mirror, and the dummy interface
is configured as a destination point by assigning zeros as the IP address. The objective

24 Background & Related Work

of such an assignment in a mirror network is to redirect all the traffic to the destination
point, i.e., the attacker’s VM.

TAP0

vNIC Dummy

TAP1

vNIC IP

TAP2

VM03

vNIC IP

virtual Interface

Physical
interfaceInternet

veth pair veth pair veth pair

Attacker's VM Victim's VM

Fig. 2.5 Using network as an attack surface to launch attacks

A shared networking environment can be used to launch attacks against other VMs located
on the same host. Much research has been devoted to the virtualization of the hardware, but
limited work is done on exploiting networking as a potential attack surface. The application
of model checking to verify the violation of security property has been demonstrated in [37].
The primary objective was to analyze network attacks violating the defined security property.
The authors developed a formal network model and used model checking tools to generate
test cases that would violate the specified security property.

2.2.7 Categorizing Threats using the STRIDE Model

As mentioned earlier, Microsoft developed a threat model called STRIDE [52] to classify
threats into categories: spoofing, tampering, repudiation, information disclosure, denial of

2.2 Asset-based Threat Analysis 25

service, and elevation of privileges. These categories are briefly explained before utilizing
these categories to classify the threats impacting VM life cycle stages.

• Spoofing: This threat demonstrates the case when an attacker (or a program) suc-
cessfully identifies as another user (or a program) by falsifying the data to gain an
illegitimate advantage. For example, an attacker can spoof the victim’s IP address to
receive its network traffic.

• Tampering: This threat concerns the active modifications by attackers on the system
components. These components could be data, networking communications, or the
component’s functionality. In contrast to the spoofing attack, tampering attacks are
active attacks, and the purpose of such attacks is to directly interfere with the system’s
operations.

• Repudiation: This threat refers to the situation where attackers can deny performing
specific actions, and the lack of evidence proving and linking the actions to the attacker
is challenging. For example, an attacker can spoof an IP address to avoid network
traces; thus, this would fall into the category of a repudiation attack.

• Information disclosure: This threat demonstrates the possibility of information leak-
age to unauthorized persons. The leakage of information could be intentional or
accidental. For example, unintentionally leaving default passwords would allow attack-
ers to gain access to the information, or an attacker can manipulate the authentication
service to bypass authentication and access the information.

• Denial of service: The denial of service threat aims to deny legitimate users from
accessing the service, which violates the system’s availability. A typical example
of such an attack is to overwhelm a service by launching repeated requests using a
distributed network of bots which will eventually exhaust system resources such that
legitimate users cannot access the system.

• Elevation of privileges: These attacks allow privileged access to unauthorized persons.
Typically, this is achieved by exploiting a vulnerability/flaw that exists in the system
to bypass the authentication system or the access control mechanism used within the
system.

The categories presented in the STRIDE cover a wide range of threats. In Table 2.2, I
summarize the threats presented in Section 2.2 according to the STRIDE model. Furthermore,
the consequence of each threat on confidentiality, integrity, and availability is also demon-
strated in the Table. For example, the techniques presented in [53–55] target the VM creation

26 Background & Related Work

stage, and the corresponding attacks on the VM creation stage are spoofing, tampering or
information disclosure attacks. The respective consequence of these attacks is highlighted
under each of the CIA fields in the table.

Table 2.2 Examples of prevalent issues and actions.

Life-cycle stage Threats Techniques C I A

Creation
Spoofing [53] [54] [55] ✓ ✓

Tampering [53] [54] [55] ✓

Information disclosure [53] [54] [55] ✓ ✓

Storage
Tampering [39] [56] ✓

Information disclosure [56] [53] ✓

Deployment [60] [61]

Execution

Information disclosure [63] [66] [67]
[68] [22]

✓ ✓

Tampering [22] ✓

Denial of service [72] ✓

Spoofing [53] ✓

Exit & delete
Denial of service [72] ✓

Tampering [73] [74] ✓

Migration
Elevation of privileges [78] [77] ✓

Spoofing [78] [77] ✓ ✓ ✓

Tampering [72] [75] [76] ✓

This section covered threat analysis techniques focused on the Cloud’s components in
isolation without considering the operational constraints on the targeted components. Thus,
the threats covered targeted each stage of the VM life cycle and the corresponding threat
analysis approaches are detailed that demonstrate their applicability in mitigating threats
to the respective stage. The second dimension of threat analysis techniques is detailed in
the following section. This dimension of the threat analysis uses attack graphs/trees as
underlying methods to generate attack paths in the Cloud.

2.3 Graphical Security Models 27

2.3 Graphical Security Models

Multiple graphical security models have been developed for distributed systems in general
and for Cloud, in particular, to visually trace and identify attack paths/patterns that could
potentially undermine the security of the Cloud. Primarily, these have been in the form of
attack trees and graphs.

The attack tree demonstrates the path attackers can take to achieve their objectives [83]. A
commonly depicted attack tree is shown in Figure 2.6. The root of the Figure is the attacker’s
objective, i.e., an attacker would like to get access to the database. As the Figure shows, two
paths are available at the disposal of attackers to fulfill their objective.

• Path 1: The first path starts with creating a phishing email and then sending the email
to the target. The target opens the email, which could lead to accessing the database.

• Path 2: Alternatively, attackers can try to access the admin computer, and that would
enable them to get access to the database. To access the admin computer, an attacker
can breach physical security by accessing the admin’s office or by gaining access to
the computer remotely.

Either of these paths enables the attacker to access the admin computer and consequently
allow access to the database. It should be noted that each action (or a precondition) in the
attack tree can be assigned with a likelihood of achieving that action. For instance, setting
Get Office Key action with a probability of 0.1 indicates the chance of physical security
breach. Assigning probabilities to different attack actions enables the system defenders to
prioritize the attack paths and, accordingly, focus on these attack paths. These probabilities
can be set using policies enforced in the organization.

I have presented a generic attack tree in Figure 2.6, and now I review state-of-the-art
schemes that use attack trees as an underlying methodology to identify attack paths in the
system. The approach presented in [84] develops an attack tree of the Cloud and then utilizes
a “what if" analysis to traverse paths in the tree to find a potential exploit(s). However, they
consider only an abstract model of the Cloud and hence fail to reveal attacks pertinent to the
interaction of the services across varied levels of the Cloud’s operational stack. The authors
also introduced a defense tree to reduce the countermeasure cost by selecting the optimal
asset from the defense tree concerning the attacker’s profile. In [85], the authors formally
analyzed different open source Cloud environments to assess the correctness properties. A
Petri nets based model was proposed in this work, though, with the limited target of verifying
the correctness of these open source Cloud environments. Their approach generated the

28 Background & Related Work

DB Access

Send Phishing Email

Create a Phishing
Email

Open Email Access to Admin
Computer

Get Office Key Remote Access

Or

Fig. 2.6 An attack tree example

computational tree for the open-source Cloud environments to verify the property that a valid
request from the user should always terminate correctly.

Similarly, a Petri nets based approach [36] modeled the side-channel attacks in the Cloud.
Furthermore, based on the modeling, they presented potential mitigating strategies that
will work considering the characteristics of the side-channel attack. For instance, if the
side-channel attack uses Flush+Reload [15] strategy, an appropriate countermeasure to that
was discussed in the paper.

On the other hand, an attack graph is more fine-grained and details the causal relationship
among the nodes [86]. An example of using both the attack trees and graphs is presented in
[40]. The authors did the modeling of a Cloud data center and applied both the attack trees
and attack graphs to identify potential paths leading to an attacker’s objective. An illustration
of the attack tree from the paper is shown in Figure 2.7. As the Figure shows, there are
multiple paths that attackers can take to achieve their goal of getting storage data. These
paths are briefly described below.

• Path 1: This path can be used by either a Cloud admin or a normal user. The objective
for the attackers is to access the storage device that holds users’ data and consequently
breach the confidentiality of the users. To achieve this, the attacker must first access
the VM, which is typically allowed. Therefore, the probability of achieving the action
is one and is shown under the corresponding action. As mentioned earlier, each action

2.3 Graphical Security Models 29

can be assigned a probability to denote the likelihood of the action. For instance, the
number 1 underneath Have_http_VM in the Figure means that the attacker will have
access to it. However, the attacker must also access the underlying host Operating
System (OS)/hypervisor. This can be achieved by utilizing attacks presented in the
execution stage of the VM. After gaining access to the underlying OS/hypervisor, the
attacker can control VMs running on the host. Subsequently, the attacker can access
the VMs located on a different host as all the VMs belonging to the user are connected
via networking. The attacker has to select the VM hosting the database, allowing the
attackers to access data stored on the storage device.

• Path 2: This path covers the possibility of Cloud admins or third-party providers
accessing the authentication service. If they get access to the authentication service,
they can change the image of the VM, and by modifying the VM image, they might
gain access to the storage data. On the other hand, attackers can assess if the VM
has default passwords stored in the image used for the VM by analyzing it using the
techniques presented in Section 2.2.1 and Section 2.2.4. In this case, the attacker will
gain access to the stored data. Alternatively, an attacker can publish a new disk image
with a backdoor installed that can later be used to access the user’s data.

• Path 3: This attack can be used by either a normal user or an attacker to obtain data
from the storage device. Similar to the first action in Path 1, the user must first access
the VM and must gain root access to this VM. It is the precondition for both attack
paths 1 and 3. After gaining root access to the VM, the attacker can connect with
other VMs associated with the user, including the VM hosting the database. After
that, the attacker must gain root privileges by exploiting vulnerabilities related to the
database service hosted on the VM. Once root access is acquired, the attacker can
access the user’s stored data. However, to access the data of other users, the attacker
must compromise the hypervisor, which can be achieved in any of the ways presented
in Section 2.2.4.

Subsequently, to explore the attack paths, the authors proposed an attack tree metric
to evaluate the likelihood of attack paths that could potentially compromise the system’s
security. Additionally, Bayesian network metric [87, 88] was proposed for attack graphs to
prioritize the paths at the attacker’s disposal.

Similarly, the quantification of the user’s security requirements is proposed in [89]. A risk
assessment framework for a sensor environment deployed in the Cloud was presented in [90].
The objective was to illustrate the cause-effect relationship and apply security measures that
correspondingly minimize the attack’s impact. On the other hand, concepts from requirement

30 Background & Related Work

Get storage data

Get_HOSTOS_DB
0.65

Get_DB_VM
0.57

Get_HostOS_app
0.56

Get_app_VM
0.53

Get_http_HostOS
0.65

Have_http_VM
1

Path 1

Change_VM_Image
0.43

Get_Aut_power user
0.52

Path 2

Get_DB_VM root
0.57

Get_app_VM root
0.53

Get_http_VM_root
0.61

http_connection
1

Path 3

Fig. 2.7 Example of attack paths of the Cloud

engineering have been utilized in [91] to propose a methodological approach to elicit users’
security and privacy requirements and select the appropriate Cloud provider. The approach
performs a cost-benefit analysis for the users, enabling them to make an informed decision
about migrating to the Cloud.

The attack/defense tree application has been detailed in [92]. The approach investigated
the interplay between attacks and the respective countermeasures and proposed a framework
to assess the associated risks of the applied countermeasures. Similarly, in [93], the authors
present a similar approach by combining both the attacks and their respective countermeasures
in a single tree. They developed a qualitative analysis to assess the return on investment for the
countermeasure and prioritize the countermeasures that give a better return on investments.

2.4 Conclusion 31

The work in [94] proposed a graphical security model using Bayesian attack graphs to
quantify the likelihood of the network compromise, which feeds into an attack mitigation
plan. This enables system administrators to make an informed decision by considering the
trade-off between the attack and the mitigation strategy. A reference model of the Cloud
incorporating the security controls and best practices was developed in [95] to assess the
security posture of the Cloud offerings for confidentiality and integrity. This was achieved by
estimating probabilities of advanced persistent threat infiltration in the Cloud. The underlying
technique utilized a Bayesian network model that examines attack paths and assesses their
impact on both confidentiality and integrity requirements.

Overall, these schemes leverage attack graphs/trees to explore potential paths that iden-
tify a security violation. Furthermore, quantifying the risks associated with each path is
fundamental to many of these schemes, which enables system administrators to prioritize the
paths and the mitigation strategy accordingly. On the other hand, these schemes assume that
the attack paths are static and the functional behavior does not create new interconnections
at run-time. This assumption does not hold in the inherently dynamic Cloud environment,
where new interconnections might be introduced at run-time through VM migration or by
instantiating a new VM.

A Table summarizing the presented techniques and their capabilities is shown in Table 2.3.
The fields in the Table depict the method used in the respective technique and whether a
Cloud model was developed in the paper. Furthermore, the Table also highlights if the
proposed technique was agnostic to the underlying technologies used in the Cloud. The user
requirement field determines if specific user requirements were considered for prioritizing
the threat analysis accordingly. For example, [40] used both the attack tree and graph in their
methodology on the Cloud they developed based on the Cloud deployment adopted by market
leaders, e.g., Microsoft and Google. However, they did not consider user requirements in
their methodology or the dynamic interactions in the Cloud due to resource migration.

2.4 Conclusion

As can be seen from both Tables 2.2 and 2.3 and identified in Sections 2.2 and 2.3, both
asset-based threat analysis and graphical security models are effective techniques to analyze
potential threats targeting a system. However, their effectiveness is limited in analyzing
threats considering the holistic view of the Cloud’s dynamic operations. For instance,
asset-based schemes consider assets in isolation without operational factors and reveal
threats pertinent to the specific asset. On the other hand, graphical models assume that
the interconnection among assets is static and hence, cannot analyze threats in a dynamic

32 Background & Related Work

Table 2.3 Application of the graphical security models

Method Literature Cloud
Model

Technology
agnostic

User
requirements

Attack tree
[84] Limited ✗ ✗

[40] ✓ ✓ ✗

Attack graph
[40] ✓ ✓ ✗

[88] ✓ ✓ ✗

Attack & defend tree
[92] ✗ ✗ ✗

[93] ✗ ✗ ✗

Probabilistic attack graph
[94] Limited ✗ ✗

[87] ✗ ✗ ✗

Formal models
[85] ✓ ✓ ✗

[36] ✗ ✗ ✗

Risk based attack tree
[90] ✗ ✓ ✗

[91] ✗ ✓ ✓

environment. Moreover, the techniques based on attack trees/graphs are inherently limited
to the selected threats, and any changes in either the threats or the service require restarting
the complete process. Thus, in this thesis, I fill this gap by proposing techniques that can
incorporate (a) the asset’s operational environment, (b) dynamic interconnections across
resources/services, and (c) specification of the user’s security requirements to provide a
comprehensive threat analysis process applicable to the Cloud.

Chapter 3

Designing and Modelling the Cloud

The state-of-art focuses on modeling the behavior of an application in the Cloud for per-
formance optimization. However, to understand the threats facing the Cloud, a model to
represent the functional operation of the Cloud is necessary. Moreover, capturing the services’
interactions forms the basis for analyzing the potential of threats propagation across the
Cloud. Thus, this chapter designs a functional Cloud model that is applicable to a wide range
of Cloud offerings and is aligned with the Cloud deployments in the wild.

3.1 Functional Cloud Model

Several delivery models exist for the Cloud, such as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS). The emphasis is primarily
on functionality and performance. Moreover, these models do not reveal the interactions
among the services that an attacker can exploit to laterally move in the system. On the
other side, a considerable body of research exists for modeling and analyzing the behavior
of an application in the Cloud [96–98]. However, ascertaining threat propagation requires
modeling the functional behavior of the Cloud to capture the interaction across services
and investigating the interplay between the service’s interactions and the threat progression.
However, work related to modeling the Cloud functionality is very limited. The work that
focuses on the development of the Cloud is either technology-centric or too abstract that
these models cannot be used to examine the behavior of the Cloud. Among the primary
functions of the Cloud IaaS, is offering and managing virtual resources as VMs [47, 48].
These VMs are created through virtualization technology, an enabling technology to share
a physical host with the VMs. [99]. Thus, I define an abstract model for the Cloud em-
phasizing the interactions of services during the life-cycle of a VM [100] as presented in
Section 2.1. The service interactions during the life-cycle of a VM are conceptualized after

34 Designing and Modelling the Cloud

surveying multiple open-source Cloud computing environments [101, 102] as well as Cloud
deployments adopted by market leaders such as Amazon, Google, and Microsoft. The model,
depicted in Figure 3.1, exhibits a 3-layer architecture of the Cloud consisting of the Control
Layer, Infrastructure Layer, and Storage Layer, where each layer performs distinct functions.
The model is flexible and can be extended to include vendor-specific services at each layer.
However, for the scope of this thesis, the focus is on modeling the functionality in launching
a VM as it is a fundamental offering of the Cloud IaaS.

3.2 Defining the Functional Model of the Cloud

Following the overview in Section 3.1, this section details the representation of the Cloud’s
functional behavior as a model. The reasons for developing such a model are twofold.
Specifically, there is a lack of both (a) a generalized Cloud model applicable to the spectrum
of Cloud offerings, and (b) approaches that can analyze the interplay between the functional
behavior of the Cloud and the attack paths. To develop such a model, I first extracted common
services from multiple open source Cloud computing environments [102, 101] and major
stakeholders in the Cloud market, such as Amazon, Microsoft and Google. There are obvious
differences in terms of the Cloud architecture and network configurations adopted by each
vendor. For instance, the controller node could be distributed across the data center. However,
these differences are technology and optimization-driven and therefore fall out of the scope
of this thesis. Table 3.1 presents the primary concepts used in the major Cloud providers in
the market which is adopted from [40].

Table 3.1 Configurations adopted by Cloud providers

AWS Azure Google Compute

Multiple layers ✓ ✓ ✓

Controller node per cluster ✓ ✓ ✓

Authentication server ✓ ✓ ✗

It is evident from Table 3.1 that there exist similarities among the configurations of the
Cloud in major Cloud providers. For instance, all the presented providers have adopted
a multiple layers approach, but each layer’s functionality varies from vendor to vendor.
Furthermore, the users must be authenticated before accessing their assigned resources or
creating additional resources in the Cloud. Depending on the vendor, the authentication
service can be centralized or distributed across the Cloud. For example, both Amazon

3.2 Defining the Functional Model of the Cloud 35

and Microsoft have a centralized authentication service, and Google adopted a distributed
authentication service configuration. Similarly, all these vendors have a controller node for
each cluster, and the goal of the controller node is to optimize resources and balance the
workload among the servers.

Using these reference models and surveying multiple open-source Cloud computing
environments, the Cloud model is developed and presented in Figure 3.1. The model
depicts a generalized 3-layered (Control, Infrastructure, and Storage) architecture focusing
specifically on the Cloud’s functionality to be agnostic to the technologies implementing
the functionality. Each demarcated layer performs a specific task in the life cycle of a VM.
The role of the control layer is to authenticate users and enables them to request new VMs.
The infrastructure layer receives the request, creates the respective VM, and links it with the
existing resources of the user. The storage layer provides storage capabilities for the data.
The functionality of each layer is detailed in the following sections.

Cloud Admin

Cloud User
Hypervisor

HW

VM2VM1

Host 1

Hypervisor

HW

VM4VM3

Host 2

Hypervisor

HW

VM6VM5

Host 3

Hypervisor

HW

VM8VM7

Host 4

VM5 Database Server

VM3 Authentication Server

VM1 VM2 Web Servers

Host 1

Host 2

Host 3

Host 4

Authentication
Server

Controller Node

Database Server

Contol Layer Infrastructure Layer Storage Layer

Network connectivity
A user's resources connection

User Data

Fig. 3.1 Multi-layer architecture of the Cloud

36 Designing and Modelling the Cloud

3.2.1 Control Layer

The control layer, consisting of an authentication server, database server, and a controller
node, orchestrates the managing and scheduling of the Cloud resources — physical and
services — for the Cloud administrator and the users. For a user requesting Cloud access,
the authentication service authenticates and redirects the user to a resource dashboard. From
the dashboard, a user can request a new VM instance or start an existing VM. The database
server is responsible for maintaining a list of VMs allocated to the user. The controller node,
under the control of the Cloud administrator, allocates the resources to a data center and
migrates them in case of over-provisioning. Overall, the control layer is responsible for
allocating and managing a user’s resources that are scattered across the data center to create
a coherent view of the resources.

3.2.2 Infrastructure Layer

As the name suggests, this layer represents the actual physical hardware of the Cloud for
binding the VM’s to physical hosts. The core functionality of the layer is provided by a
hypervisor [103] that runs on top of the hardware/OS along with other VM management
tools. The hypervisor is the fundamental element in the virtualization technology that enables
sharing the same physical host among multiple users. A request to launch a VM is transferred
from the control layer to the infrastructure and after a successful instantiation of it, the VM
is linked with other resources of the user. As shown in Figure 3.1, a user’s resources can be
dispersed across different servers/hosts. In this example, VM1 and VM2 are located on host
1 of the data center while VM3 and VM5 are respectively located on host 2 and host 3 of the
data center.

3.2.3 Storage Layer

This layer provides storage capacity and delivers data when requested. This layer is also
responsible for providing consistency among different data backups. As the placement of the
VMs across different hosts is permitted, the data could also be distributed across different
hosts. Additionally, the data can also migrate from one host to another similar to a VM.

These 3 layers collectively outline the operations of any generalized Cloud system. As
VM management (creation, migrations, and deletion cf. Section 2.1) is the basic Cloud
functionality, This thesis utilizes a VM-centric approach for threat propagation and analysis.
In the following, I focus on the operations involved in creating a VM to illustrate the
information flows across the operational layers of the Cloud.

3.2 Defining the Functional Model of the Cloud 37

The role of each layer in the Cloud is defined to determine the interactions among the
layers and services in fulfilling users’ requests, such as creating a new VM. The creation of a
VM is among the core functionalities of the Cloud and, therefore, is primarily focused. Even
in the case of VM migration, the destination VM having the same configuration as the source
VM is created before the migration process is initiated. Thus, I focus on the operations
involved in creating a VM and present how the information flows between the layers when
launching a VM.

As noted earlier, there are architectural differences in the Cloud model adopted by each
vendor. The model can be adapted to represent each vendor by adding the necessary services
to each functional model’s layers. For example, if the authentication service is distributed,
then each layer will have an instance of the authentication service, and the functional model
would become similar to that of AWS and Azure.

3.2.4 Information Flow in Launching a VM

As mentioned, the authentication service is the user’s interface to the Cloud. A user can only
launch or request a VM after being successfully authenticated. The details of subsequent
transitions at each layer are as follows:

• Control layer transitions: Once authenticated, a user is transferred to a dashboard
presenting the allocated VMs and the possibility of requesting additional VMs. If
the user decides to launch a new VM, the requested VM configurations (e.g., CPU,
RAM) are compared with the assigned quota. A valid request leads to the invocation
of the scheduler service that determines a potential host for the requested VM. The
VM configuration and the selected host are then passed to the infrastructure layer.

• Infrastructure layer transitions: The infrastructure layer receives the VM request
and invokes the image repository service for the operating system and the network
service for the networking capabilities (e.g., virtual Network Interface Card (NIC), IP
addresses). Furthermore, the infrastructure layer interfaces with the storage service for
allocating storage for the VM.

• Storage layer transitions: The primary responsibilities of the storage service are
assigning storage to the VM and keeping the data among the backups consistent. This
step is optional in case the user does not select the storage capacity for the VM.

• VM: After the configuration is finalized, the hypervisor instantiates the VM and it is
added to the database against the corresponding user.

38 Designing and Modelling the Cloud

Utilizing the above information, a sequence diagram representing the information flow
among different services is presented in Figure 3.2. The sequence of operations in the Cloud
following a user’s request to launch a VM is briefly explained in the following.

• The Cloud interface to the user is the authentication service that validates (or invali-
dates) the user based on the provided credentials. Users provide the credentials which
are checked against the stored credentials. Following successful authentication, the
users get access to the resources attached to their accounts and the respective access
privileges are granted to the users.

• In case a user requests a new VM, the configuration of the VM (reqVM in Figure 3.2)
is checked against the quota of the user, and the VM request is sent to the controller
node.

• The controller node manages and maintains physical servers. The scheduler service
probes different servers that can host the new VM and selects an appropriate server.
Through the scheduler service, the controller node selects the host server that can
launch the requested VM.

• After the host is selected, networking capabilities are provided to the VM, and the
virtual machine disk image is installed. In some instances, the disk image can be
selected when launching a VM request.

• The final configurations (createVM(config, account, MAC/IP, DI) in Figure 3.2) is then
pushed onto the hypversior (VMM) which launches the VM.

• The VM starts executing and is added to the list of the user that requested the VM.

The presented sequence of operations relates to creating a new VM. However, it should
be noted that the Cloud provider can initiate the VM instantiation or migration to optimize
the workload without the user’s input but in compliance with the Service Level Agreement
(SLA) signed between the user and the Cloud Service Provider (CSP). The migration of a
VM entails creating a new VM with the same configurations as the old VM and migrating
the content of the old VM to the newly created VM. Thus, VM migration also contains the
VM creation sequence of operations. Therefore, it is critical to understand the service’s
interaction and flow of information that leads to the VM creation. For completeness, the
service’s interactions during the VM migration are shown in Figure 3.3 and explained in the
following.

3.2 Defining the Functional Model of the Cloud 39

Users Auth Accnts DB Config Cntrller

reqVM (conf)

Sched Resrces

srvrPrb (conf)

hostSrvr

reqVM (config)

hostSrvr

DHCP DI VMM

getMACIP

getDI

createVM (config, account, MAC/IP, DI)

MAC/IP

DI

acknowledge
addVM(user)

Server

existingResources

chck (userR

createVM (conf)

getResources

VM

VMcreated

VMcreated

chck (user) getAcnt (user)

Fig. 3.2 Communication among the services to launch a VM

40 Designing and Modelling the Cloud

configController VMM

New
VM

VM data

Migrating
Service

config

VM dataVMM

Old
VM1

2

3

4

5

6

Fig. 3.3 Communication among the services in migrating a VM

• The Cloud admin can trigger the VM migration to optimize load among the servers or
it can happen dynamically to fulfill a specific user’s requirements. The VMM forwards
the configurations of the VM to the controller node.

• The controller node selects a new physical server that can host the VM. This is shown
as transition 2 in the Figure 3.3.

• The controller node initiates the migrating service to start the migration process.

• The migrating service takes data from the old VM and transmits the data to the new
VM over the network. The data transmission over the network is usually unencrypted
and VM is susceptible to certain attacks that are explained in Section 2.2.4.

3.3 Conclusion

The Chapter presented a Cloud model that represents the functionality of the Cloud in
launching a VM. The functional model is a multi-layer aligned with Cloud deployments in
the wild. The control layer manages and maintains the Cloud and authenticates users. The
infrastructure layer schedules resources on the hardware and manages the workload amongst
the servers. The storage layer provides the storage capabilities to the users/VM. The Chapter
also introduced a sequence diagram to identify the flow of information and the services
interactions in the Cloud. Moreover, the Chapter also presented the communication among
the services during the migration of the VM. Understanding these interactions is critical to
evaluating the security of the Cloud at different functional abstractions.

Chapter 4

Information Flow Model

This Chapter builds on the Cloud functional model and the sequence diagram presented in
Chapter 3 to create a technology-agnostic information flow model of the Cloud operations.
Information flow models [104] have been applied to various areas of computer science. This
chapter explains the thesis’s first contribution, i.e., developing an information flow model
independent of the underpinning technologies used in the Cloud. The development of such
a model entails abstracting the technology and vendor-specific characteristics to create a
transition system governed by rules that trigger transitions following the fulfillment of the
respective preconditions. For example, the authentication credentials provided by the user
are a precondition to trigger different transitions depending on the validity of the credentials
irrespective of the underlying authentication technology used to check these credentials. In
the case of valid credentials, a user is directed to a dashboard/interface to access their VMs.
On the other hand, invalid credentials lead to an error message, and the user is requested to
reenter credentials. Thus, defining the pre-conditions and rules that govern the triggering
of transitions and passing of the information among the services represent the functional
behavior of the Cloud. Furthermore, the security requirements of the users are incorporated
into the information flow model to support the prioritization of threats that violate specific
requirements. It is argued that a security requirement of an application varies depending
on the functionality of the application. For example, a content delivery application might
set the availability of the data as a high priority while an application dealing with financial
records might consider confidentiality as its primary requirement. Therefore, considering
such security requirements is critical since it helps to identify threats that may lead to their
violation.

Following the overview, the rest of the Chapter details the development of an information
flow model of the Cloud. The requirements for the information flow model are: (a) that the
model should support expressing the functional behavior of the Cloud as well as the threats

42 Information Flow Model

in a technology-agnostic style, and (b) that there should be the ability to identify violations
from the sequence of events by determining the modifications in the operations of the Cloud
caused by spurious input to the system. These specifications are achieved by defining rules
and constraints that determine the triggering of transitions after their respective preconditions
have been fulfilled. Consequently, I begin with a basic transition system representing a
functional behavior and rules that determine the transitioning among the states. Subsequently,
I leverage the rule-based transition system to represent a login system for users authentication
and eventually represent the Cloud functional behavior. Furthermore, a threat’s behavior is
expressed as an instantiation of the rule-based transition system to use as a spurious input to
the system.

4.1 A Transition System

Figure 4.1 presents an example transition system which demonstrates how a system whose
functionality is represented as inputs causing a transition to a different state can be represented.
The transition system forms the basis for analyzing the proper functioning of the system and

Start

iA C

Invalid

iB

Final

s
i

ccc
t

t

Fig. 4.1 An abstract example of a transition system

provides the capability to identify modifications in system actions caused by spurious inputs.
I now describe the rules governing the transitions between states which eventually lead to a
terminal state (Final or Invalid state).

4.1 A Transition System 43

4.1.1 Normal Behavior

There are multiple paths that represent the normal operation of the system. Any modification
in these paths might be considered a threat to the system.

• Path 1: Start s−→ A c−→ Final

• Path 2: Start s−→ A i−→ B c−→ Final

• Path 3: Start s−→ A i−→ B i−→ C c−→ Final

• Path 4: Start s−→ A i−→ B i−→ C i−→ Invalid

Paths 1, 2, 3 and 4 demonstrate the correct functional behavior of the transition system, i.e.,
the paths start from the state Start and terminate to either the Invalid or the Final state.
The inputs start, invalid, and correct are respectively denoted by {s, i,c} and are used to
trigger different paths depending on the input provided to the system. For instance, in path 1,
an input triggers the state Start which passes on s as information to state A. The received
input initiates multiple paths from state A, for instance, the input corresponding to a correct
value c leads to the Final state. Conversely, an invalid input i at state A moves the system to
state B and the similar process is followed at state B. However, at state C, an invalid input i
terminates the system at the invalid state instead.

4.1.2 Incorporating Malicious Inputs to the System

The rules determine the functional behavior despite the different underlying technologies.
The rules can be added (or removed) to incorporate new (or speculative) specifications or
constraints from users/systems. In Figure 4.1, additional inputs are added to both states B
and C to analyze their corresponding impacts on the behavior of the system. For example, at
state B, an input t modifies the behavior and terminates the system at the invalid state instead
of transitioning the system to either state C or the Final state. Thus, a rule-based transition
system highlights manipulation in the system caused by malicious inputs and consequently
enables the speculative (what-if) analysis. The complete paths for both the malicious input
are given below.

• Path M1: Start s−→ A i−→ B t−→ Invalid

• Path M2: Start s−→ A i−→ B i−→ C t−→ Final

44 Information Flow Model

4.1.3 Representing a Transition System

I have demonstrated the benefits of using a rule-based transition system to enumerate the
behavior of a system and speculate on the behavior by adding spurious constraints. I leverage
this rule-based transition system concept to develop an information flow model of the Cloud
depicting its functionality. There exist multiple methods to model the functionality of a
system. In the following, two prominent alternatives of labeled transition system and Petri
nets are detailed.

Labelled Transition System (LTS)

LTS has been extensively applied to model the Cloud operations, including modeling Client-
Cloud interactions [105–107]. The benefit of using such models is to elaborate the behavior
of a system and identify a potential violation of the specified property using a model checker.
To this end, the complete model and the property specification are provided to a model
checker that generates a counterexample identifying the property violation. The specified
property is often a safety/liveness property, but the process can be replicated for certain
security properties. On the other hand, LTS becomes cumbersome for concurrent systems
due to the state explosion problem [108]. Further, the states and the associated actions in
LTS are global, i.e., the complete state information is required to recognize the firing of a
transition. A state cannot be distributed into multiple local states with different preconditions
to trigger a transition locally if a certain precondition is satisfied. Moreover, these models
are deterministic, while modeling the Cloud requires triggering of transitions at certain time
intervals to replicate e.g., VM migration.

Petri Nets

An alternative to an LTS is a Petri nets, which can describe the functional behavior of
distributed systems. Petri nets have been used to model workflow of concurrent systems [109],
resource management in the Cloud [110], and fault detection in distributed systems [111]. A
difference between Petri nets and labeled transition systems is the distribution of states as
places in the former and enabling places to hold information to enable a transition. Moreover,
the transitions are fired locally and non-deterministically without requiring a global view of
the system. Furthermore, the Petri nets supports time-driven firing of the transitions, i.e.,
firing the transition at a specific time instance. Similar to LTS, Petri nets also encounter the
issue of state explosion [108].

4.1 A Transition System 45

4.1.4 Information Flow Model Requirements

I have described the possible options for modeling the behavior of a system, and now I
proceed to elicit the specific requirements for modeling the Cloud. The Cloud is a distributed
and concurrent system, and modeling its functional behavior entails assigning information
to each state and passing on either a complete or a subset of information according to the
triggering event. Furthermore, certain events might create an impact both locally and globally.
For example, a threat targeting a service affects that service, but can also progressively target
the interlinked services. On the other hand, performing a speculative analysis requires
assigning constraints (threat preconditions) to different services to analyze their consequence
on the benign operation of the Cloud. An additional requirement is the capability to model
time-driven events. For instance, a VM can instantiate, decommission or migrate at run-
time according to the workload. These requirements favor the use of Petri nets for the
development of the information flow model. A brief overview of Petri nets is presented
before demonstrating its use in developing the information flow model of the Cloud.

A typical Petri nets has two elements, places, and transitions1, depicted as circles and
bars respectively, as shown in Figure 4.2. A transition signifies the occurrence of an event
and the place holds the token (information) that enables the transition. The conditions that
govern the flow of tokens are represented on the arcs between input and output places. The
pre-conditions are represented on the arcs that connect places to transitions and the output
flow (post-condition) from a transition governs the flow of token (information). A transition
is fired only if both pre- and post-conditions are satisfied. A token from an input place is
transferred onto the respective output place after the transition is triggered.

In this thesis, a variant of Petri nets called High-Level Petri nets (HLPN) [112] is used,
which provides further flexibility in assigning multiple tokens of different data types to
a place. Moreover, in HLPN, a subset of the token (information) can be passed onto the
next state depending on the triggering condition. For example, the authentication service
holds both usernames and passwords and passes on only the username to the next state that
provides a list of the user’s existing VMs. Furthermore, the constraint can be time-driven.
For instance, after a certain time interval, a VM migration process can start requiring a new
VM instance creation and the model needs to capture such dynamic interconnections. These
dynamic interconnections are captured in the model through the time-driven firing of the
transition. Moreover, the transitions are fired locally without contemplating the global state
of the system. This enables the model to capture new VM instance requests during the VM
run state or even when another VM request is at a later stage of the execution.

1Three different fonts are used in the thesis to make it clear what type of item within a Petri nets is being
referred to. These are: a Place in the Petri nets, an Input provided, and a TRANSITION that can be taken.

46 Information Flow Model

Formally a HLPN is defined as:

Definition 1 A HLPN is a 7-tuple N = (P,T,F,ψ,R,L,M0), where,

• P is a set of finite places

• T is a set of finite transitions such that P∪T = /0.

• F is a flow relation between a place and a transition such that F ⊆ (P×T)∪ (T ×P).

• ψ is a mapping function that maps places to data types such that ψ : P → Type.

• R define rules that governs enabling of the transition R : T → Formula;

• L is a label that maps F to labels such that L : F → Label

• M0 is the initial marking of the generated tokens where M : P → Tokens

The first three variables (P,T,F) provide the structural information of the Petri nets while
the variables (ψ,R,L) provide the behavioral semantics of the Petri Nets. The working
of Petri nets is elaborated using an example shown in figure Figure 4.2. There are three
places P1, P2, P3 and two transitions T1, T2. The data type of the places P1, P2, and P3
are integer, string and (integer×string) (product of integer and string) respectively. The
transition T1 is enabled only if P1 has a string token of value “abc" and P2 has an integer
token with a value greater than a. These are the preconditions represented on the arcs that
connects P1 and P2 with T1. For completeness, an output condition on is also placed T1
that governs the output flow. Thus T1 is enabled and fired if both preconditions and post
conditions are satisfied. Therefore, the rule for enabling and firing T1 can be written as:
R(T1) = (X = “abc")∧ (Y>a)∧ (X = “abc”∧Y > a+b). The rules are written following
first-order logic [113].

The transition T1 is enabled and fired as its rule is satisfied and therefore, the respective
tokens from input places P1 and P2 are placed on the output place P3. This behavior depicts
the flow of information between the places. Since the token a is placed on the place P3 and
thus, the rule for transition T2 is satisfied and this in turn fires the transition T2.

I have presented a generic example to demonstrate the use of Petri nets in modeling
a system. In the following sections, the application of Petri nets is extended to model
interactions in the Cloud. Initially, a login system to authenticate users is modeled which is
later extended to cover the operations during the life-cycle of a virtual machine in the Cloud.

4.2 Modelling the Cloud operations 47

P1

P3

P2 P Place

cond
Flow

condition

Transition

t1

t2

STR

INT

INTxSTR

Data type

Fig. 4.2 An example of a Petri net

4.2 Modelling the Cloud operations

In the previous section, I have explained a basic transition system and rules that determine
the functional behavior of the system through the flow of information among the states.
Moreover, the advantages of using HLPN for the development of the information flow model
are also explained. This section leverages the rule-based transition system to create an
authentication system for the Cloud before translating the complete Cloud model. This
authentication system is shown in Figure 4.3.

In Figure 4.3, there are three places (Log_Reqs, Usr_Accns and On_Usrs) and two
transitions (AUTH_F, AUTH_S). The transition AUTH_F represents failed authentication
due to invalid credentials, while AUTH_S depicts a successful authentication. The firing of
these transitions follow rules described in Equations (4.1) and (4.2) while, the description,
mapping function and data type of the places are shown in Table 4.1. For instance, the type
of the place Log_Reqs is (Str × Str) (product of string and string) to contain usernames and
passwords respectively.

The transition AUTH_S in Figure 4.3 is fired if the necessary preconditions are fulfilled,
i.e., the username and password provided by the user match the username and password
stored at the user accounts and the user is not already online. These preconditions are
represented on the arcs using: (i) the set of users U attempting to log in, where ∀u ∈U : u =

(u.username,u.password) represents the username u.username and password u.password
provided by a user, (ii) the set C of credentials known to the server, where ∀c ∈ C : c =

48 Information Flow Model

On_Us

rs

Usr_A

ccns

Log_R

eqs
Auth_S

Auth_F

Place

Data Type

Transition

cond Flow condition

STRxSTR

STRxSTR

STR

Fig. 4.3 Login system using HLPN

Table 4.1 Description and data type of places in Figure 4.3

Place Description Domain Types

Log_Reqs Login credentials. P(Usernames × Passwords) Str × Str

Usr_Accns Sever-side credentials. P(Usernames × Passwords) Str × Str

On_Usrs Online Users. P(Usernames) Str

(c.username,c.password) represents the username c.username and password c.password
known by the server, and (iii) set O represents the usernames that are already online. A
successful authentication of the user transfers them to the list of online users by adding the
new user to the set O which is denoted by O′. On the other hand, a violation in any of the
conditions results in the firing of the transition AUTH_F instead. The predicate R(T) denotes
if a specific transition T is taken. The governing rules for both AUTH_S and AUTH_F are
given in Equation (4.1) and Equation (4.2) respectively.

The implementation of these predicates is shown in Listing 4.1 which was performed
using CPN tools [114]. Each of the following Petri net models was implemented using CPN
tools to validate the functional behavior of the model. For instance, in the case of the login
system, the validation of the model requires that a user with valid credentials should always

4.2 Modelling the Cloud operations 49

get authenticated and later move to On_Usrs.

R(AUTH_S) = ∃u ∈ U : u ∈ C∧
u.username ̸∈ O∧
O′ := O∪{u.username}

(4.1)

R(AUTH_F) = ∀u ∈ U : u ̸∈ C∨
u.username ∈ O

(4.2)

Listing 4.1 CPN ML implementation of Equation (4.1)
1 colset Usernames = string; (* Type of Usernames is string *)
2 colset Passwords = string; (* Type of Passwords is string *)
3 colset UNxPW = record un:Usernames * pw:Passwords;
4 (* Type for multiple fields *)
5 var un:Usernames; (* Variable of type Usernames *)
6 var pw:Passwords; (* Variable of type Passwords *)
7 var U,C:UNxPW; (* Variables of type UNxPW *)
8 Auth_S = [#un(U)<>O andalso #un(U)=#un(C) andalso #pw(U)=#pw(C)]
9 (* Trans. guard*)

10 O’ = O^#un(U) (* Username is added to online users *)
11 Auth_F = [#un(U)=O orelse #un(U)=#un(C) orelse #pw(U)=#pw(C)]
12 (* Trans. guard *)

Figure 4.4 shows a snippet of the CPN tools interface after completing the declarations
and adding the guards to the respective transitions. For instance, the place ON_Usrs holds
the users that are online and currently it is empty. The Log_Reqs currently has a single token
with the username "sm" and password "t1". The same information is stored at the Usr_Accns
place. In case a place holds more than a single token, the number in the green circle will
depict the number of tokens the place holds. The AUTH_S is highlighted to indicate that
the transition is enabled. In Petri nets the transitions are enabled after all the input places to
the transition have at least one token (information) but the transition is only fired after both
the transition guard and the output condition of the transition are satisfied. The firing of the
transition takes the respective tokens from the input places and add them to the output places
considering the output condition. In the case of AUTH_S, the transition guard is to match
credentials, and the output condition is to add the user to the On_Usrs place.

It is evident that rules-based information flow is independent of the underlying technology
since any appropriate technology could be used to determine the validity of the credentials.
The subsequent section expands the authentication system by introducing additional Cloud

50 Information Flow Model

Fig. 4.4 Snippet of CPN tools of the Login system

functionality and eventually representing the Cloud behavior using HLPN. Consequently,
the resulting information flow model is agnostic to specific underpinning technologies.

4.2.1 Instantiation of the Cloud Functional Behavior

The previous sections demonstrate the use of HLPN in modeling the login system to validate
users. This section extends the authentication system by adding additional services from the
Cloud model and eventually, translating the Cloud functional model (cf., Figure 3.1) to an
HLPN model which is shown in Figure 4.5. The description of places and their data types
are mentioned in Table 4.2. The function domain(V) takes an HLPN place V and returns the
set of all possible values that V could have.

In Figure 3.2, I presented the sequence diagram of the operations in the Cloud in launching
a VM. These operations are revisited from the perspective of creating rules to govern the
flow of information among the services and replicating the functional behavior of the Cloud.

1. Transitions T1.1a/T1.1b/T1.2 determines the credentials validity and a successful
authentication lead to a dashboard enabling the user to access his/her existing VMs.

2. Transitions T1.3a/T1.3b are triggered after a user initiates the process of the VM
creation and provides properties for the VM (e.g., CPU, RAM, disk space). These
properties are checked for compliance with the associated quota of the user.

4.2 Modelling the Cloud operations 51

Table 4.2 Description and data type of places in the Cloud Model

Place Description Domain Types

UI
User’s interface to enter
credentials.

P(Usernames × Passwords) Str × Str

AS
Authentication server at
the server storing
credentials

P(Usernames × Passwords) Str × Str

CA Access restrictions P(Usernames) Str

DB Stored list of VMs P(Usernames × V Ms) Str × Arr

INT
Interface to run/initiate
VMs

P(Username × CPU ×
RAM × Disk × Arr)

Str × Str × Int × Int ×
Arr

UQ
Users quota and
configurations

P(Username × CPU ×
RAM × Disk)

Str × Str × Int × Int

SL
Potential server for the
VM request

P(Username × CPU ×
RAM × Disk)

Str × Str × Int × Int

AR
Available resources that
can launch the requested
VM

P(Loc × DC) Str × Str

HS
Receives selected
hosting server and VM
configurations

P(Loc × DC × Username ×
CPU × RAM × Disk)

Str × Str × Str × Str ×
Int × Int

NIC
MAC address and virtual
and physical network
interface mapping

MAC Str

NET
Assigns dynamic IP to
the instance

P(IP × MAC) Str × Str

DI
Holds Disk Image of the
VM

P(DI) Str

HYP
Receives all the
configurations and
launches the VM

P(CPU × RAM × Disk × IP
× MAC × DI)

Str × Int × Int × Str ×
Str × Str

VM
VM is started on the
server

P(Loc × DC × Username ×
CPU × RAM × Disk × DI ×
IP × MAC)

Str × Str × Str × Str ×
Int × Int × Str × Str ×
Str

52 Information Flow Model

UI
AS

T1.1a: Auth_F

AS_c

T1.1b: Auth_S

DB

CA

T1.2: Ctrl_S

INT

UQ

SL

T1.3a: VM_F

T.13b: VM_S

VM_req

UQ_q

DI

NET

NIC

T.1.4: Srvr_lookup

AR

HS

HYP

VM

T.1.5: Final_confs

T.1.6: VM_run

UI User interface

AS Authentication server

CA Control access

DB Database

INT VM request interface

UQ User quota

SL

AR Available resources

Server lookup

HS Host server

NIC Network interface card

DI

NET Networking functionality

Disk image

HYP Hypervisor

VM VM is instantiated

Fig. 4.5 Transforming Cloud Model to HLPN

3. Transition T1.4 is fired after the scheduler service determines a potential data center
and a host to run the requested VM.

4. Transition T1.5 is triggered after multiple services provide the respective tokens (infor-
mation). For instance, a disk image is provided from the repository and the network
service initializes a virtual network interface card and assigns MAC/IP addresses.
These configurations are pushed onto the hypervisor which configures the VM instance
accordingly.

5. Transition T1.6 is fired after it receives the final configuration and the VM has started
executing successfully. The VM place in Figure 4.5 shows the terminating state of the
Cloud model.

The rules that govern the flow of tokens (information) from input places to output places
are defined. A new token is generated each time a user tries to login triggering transitions
AUTH_F and AUTH_S to determine the validity of the user’s credentials. A user can provide
multiple credentials and UI_c is the set of provided inputs and AS_c is the set of credentials
stored at the server. These credentials are used in Equations (4.3) and (4.4) to check the
validity of the user’s credentials.

4.2 Modelling the Cloud operations 53

R(AUTH_F) = ∀u ∈ UI_c : u ̸∈ AS_c (4.3)

R(AUTH_S) = ∃u ∈ UI_c : u ∈ AS_c (4.4)

Equation (4.3) represents that the credentials provided by the user are invalid, and
therefore the user is requested to reenter the valid credentials. On the other hand, the valid
credentials trigger AUTH_S transition, and correspondingly, access privileges are granted to
the user. The user is transferred to an interface to access the assigned VMs or request new
VM instances. Equations (4.5) and (4.6) determine the success or failure of the VM request
considering several factors, including the quota associated with the user. The vm_req stores
the configurations of the requested VM (CPU, RAM, and Disk storage) which are checked
for compliance against the allocated quota of the user. The users’ quota is stored in UQ and
UQ_q is the quota of the specified user.

R(VM_F) = ∀d ∈ VM_req : (d.username ̸= UQ_q.username∨
d.cpu ̸= UQ_q.cpu∨
d.ram ̸= UQ_q.ram∨
d.disk ̸= UQ_q.disk)

(4.5)

R(VM_S) = ∃d ∈ VM_req : (d.username = UQ_q.username∧
d.cpu = UQ_q.cpu∧
d.ram = UQ_q.ram∧
d.disk = UQ_q.disk)

(4.6)

Equation (4.5) determines the invalidity of the VM request due to a lack of access privi-
leges for additional VM or if the configurations of the requested VM do not comply with the
associated quota. The compliance of the requested VM invokes the scheduler service that
selects an appropriate server to instantiate the requested VM. Furthermore, the selection of
the server triggers multiple services to configure the VM. For instance, the disk image service
provides a guest operating system for the VM. The network service provides networking ca-
pabilities to the VM, i.e., initiating a virtual network interface card, assigning a MAC address,
and determining the mapping between the virtual and the physical interfaces of the machine.
NET is responsible for leasing IP addresses and the corresponding IP address mapping to
the MAC address. These configurations are pushed onto the hypervisor, which executes the
VM on the physical hardware. These configurations follow Equation (4.7) for triggering the

54 Information Flow Model

respective transition. In Equation (4.7), ++ is used to denote tuple concatenation and := to
denote assignment resulting in a variable being updated.

R(FINAL_CONFS) = ∃im ∈ domain(DI) : im = ret_di∧
∃vn ∈ domain(NIC) : vn = ret_vnic∧
∃dh ∈ domain(NET) : dh = ret_dhcp∧dh.mac = vn.mac∧
config := VM_req_srvr++(im)++dh

(4.7)

The implementation of Equation (4.7) in CPN tools is shown in Listing 4.2 and the
respective snippet of the transitions and places in CPN tools is shown in Figure 4.6. As
Figure 4.6 shows, the place SL receives VM configurations and the server look-up is initiated.
After the selection of the server for the VM, both the VM and server information are
passed onto HS which temporarily holds this information. The variable VM_req_srvr is
of type VMCONF (line 8 and 9 in Listing 4.2), i.e., the variable is able to hold both the
VM configurations and the server information. This is passed to FINAL_CONFS transition.
Moreover, at this transition, DI provides an operating system for the VM, NET provides IP
and MAC addresses and NIC provides a MAC address and a mapping between the physical
virtual interfaces. This is achieved by the transition that is fired after comparing vnic with
ret_dhcp. Following this, the final configurations (VM_req_srvr, ret_di, ret_dhcp) are
passed onto the hypervisor which runs the VM as per the received configurations.

Fig. 4.6 Snippet of CPN tools of the Final Configurations

This section explained the functional behavior of the Cloud as a rule-based transition
system irrespective of the underlying technologies. The rules determine the information flow
among the services for the proper functioning of the Cloud. On the other hand, a threat’s

4.3 Instantiation of a Threat’s Behavior 55

Listing 4.2 CPN ML implementation of Equation (4.7)
1 colset CPU = string; (* Type of CPU is string *)
2 colset RAM = int; (* Type of RAM is int *)
3 colset DISK = int; (* Type of RAM is int *)
4 colset USERNAMExCPUxRAMxDISK =
5 record un:USERNAME * cpu:CPU * ram:RAM * disk:DISK
6 var VM_req:USERNAMExCPUxRAMxDISK;
7 (* Variable of type USERNAMExCPUxRAMxDISK *)
8 colset LOCxDC= record loc:LOC * dc:DC; (* Type of multiple fields *)
9 var srvr:LOCxDC; (* Type of LOCxDC *)

10 colset VMCONF = product USERNAMExCPUxRAMxDISK * LOCxDC
11 (* Immutable fields *)
12 var VM_req_srvr:VMCONF; (* Variable of type VMCONF *)
13 colset IP = string; (* Type of IP is string *)
14 colset MAC= string; (* Type of MAC is string *)
15 colset IPxMAC= record ip:IP * mac:MAC; (* Type of multiple fields *)
16 var ret_dhcp:IPxMAC; (* Variable of type IPxMAC *)
17 colset DI = string; (* Type of DI is strin *)
18 var get_di:DI; (* Variable of type DI *)
19 colset FCONF = product VMCONF * DI * IPxMAC;
20 var config:FCONF;
21 Final_confs = [#mac(ret_dhcp) = ret_vnic] (* Trans. guard*)

input can alter the behavior of the Cloud leading to malfunctioning. Thus, the following
section defines the behavior and characteristics (e.g., preconditions, consequence, etc.) of a
threat that are given as the spurious input to the Cloud to analyze its impact on the functional
behavior of the Cloud.

4.3 Instantiation of a Threat’s Behavior

The previous sections described the normal functional behavior of the Cloud similar to the
basic transition system (cf., Figure 4.1 in Section 4.1) in a technology-agnostic manner. As
previously described, in Figure 4.1, the paths to the terminal states are modified by additional
inputs. Thus, this section presents threats as additional inputs to the Cloud. Similar to
the Cloud services, a threat’s behavior is defined by representing the necessary conditions
required for a threat to exploit a service. Moreover, modeling the behavior facilitates
in assessing the impact of a threat on a particular service and consequently tracking its
progression across the system. The threats are given as input to the Cloud model, and the
consequence of the threat dictates the next place/state in the Cloud model. Furthermore, in
combination with the CPN tools [115], the HLPN can be simulated to enumerate benign
behavior to validate the functionality of the Cloud and conversely investigate the attack paths

56 Information Flow Model

generated due to the threat. The instantiation of a threat using HLPN is shown in Figure 4.7
and Table 4.3 describes the places used in the HLPN model along with their description and
data types. The significance and utilization of these places in defining the threat behavior are
explained in the following.

Servi

ce

Rec

T1.1: PreCon_F

T1.2: PreCon_S

soft_

iss

Cons

Actio

n

Atk_

sur

T2.1: Exploit_F

T2.2: Exploit_S

Fig. 4.7 Modeling a threat’s behavior using HLPN

Table 4.3 Description and data type of places in Figure 4.7

Place Description Mapping Types

Service Targeted services. P(Services × Issues) Str × Str

Rec Reconnaissance step input. P(Services × Issues) Str × Str

soft_iss Potential issues in the target. P(Services × Issues) Str × Str

Action Action to exploit the issues. P(Action) Str

Atk_sur Attack surface. P(Atk_sur) Str

Cons The consequence of the threat. P(Cons) Str

4.3.1 Reconnaissance Step

This step uncovers potential weaknesses in a system that could be exploited by an attacker.
For example, the installation of a vulnerable version of the software or a misconfigured service
could be a potential weakness. Additionally, this step explores the necessary preconditions to

4.3 Instantiation of a Threat’s Behavior 57

exploit the weakness. The reconnaissance step can be done using different tools but for the
purpose of profiling threats and investigating their progression, data published in the national
vulnerability database [30] suffices since the purpose is to collect weaknesses in the services
and use them as a triggering condition of a transition. Consequently, this enables tracking the
progression of the threat in the system. Equations (4.8) and (4.9) determines if the necessary
preconditions of the potential weakness are fulfilled.

R(PRECON_S) = ∃r ∈ domain(Rec) : r ∈ ser (4.8)

R(PRECON_F) = ∀r ∈ domain(Rec) : r /∈ ser (4.9)

Equation (4.8) demonstrates the fulfillment of preconditions, i.e., there exists a service
with a potential issue discovered during the reconnaissance step. The absence of such an
exploitable weakness instead fires PRECON_F as determined by Equation (4.9).

4.3.2 Exploit Step

This step is triggered if a service has an existing issue that could be exploited. This requires
an attacker to utilize an action designed to exploit the specific weakness. An absence of such
an action indicates an open window of compromise. The rules governing the exploit step are
described in Equations (4.10) and (4.11).

R(EXPLOIT_S) = ∃i ∈ domain(soft_iss) : i = iss ∧
∃a ∈ domain(Action) : (a = act∧a = iss.issue) ∧
∃as ∈ domain(Atk_sur) : as = a

(4.10)

R(EXPLOIT_F) = ∀i ∈ domain(soft_iss) : i ̸= iss ∨
∄a ∈ domain(Action) : (a = act∨a = iss.issue) ∨
∄as ∈ domain(Atk_sur) : as = a

(4.11)

A successful exploit might affect the normal operations of a system. For instance, a
Denial of Service (DoS) would limit the availability of the service. These consequences are
represented as the Cons in Figure 4.7. On the other hand, if the consequence of the threat is
to bypass authentication then the consequence of the threat is the next available place for the
attacker after circumventing the authentication service.

The implementation of the threat’s instantiation in the CPN tools is given in Listing 4.3
and the respective snippet from the CPN tools is shown in Figure 4.8. For simplicity, the suc-

58 Information Flow Model

Listing 4.3 CPN ML implementation of Equation (4.8) and Equation (4.10)
1 colset SERVICE = string; (* Type of service is string *)
2 colset ISSUE = string; (* Type of ISSUE is string *)
3 colset SERxISS = record s:SERVICE * i:ISSUE;
4 var ser , rc, iss:SERxISS; (* Variable of type SERxISS *)
5 var act , atk:STRING;
6 PreCon_S = [#s(ser) = #s(rc) andalso #i(ser) = #i(rc)]
7 (* Trans. guard*)
8 Exploit_S = if #i(iss) = act
9 then 1‘"bypass"

10 else emtpy (* Trans. guard and output condition merged *)

cess cases of the rules are shown, i.e., implementation of Equation (4.8) and Equation (4.10).
As can be seen from Figure 4.8, the service Auth is vulnerable to token mismanagement
and is discovered during the reconnaissance phase. Following this discovery, the respective
action is taken from the Action place. The Action holds actions that attackers can take. For
instance, an issue can be exploited by different actions, a single action can impact multiple
issues, or a single issue belonging to various services exists that a single action can target.
Therefore, actions are not tied to specific services or issues. A successful exploit leads to the
Cons place that holds the impact of the exploit.

4.4 Connecting the Cloud Model and Threats

The previous sections have described the information flow model and the instantiation of
the threat behavior using Petri nets and their implementation in CPN tools. However, the
connection between the Cloud model and the threats still remains. This is shown in Figure 4.9,
where after successfully bypassing the authentication server (AS), the next place available
to the attacker is the VMReq. VMReq is the same as INT in Figure 4.5.2 As can be seen from
Figure 4.9, the data type of the AS is UNxPW, indicating that this place can hold username and
password. Moreover, at the top of the AS, actual values of usernames and passwords are
highlighted. These values are used against the stored values at the server side to grant/reject
authentication. Currently, there are two users with usernames "sm" and username "ai" and are
differentiated with ++ between their values. The 1 at the beginning highlights that the user
is still waiting for authentication, once the values are passed onto the transition this counter
is reduced to 0 to indicate that the user has attempted to log in. This limits the attempts from
the user to get authenticated.

2INT is a reserved keyword in CPN tools and hence cannot be used as name for a place.

4.4 Connecting the Cloud Model and Threats 59

Fig. 4.8 Snippet of CPN tools depicting threats behavior

On the other hand, both the Threats and the Cloud Model in Figure 4.9 indicate that
the functionality is hidden. These are termed as hierarchical Petri nets and the aim of the
hierarchy Petri nets is to hide the places and transitions of the individual blocks while only
showing the connection among the blocks. For instance, the Threats block encompasses the
places and transitions represented in Figure 4.7. The VM (denoted with a red circle) is the
terminating state of the model.

VMReq

CPUxRAMxDISK

AS

UNxPW

1` {un = "sm", pw = "test1"}++
1`{un = "ai", pw = "test2"}

VM

Fconf

Threats

ThreatsThreats

Cloud Model

CloudCloud

Fig. 4.9 Link between threats and the Cloud Model

60 Information Flow Model

4.5 Conclusion

This Chapter has investigated the first research question, how Cloud Service Providers (CSPs)
can examine the Cloud’s security at different abstractions of the operations. To this end, this
Chapter presented the first contribution of the thesis, i.e., modeling the Cloud operations
to an information flow model capturing the services interactions to represent the behavior
without being specific to technologies used in the Cloud. Moreover, this Chapter illustrates
the use of threats as spurious input to varied services across the operational stack to determine
their impact on the Cloud. The information flow model and the threat behavior are defined
using HLPN, enabling me to assign multiple specifications to each service. For instance,
the service’s regular interaction with other services is one specification, while the second
specification could be a threat targeting the service. These specifications are achieved by
defining rules and constraints that determine the triggering of transitions after their respective
preconditions have been fulfilled. Moreover, the states in Petri nets are distributed, i.e.,
the threat’s impact could be determined locally, which enables tracking the threat from the
targeted service instead of the global starting point. This essentially allows CSPs to examine
the security of the Cloud at different abstractions of the operations.

Chapter 5

Threat Analysis

This Chapter addresses the second research question: How can the effects of a threat in a
service on other interconnected services be identified? To this end, this Chapter contributes
by proposing path-illustrative threat analysis techniques, ThreatPro and AttackDive, that can
reveal the progression of a threat in the system. These approaches support profiling threats,
analyzing their impact on targeted services, and the propagation of threats across the multiple
layers of the Cloud. ThreaPro assesses the impact of threats to Cloud services at different
levels of abstraction, e.g., considering threats at multiple services/layers and the possibility
of a threat’s combination to violate a security requirement of the user. Furthermore, the
progression of a threat in the Cloud’s dynamic environment, where resources migrate from
one physical host to another that may have different security properties, is investigated in the
Chapter. Additionally, ThreatPro provides the capability to perform a speculative analysis to
examine the potential of a threat to compromise a security requirement. On the other hand,
AttackDive investigates the operational visibility of the Cloud and explores its exploitability
corresponding to different attacker profiles, e.g., insider vs. outsider attackers.

Both ThreatPro and AttackDive approaches utilize the functional Cloud and the informa-
tion flow model which are described in Chapter 3 and Chapter 4 respectively. Briefly, the
Cloud model is an abstraction of services from real-world deployments, while the information
flow model governs the flow of information among the services using transitions that are
triggered after their respective conditions are satisfied. Moreover, Chapter 4 comprehensively
detailed the threats and their required preconditions in the form of constraints to transitions,
so this Chapter builds on the previous Chapters to perform threat analysis in the Cloud.

However, before proceeding to threat analysis, The correct behavior of the Cloud is
validated to establish a baseline for the operations in launching a VM. Specifically, I examine
if the Cloud always terminates to the VM state each time a user requests a new VM or starts an
existing VM. Consequently, allowing me to enumerate all the execution paths that lead to the

62 Threat Analysis

correct terminal state. The terminal state is VM for both starting an existing VM or launching
a new instance of the VM. Thereafter, additional constraints are inserted that act as threats to
different services in order to investigate paths leading to violations of security requirements.

By using an HLPN to build the information flow model it means CPN tools [115] can
be used to simulate the model and enumerate the Cloud behavior. The simulation allows
for the analysis of Cloud’s behavior when no adversary is present, i.e., given a valid VM
request the terminating state should always be the VM state. CPN tools also support triggering
transitions at certain time intervals which facilitates modeling dynamic Cloud behavior. This
is accomplished by triggering new events (e.g., launching a new VM, migrating a VM, or
fulfillment of a threat’s preconditions) after a certain time period has elapsed in the simulation.
This establishes the handling of the dynamic behavior of the Cloud by discerning the impact
of the new events in the model.

In the following sections, CPN tools is utilized to generate states enumerating the
Cloud’s benign behavior and also the possible deviation in its behavior after inserting
threats to different services in order to perform threat analysis. Following this overview,
the subsequent sections detail each enumerating the Cloud behavior to establish a baseline
behavior. Thereafter, threats are added and their propagation is ascertained in the Cloud.

5.1 Enumerating the Cloud behavior

Initially, the behavior of the Cloud without the threats must be validated to understand the
operations of the Cloud in their absence. This is achieved through simulating the Cloud
model based on the HLPN (cf., Figure 4.5) using CPN tools. The functional property is
validated initially, i.e., given a request by a user, the Cloud should always launch the VM,
and hence the terminating state should always be the VM state. This also enables validating
the correct functional behavior before the threats are added to the Cloud. The sequence
of states is generated using CPN tools for the scenario where a valid user requests a VM.
In this valid request, the execution will always terminate at the VM state. An illustration
of a subset of valid paths is shown in Figure 5.1 where those paths all terminate at the VM
state. Some paths show VM+Data instead of VM to represent the scenario in which a user had
requested storage capacity along with a VM. This is simply used to differentiate between
VMs with and without storage. These paths correspond to the instantiation of the Cloud
behavior presented in Section 4.2.1. Enumerating the Cloud behavior establishes a baseline
of operations without the presence of a threat and demonstrates the proper functioning of the
Cloud.

5.2 ThreatPro: A Multi-layer Dynamic Threat Analysis 63

AS

CA

DB

INT

VM UQ

SL

HS

NICDINET

DB

Hyp

VM

INT

VM+Data UQ

SL

Hyp

VM

Hyp

VM+Data

HS

NICDI

Hyp

VM

Hyp

VM

NET

Hyp

VM+Data
Path to run a VM
Path to create a new VM

UI

CA

AS

UI

Path to run a VM Path to create a new VM

User interface

Authen�ca�on server

Control access

Database

VM request interface

User quota

Server lookup

Host server Networking func�onality

Disk image VM is instan�ated UI

AS

CA

DB

INT

UQ

SL

HS

NIC Network interface card

DI

NET

Hyp Hypervisor

VM

Fig. 5.1 Example of valid execution paths in the Cloud environment

5.2 ThreatPro: A Multi-layer Dynamic Threat Analysis

This section performs the threat analysis by adding constraints (e.g., threat conditions at
different services) to the HLPN and simulating the Cloud behavior in the presence of these
threats. The threats are added at different layers/services to investigate both the cause-effect
relationship and to analyze their impact on the Cloud’s functional behavior.

To demonstrate the generalization of the presented approach, I first perform speculative
analysis using vulnerabilities reported in the national vulnerability database [30] to identify
corresponding attack scenarios. The objective of this analysis is to identify potential paths
that could be used by an attacker to undermine a security requirement.

The set of the vulnerabilities presented in Table 5.1 to demonstrate the effectiveness of
ThreatPro in analyzing the potential impact of threats at different layers of the Cloud and
the potential of a threat to progress in the Cloud. The first column in the table is the CVE

64 Threat Analysis

Table 5.1 List of vulnerabilities from NVD with CIA consequences indicated

CVE# Service HLPN Place C I A

CVE-2012-4457 Authentication AS ✓

CVE-2013-2006 Authentication AS ✓

CVE-2013-4222 Authentication AS ✓

CVE-2013-7130 Compute HYP ✓

CVE-2014-0134 Compute HYP ✓

CVE-2014-2573 Neutron NET P

CVE-2014-9623 Glance DI P

CVE-2015-2687 Compute HYP ✓

CVE-2016-5362 Neutron NET ✓

CVE-2016-0757 Cinder SL ✓

CVE-2018-14432 Cinder CA ✓

CVE-2018-14635 Neutron NET P

entry, while the second and third columns show the targeted service and its corresponding
HLPN place. The last three columns show the vulnerability’s consequence on Confidentiality,
Integrity, and Availability (CIA). A partial impact is indicated with P and a full impact
with ✓. Where a partial impact means that a subset of data was revealed to an adversary
(confidentially) or a subset of data was corrupted (integrity). The attack graph generated
from these vulnerabilities is shown in Figure 5.2. The multiple paths violating security
requirements are explained below, where each path enumerates a single attack.

Path 1: A successful exploitation of vulnerabilities in path 1 of Figure 5.2 leads to
attaining additional resources in the Cloud from a disabled user. It is accomplished by
exploiting vulnerability CVE-2013-4222/CVE-2012-4457 to request a new authorization
token of the disabled user and utilize this token in accessing the victim’s resources. A
precondition of the attack requires authentication of the user which is achieved by exploiting
vulnerabilities CVE-2013-2006, CVE-2015-3646

Path 2: Exploiting CVE-2014-5251 at the control service allows attackers to bypass
access restrictions and potentially discover restricted projects. However, in combination with
CVE-2018-14432, an attacker can escalate the impact to retain access to these restricted
projects with an expired authorization token. Alternatively, an attacker in combination with
vulnerability CVE-2016-0757 at SL service might be able to change the VM’s configuration.

https://nvd.nist.gov/vuln/detail/CVE-2012-4457
https://nvd.nist.gov/vuln/detail/CVE-2013-2006
https://nvd.nist.gov/vuln/detail/CVE-2013-4222
https://nvd.nist.gov/vuln/detail/CVE-2013-7130
https://nvd.nist.gov/vuln/detail/CVE-2014-0134
https://nvd.nist.gov/vuln/detail/CVE-2014-2573
https://nvd.nist.gov/vuln/detail/CVE-2014-9623
https://nvd.nist.gov/vuln/detail/CVE-2015-2687
https://nvd.nist.gov/vuln/detail/CVE-2016-5362
https://nvd.nist.gov/vuln/detail/CVE-2016-0757
https://nvd.nist.gov/vuln/detail/CVE-2018-14432
https://nvd.nist.gov/vuln/detail/CVE-2018-14635
https://nvd.nist.gov/vuln/detail/CVE-2013-4222
https://nvd.nist.gov/vuln/detail/CVE-2012-4457
https://nvd.nist.gov/vuln/detail/CVE-2013-2006
https://nvd.nist.gov/vuln/detail/CVE-2015-3646
https://nvd.nist.gov/vuln/detail/CVE-2014-5251
https://nvd.nist.gov/vuln/detail/CVE-2018-14432
https://nvd.nist.gov/vuln/detail/CVE-2016-0757

5.2 ThreatPro: A Multi-layer Dynamic Threat Analysis 65

CVE-2013-7130

AS

CA

DB

INT

VM UQ

HS

UI

CA

INT

VM+Data UQ

SL

HS

DINET

Hyp

VM+Data

Hyp

VM

NICDINET

Hyp

VM+Data

Hyp

VM

Hyp

VM

Vulnerable service

DI

UQ

VM

Additional resources

DoS

Consequence

HYP

SL

UQ

VM

Change VM configs

Hyp

VM

VM migration

Elastic behavior of the Cloud

CVE-2013-4222 or
CVE-2012-4457

CVE-2013-2006 or
CVE-2015-3646

Path 1

CVE-2014-5251 &
CVE-2018-14432

CVE-2016-0757

Path 2

CVE-2014-9623

Read host details

CVE-2014-0134

Inspect network trafic Users data

CVE-2018-14635

Access storage

CVE-2015-2687

Path 3a

Exploited vulnerability
Path to run a VM
Path to create a new VM

SL

Path 3b

UI

AS

DB

Path to run a VM Path to create a new VM

User interface

Authen�ca�on server

Control access

Database

VM request interface

User quota

Server lookup

Host server Networking func�onality

Disk image VM is instan�ated UI

AS

CA

DB

INT

UQ

SL

HS

NIC Network interface card

DI

NET

Hyp Hypervisor

VM

Fig. 5.2 Attack paths based on the selected vulnerabilities

66 Threat Analysis

This path specifically shows that combining vulnerabilities from different services can
increase the overall impact and therefore, the potential of a threat’s progression should be
considered in the threat analysis process.

Path 3: Similar to Path 2, this path has multiple potential consequences depending on the
combination of the exploited vulnerabilities. In path 3a, the vulnerability CVE-2014-9623 at
the disk image service is exploited to bypass the storage quota and thus enable the attackers to
upload a large image file causing a denial of service. However, path 3b illustrates alternative
paths in which the vulnerability is combined with a hypervisor vulnerability (CVE-2014-
0134), resulting in either reading the configuration file of the physical server, breaching
the confidentiality, or potentially causing the VM to migrate. The latter case opens up new
attack surfaces such as when exploiting CVE-2018-04635 during VM migration which could
allow attackers to intercept network traffic. Alternatively, the vulnerability CVE-2013-7130
facilitates attackers to access other users’ data.

These attack surfaces are introduced due to the elastic behavior of the Cloud. Since this
analysis happens at run-time the ThreatPro methodology is able to identify these attack paths.
Other threat analysis tools that only consider a static view of the system would only be able
to incorporate the changes in the system after they are executed again. These tools might
require a large number of re-executions in order to process all the changes that elastic Cloud
behavior may introduce.

Speculative Analysis

The speculative analysis allows the exploration of the potential paths an attacker could use
to accomplish their objectives. Moreover, the speculative analysis facilitates a proactive
approach to threat mitigation and prioritization of threats according to their impact or the
threat’s degree of centrality in the path. In the following section, a post-mortem analysis
of two cases is performed to illustrate the attack paths that could violate different security
requirements. This demonstrates the effectiveness of ThreatPro in identifying threat pro-
gression in the system as well as disclosing alternative attack paths through speculative
analysis.

5.2.1 Validation: Real-world Case Studies

The previous sections outlined the processes of ThreatPro in conducting actual and speculative
threat analysis to identify attack paths. To validate ThreatPro, in this section, multiple CVEs
are used that are related to real-world attacks to enumerate the attack paths attackers used to
compromise the system. In addition, ThreatPro is able to conduct a post-mortem analysis of

https://nvd.nist.gov/vuln/detail/CVE-2014-9623
https://nvd.nist.gov/vuln/detail/CVE-2014-0134
https://nvd.nist.gov/vuln/detail/CVE-2014-0134
https://nvd.nist.gov/vuln/detail/CVE-2018-04635
https://nvd.nist.gov/vuln/detail/CVE-2013-7130

5.2 ThreatPro: A Multi-layer Dynamic Threat Analysis 67

these attacks by introducing speculative conditions and exhibiting alternative potential cases
of violation of the security requirements. In essence, these potential attack paths determined
through speculative analysis highlight ThreatPro’s predictive capabilities for identifying
alternate possible attacks.

I now present two case studies of actual Cloud attacks to illustrate the process of Threat-
Pro’s methodology. The first attack is the Equifax attack on breach of confidentiality [116]
where attackers exfiltrated confidential data of Equifax’s customers. The second attack is a
resource consumption attack that exhausts the system’s resources hindering the availability
of the application [20].

Case I: Confidentiality as a Requirement

The first attack scenario covers the violation of a confidentiality requirement. I review
the Equifax data breach where attackers successfully ex-filtrated the financial and private
records of approximately 148 million users, making it one of the largest data breaches and an
attack with one of the largest financial settlements [117]. Furthermore, this case specifically
highlights the significance of multi-layer attacks where supposedly negligible issues at
different layers were combined to create an aggregated impact. Although threat analysis
techniques are useful to determine these issues individually at each service, ThreatPro
provides the capability of assessing the impact of the threats and their possible combination
in the system. This is achieved through modeling the functional behavior to determine a
threat’s possible progression in the system. A brief analysis of the attack is presented in the
following illustrating the path taken by attackers to access the confidential data of the users.
The readers are referred to [116] for a complete analysis of the data breach.

1. Attackers exploited a vulnerability in the web portal granting them access to the web
server.

2. User names and passwords were saved in plain text facilitating attackers to penetrate
further into the system using these credentials.

3. Networks and systems were not segmented properly allowing attackers to move later-
ally across the network and systems without any restriction.

This attack is an example of attackers moving across the services/layers and eventually
reaching restricted states of the system due to the presence of negligible issues at each
service/layer. For instance, the proper partitioning of the network/systems would have
limited the impact of the attack as well as encrypting the credentials at rest. However, the
combination of these negligible issues across different services/layers amplified the impact

68 Threat Analysis

of the attack. Using ThreatPro, the sequence of steps is generated that enable attackers to
access the data which are shown in Figure 5.3.

AS

CA

DB

INT

VM UQ

SL

HS

UI
CA

DB

VM

INT

UQ

SL
Data

Hyp

VM

Data

Hyp

VM

Data

NICDINET

Hyp

VM

Data

Hyp

VM

Data

Hyp

VM

Data

VM

Host 2

Storage

Host 1

Storage

Lacks
segmentation

VM Vulnerable VM

Data Unencypted Data

Network connection

Attack path

Path to run a VM
Path to create a new VM

UI

VM

INT

UQ

Data

HS

Path to run a VM Path to create a new VM

User interface

Authen�ca�on server

Control access

Database

VM request interface

User quota

Server lookup

Host server Networking func�onality

Disk image VM is instan�ated UI

AS

CA

DB

INT

UQ

SL

HS

NIC Network interface card

DI

NET

Hyp Hypervisor

VM

Fig. 5.3 Attack path in the Equifax data breach

Figure 5.3 shows the attacker compromised the web server running on the VM at host
1 by exploiting the publicly known vulnerability CVE-2017-5638. This allowed attackers
to gain access to the VM resources and the storage of the unencrypted credentials which
facilitated attackers to penetrate further into the system by using these credentials. On the
other hand, systems/networks were not properly segmented allowing attackers to use the
credentials on VMs running at different hosts, e.g., host 2 in Figure 5.3. In the following

https://nvd.nist.gov/vuln/detail/CVE-2017-5638

5.2 ThreatPro: A Multi-layer Dynamic Threat Analysis 69

section, the capability of ThreatPro in revealing alternative attack paths at the attacker’s
disposal is demonstrated by performing speculative analysis.

Speculative Analysis

Figure 5.3 shows the potential issues that were exploited by the attacker, however, the
speculative analysis of the Equifax data breach reveals that the attackers have alternative
attack paths at their disposal to accomplish their goals. For instance, if the network is
partitioned properly, an alternative route for the attacker could be to intercept network traffic
by exploiting vulnerability CVE-2016-5363/CVE-2016-5362 at the network service. Thus,
speculative analysis is useful to determine the alternative paths exploitable by an attacker in
case a mitigation strategy is deployed.

5.2.2 Case II: Availability as a requirement

The second attack illustrates the use of ThreatPro in determining the paths violating the
availability requirements of an application. Specifically, this attack entails exhausting the
resources to limit the availability of an application and eventually causing a denial of service.
These attacks typically target content delivery applications where timely delivery of content
is the primary objective [118, 119]. Recently, Amazon reported that it has thwarted the
biggest attack on its services [20]. The documented information is limited in these cases
to avoid leakage of propriety information that could potentially be used in future attacks.
However, using the threats published in the NVD, ThreatPro is able to depict scenarios where
an attacker can target individual services or discover a combination of vulnerabilities to cause
exhaustion of the resources. These attack paths are shown in Figure 5.4 and are explained
below.

Paths 1 and 2

Using CVE-2016-5362 or CVE-2016-5363 at the network service, an attacker can intercept
the traffic and cause a resource consumption attack. This vulnerability allows the interception
of traffic destined for other hosts and thus, could potentially be used to intercept snapshots of
the VM during the migration process and consequently enable attackers to exhaust resources.
On the other hand, in path 2, a vulnerability (CVE-2014-9623) exploited at the disk image
service combined with a vulnerability at the hypervisor (CVE-2014-2573) leads to a resource
consumption attack instead. Furthermore, exploiting either CVE-2017-17051 or CVE-2015-
3241 at the hypervisor also leads to exhausting resources by repeatedly rebuilding instances
with new disk images.

https://nvd.nist.gov/vuln/detail/CVE-2016-5363
https://nvd.nist.gov/vuln/detail/CVE-2016-5362
https://nvd.nist.gov/vuln/detail/CVE-2016-5362
https://nvd.nist.gov/vuln/detail/CVE-2016-5363
https://nvd.nist.gov/vuln/detail/CVE-2014-9623
https://nvd.nist.gov/vuln/detail/CVE-2014-2573
https://nvd.nist.gov/vuln/detail/CVE-2017-17051
https://nvd.nist.gov/vuln/detail/CVE-2015-3241
https://nvd.nist.gov/vuln/detail/CVE-2015-3241

70 Threat Analysis

Using CVE-2016-5362 or CVE-2016-5363 at the network service, an attacker can in-
tercept the traffic and cause a resource consumption attack. This vulnerability allows the
interception of traffic destined for other hosts and thus, could potentially be used to intercept
snapshots of the VM during the migration process and consequently enable attackers to
exhaust resources. On the other hand, in path 2, a vulnerability (CVE-2014-9623) exploited
at the disk image service combined with a vulnerability at the hypervisor (CVE-2014-2573)
leads to a resource consumption attack instead. Furthermore, exploiting either CVE-2017-
17051 or CVE-2015-3241 at the hypervisor also leads to exhausting resources by repeatedly
rebuilding instances with new disk images.

AS

CA

DB

INT

VM UQ

SL

HS

Data

UI

CA

DB

VM

INT

SL

HS

Data

DINET

Hyp

VM

Data

Hyp

VM

NICDINET

Hyp

VM

Hyp

VM

Data

Hyp

VM

Data

Vulnerable service

VM

Data

RC Resource Consumption

VM

RC

Path 1

Path 2

DI

UQ

RC
Hyp

CVE-2016-5362 or
CVE-2016-5363

RC

CVE-2014-9623

CVE-2014-2573

CVE-2017-17051 or
CVE-2015-3241

RC

Path to run a VM
Path to create a new VM
Attack path

UI

AS

UQ

User interface

Authen�ca�on server

Control access

Database

VM request interface

User quota

Server lookup

Host server Networking func�onality

Disk image VM is instan�ated UI

AS

CA

DB

INT

UQ

SL

HS

NIC Network interface card

DI

NET

Hyp Hypervisor

VM

Path 2

Fig. 5.4 Attack path in a resource consumption attack

https://nvd.nist.gov/vuln/detail/CVE-2016-5362
https://nvd.nist.gov/vuln/detail/CVE-2016-5363
https://nvd.nist.gov/vuln/detail/CVE-2014-9623
https://nvd.nist.gov/vuln/detail/CVE-2014-2573
https://nvd.nist.gov/vuln/detail/CVE-2017-17051
https://nvd.nist.gov/vuln/detail/CVE-2017-17051
https://nvd.nist.gov/vuln/detail/CVE-2015-3241

5.3 AttackDive: Exploring Attack Surfaces 71

Speculative analysis

Performing speculative analysis reveals alternative paths that might result in exhausting a
resource. For example, the vulnerabilities CVE-2017-17051 and CVE-2015-3241 can be
used to exploit the functionality of a hypervisor to exhaust resources by repeatedly building
the same instance. This causes double allocations and repeating the process causes the denial
of service as the resources get exhausted.

These attack scenarios illustrate that a proactive approach is required to analyze the
progression of a threat in the Cloud to explore possible attack paths that can be exploited by
the attackers. ThreatPro can be used to perform speculative cause-effect analysis to determine
the impact of a threat at a single service as well as analyze the impact of combined threats on
the violation of a security requirement.

5.3 AttackDive: Exploring Attack Surfaces

The technique AttackDive investigates the visibility of services corresponding to varied
attacker profiles to explore attack surfaces within their view. This delineation is desired as
different attackers can have disparate states visible to them and can have a different impact on
the Cloud’s operational behavior. Therefore, the criticality of services for different attacker
profiles is segregated, as the set of operations insider attackers can perform on services might
be different due to their access privileges. Thus, the following sections present attack surfaces
visible to different attacker profiles.

5.3.1 Insider Attacker vs. Outsider Attackers

An insider attack is orchestrated by entities responsible for managing the Cloud operations.
They usually have elevated access to the services and also possess intimate knowledge of
the infrastructure. This makes an insider attack have a high potential for damage. Thus, an
analysis of possible attack paths from an insider perspective is required to identify malicious
sequences of operations corresponding to them.

An analysis of the behavioral interactions of multiple services that are only accessible
to an insider is presented. Consider UQ (cf., Figure 5.1) service, which is responsible for
holding quota configurations and access policy of the customer. If the admin changes the
quota associated with a user, it might lead to the over-provisioning of resources to the user
without the user’s knowledge. Further, since the Cloud uses a pay-as-you-go model, these
additional resources will incur an additional cost that the user would have to pay. The
alternate consequence of changing the UQ configuration is changing the host server selection.

https://nvd.nist.gov/vuln/detail/CVE-2017-17051
https://nvd.nist.gov/vuln/detail/CVE-2015-3241

72 Threat Analysis

A malicious admin can add/delete resources to a user such that eventually, the resource
migrates to a server the admin controls. After that, the admin can launch an attack on the
resource, e.g., using networking or cache as a side-channel to breach the confidentiality of the
user [36, 77] or denial of service by migrating the resource to a server that is over-provisioned
and thus, limiting the availability of the resource [78]. Additionally, a malicious admin can
do SQL injection attack in which an insider writes malignant entries directly to the database.
This would result in skipping a number of transitions and directly pushing the maligned
server and VM configurations onto the hypervisor which will then instantiate the VM with
the wrong configurations on an attacker-controlled server. The visibility of services according
to different attackers is shown in Figure 5.5.

AS

CA

DB

INT

VM UQ

HS

Data

UI

CA

INT

VM UQ

SL

HS

Data

DINET

Hyp

VM

Hyp

VM

NICDINET

Hyp

VM

Data

Hyp

VM

Data

Hyp

VM

DI

UQ

VM

Data

HYP

SL

UQ

VM

Hyp

VM

SL

UI

AS

DB

DI Visible to both insider and outsider attackers VM Outsider attackers SL Insider attackers

Fig. 5.5 Visibility of states to attackers

On the other hand, attack surfaces that can be exploited by an outsider attacker is limited
in comparison to an insider attacker. An outsider attacker has a different (and limited)

5.4 Conclusion 73

externally set of services visible to them versus an insider attacker. The most common
outsider interface is the authentication interface that can be compromised to gain full access
privileges [120]. However, as mentioned in Chapter 2, an outsider can use the DI service to
run malicious software in the Cloud.

As Figure 5.5 shows, there are services that are accessible to both insider and outsider
attackers, e.g., UQ service. However, the access to this service for an outsider is limited com-
pared to an outsider attacker. Therefore, the analysis of both the insider and outsider attacker
gives insights into the services that are critical according to the class of the attacker. Further
analysis can be done by creating rules for a different attacker profile, e.g., a combination of
both the insider and outsider rules to explore attack surfaces for a collaboration attack.

5.4 Conclusion

This Chapter has explored threat analysis for the Cloud, which is technology-agnostic as the
underlying information flow model is independent of the underpinning Cloud technologies.
Furthermore, the Chapter elaborates on comprehensively analyzing the threats in the Cloud
by considering the entire operational stack involved in launching a VM and the inherently
elastic nature of the Cloud. This is achieved by modeling varied levels of functional stack and
interfaces using Petri nets. The obtained model is the basis for extensively identifying base
operational states that enumerate the “normal" sequence of Cloud operations. After verifying
the functional property of the Cloud, threats are inserted into the model across the entire
functional stack to determine the anomalous sequence of operations caused by the threat.
Thus, correspondingly, enumerating the multi-level attack surface exploitability by attackers
based on their accessibility of the service. Unlike traditional approaches that focus on a single
layer of Cloud operations or consider a single technology, the threat analysis approaches,
detailed in the Chapter, perform a comprehensive analysis to explore attack surfaces across
varied levels of the operational stack and according to different attacker profiles.

Chapter 6

Requirements-based Threat Analysis

The previous chapters of the thesis addressed research questions 1 and 2, and the respective
contributions led to the development of threat analysis approaches to evaluate the security of
the Cloud at different abstractions of the functional stack. However, thus far, the threats in the
approaches were considered independent of each other, i.e., the relationship among the threats
was largely unexplored. Furthermore, specific user or service requirements were also missing
from the threat analysis process. Therefore, this Chapter addresses research question 3, which
investigates the interplay between user requirements, threats (and their variants1)), and the
Cloud services. Consequently, this Chapter contributes to the development of requirement-
based threat analysis to include threats and their variants in the threat analysis process and to
prioritize the threat analysis according to the user’s requirements.

Consequently, the research in this Chapter addresses two main facets. First, an exploration
of the relationship between the threats is investigated. The objective of the study is to identify
threats that are closely related to each other in terms of, e.g., attack patterns, preconditions,
etc., such that in the presence of the primary threat, its variants should also be considered in
the security assessment. This helps system administrators to patch the primary vulnerability
and assess the potential of its variants to undermine the security requirements. Second, a
Design Structure Matrix (DSM) based approach is detailed to visualize the relationship
between user’s requirements, services, and vulnerabilities to investigate the security threats
pertinent to specific requirements of the users. Among the advantages of the DSM are
scalability and applicability of different algorithms (e.g., clustering, sequencing, and tearing)
to perform comprehensive threat analysis.

In lieu of the above-mentioned aspects, the contributions of the Chapter can be summa-
rized as follows.

1If two distinct vulnerabilities are characterized by a semantically equivalent exploit and consequence, then
they are referred to as a variant of each other.

76 Requirements-based Threat Analysis

1. Investigating the relationship between vulnerabilities to explore potential variants of
vulnerabilities that should also be considered in the threat analysis process.

2. Development of a DSM-based approach for investigating security threats by detailing
attack surfaces stemming from vulnerabilities and variants of vulnerabilities within
and across the layers of the Cloud model.

The remainder of the Chapter is organized as follows. In Section 6.1, exploration of
the variants of vulnerabilities is studied. Section 6.2 details the insights and specifics of
requirement-based threat analysis covering the relationship between user requirements,
vulnerabilities, and the Cloud services.

6.1 Investigating Variants of Threats

This Section covers the first facet of the contribution which is to explore potential variants of
threats to be included in the analysis. The number of disclosed vulnerabilities in databases,
e.g., NVD [30], is constantly increasing, and analyzing each vulnerability is cumbersome
and error-prone. These databases serve as a knowledge base for system administrators to
look up for vulnerabilities that have the potential to compromise their systems. However,
some vulnerabilities are overlooked which leads to outstanding vulnerabilities in the wild
[121]. Even if a vulnerability has been patched, a variant of the vulnerability could exist
in the database that could also undermine the security of the system. Thus, key questions
system administrators face are (a) which vulnerabilities to prioritize and patch, and (b) are
there variants of the prioritized vulnerabilities that should also be considered?

To assist administrators, various vulnerability assessment frameworks have been proposed
that either measure the severity impact of the vulnerability qualitatively or quantify the risk
associated with the vulnerability. Most notably, FIRST’s Common Vulnerability Scoring
System (CVSS) [122] is the defacto standard in the community. Each vulnerability in CVSS
is characterized by several components, e.g., attack surface, attack complexity, and textual
summary. Moreover, each vulnerability is assigned a “Base Score", which is given on a scale
from 0 to 10, representing the severity of the respective vulnerability. The calculation of the
base score depends on a variety of factors that constitute and reflect characteristics of the
vulnerability. Another widely used public vulnerability database is the National Vulnerability
Database (NVD) maintained by the NIST corporation [30]. The entries of the vulnerability
database are Common Vulnerabilities and Exposures (CVEs) which summarize, in natural
language, each vulnerability’s technical description, its consequence as well as a list of
software and respective versions affected by the vulnerability. A significant part of each

6.1 Investigating Variants of Threats 77

CVE is the score that is given following the CVSS. Besides NVD there are also databases
from product vendors such as Microsoft, Google, Oracle, etc., that disclose vulnerabilities
affecting their respective products.

The applicability of these databases is restricted due to their inherent limitations. More
specifically, these databases are based on heuristics and the vulnerability reports tend to be
subjective. Another aspect of the databases limiting their effectiveness is the classification of
vulnerabilities which uses vulnerability consequence as the sole criterion. For example, if a
vulnerability has a Denial of Service (DoS) as a consequence, then it is classified into the
DoS class. This way limits the fine-grained and meaningful vulnerability classification that
can be used to evaluate the extent to which the vulnerabilities are related to each other. Thus,
in its current form, the state-of-the-art databases fail to give a holistic view of the system’s
security and facilitate systematic reasoning regarding vulnerability’s potential variants on the
system. On the other hand, CVSS base metric alone is not enough to assess the impact of the
vulnerability, as shown in [123].

Thus, this contribution explores the variant(s) of a vulnerability and clustering vulnerabil-
ities based on their “contextual similarity" rather than their consequences. A methodology is
proposed to reveal the extent to which different vulnerabilities are related to each other. This
methodology is explained in the following sections.

Figure 6.1 shows the stages involved in achieving the aforementioned goal. The proposed
methodology is explained in the following that assesses and clusters vulnerabilities based on
the structural and behavioral similarities among them.

I start by capturing the vulnerability data from multiple vulnerability databases to form
a coherent view on the vulnerability reports in stage A, as depicted in Figure 6.1. Then in
stage B, I extract and create a suitable feature space from these databases. The feature space
represents a set of structural as well as behavioral attributes characterizing the vulnerability.
The structural attributes identify the structural semantics of the vulnerability while behavioral
attributes reflect upon the exploitation mechanism of the vulnerability. This information is
encompassed in the textual description of the vulnerability. In Stage C, I use the feature
space to build a language model and create contexts of the vulnerabilities persistent with
their characteristics. In stage D, I employ these contexts to evaluate similarity among the
vulnerabilities based on a similarity index. All four stages of the presented approach are
explained in detail in the following sections.

6.1.1 Stage A. Vulnerability Data

There are multiple vulnerability databases that report on the disclosure of the vulnerabilities
to the public. Thus, a coherent view of these vulnerability reports is created by combining

78 Requirements-based Threat Analysis

A
. V

u
ln

e
ra

b
ili

ty
 D

a
ta

b
as

e
C. Context Creation

I. Vocabulary

II. Language Model
B

.
Fe

at
u

re
 S

p
ac

e

D. Clustering

Fig. 6.1 Stages in the proposed methodology

suitable features from these databases to create a feature set that is representative of the
vulnerability characteristics to be used in creating contexts. The extraction of the feature set
is explained in stage B.

6.1.2 Stage B. Feature Extraction

In this stage, different databases are combined to create a feature space. The set of attributes
is shown in Table 6.1 along with their types and the database source of the attribute.

The feature field in Table 6.1 identifies possible vulnerability attributes while the char-
acteristics field in the table details the potential aspects of the respective feature. The type
indicates the class of the feature and possible values for the type field are category, text,
etc. For example, the feature has a category type if there are multiple possible aspects of
the respective feature, or text if the feature contains a natural language description. The
count field in the table indicates potential subcategories of the feature while the database
source identifies the database which the feature stems from. As an example, the feature
vulnerability type indicates the class to which the vulnerability belongs. This is normally
registered as a consequence of the vulnerability, and since a vulnerability can have multiple
consequences, therefore, it is of a category type. The number of potential subcategories for a
consequence is 8 in the case of OpenStack vulnerabilities. A key feature of the vulnerability
report is the textual summary which describes, in natural language, the technical details of
the vulnerability and its exploit mechanism. I, therefore, utilize this textual description to

6.1 Investigating Variants of Threats 79

Table 6.1 Selected features from the vulnerability databases.

Feature Characteristics Type Count Database Source

Vulnerability Type
DoS

Category 8 CVEBypass
Code Execution

Access Vector (AV)
Network (N)

Category 3 NVDLocal (L)
Physical (P)

Access Complexity (AC)
Low (L)

Category 3 NVDMedium (M)
High (H)

Authentication (Au)
Multiple (M)

Category 3 NVDSingle (S)
None (N)

Confidentiality Impact
Complete (C)

Category 3 NVDPartial (P)
None (N)

Integrity Impact
Complete (C)

Category 3 NVDPartial (P)
None (N)

Availability Impact
Complete (C)

Category 3 NVDPartial (P)
None (N)

Product Type
OS

Category 2 CVE
Application
None (N)

Product Vendor - String CVE
Product version - String CVE

Summary
Keywords Text 0-2000 NVD
Contexts Text 2 NVD

80 Requirements-based Threat Analysis

evaluate syntactical similarity among the vulnerabilities by creating vulnerability-specific
contexts and assessing further vulnerabilities that follow similar contexts.

I further abstract the features of Table 6.1 into structural and behavioral attributes. This
helps in creating specific contexts with respect to the vulnerability. The structural attributes
define the structure of the vulnerability while the behavioral attributes reflect the exploiting
mechanism of the vulnerability. All the features except the summary feature belong to
the structural feature space as these attributes characterize the structural semantics of the
vulnerability. The behavioral feature details how the vulnerability is exploited and the steps
necessary to exploit the vulnerability. This information is extracted from the textual summary
of the vulnerability. Both the structural and behavioral features are utilized in creating the
context specific to the vulnerability which is explained in Stage C of the methodology.

6.1.3 Stage C. Creating Context

This section details creating contexts for the vulnerability considering the extracted feature
space. Before proceeding to create the context, the vulnerability context is defined in terms
of its structural and behavioral semantics and consequences, as follows:

• Structure represents the attributes of the feature set that characterize the structural
semantics of the vulnerability.

• Behavior embodies the exploit mechanism from the summary that represents how the
vulnerability can be exploited.

• Consequence defines the impact of the vulnerability such as a denial of service, infor-
mation leakage, etc.

Vocabulary Creation:

The behavioral characteristics of the vulnerability are embodied in the description of the
vulnerability. Therefore, a vocabulary is built from the textual summary of the vulnerability
to be used in defining the vulnerability-specific contexts. To make the vocabulary meaningful
with respect to the vulnerability, stop words are removed and only concentrate on the words
that contain technical information about the vulnerability. Therefore, I also remove the
words that can be extracted from other fields such as affected products and applications.
This limits the vocabulary to the keywords that describe the behavioral characteristics of the
vulnerability. I proceed further to create a language model based on this vocabulary.

6.1 Investigating Variants of Threats 81

Language Model:

The created vocabulary is used in the language model. This step is needed following the
primary objective to create the context for each vulnerability that reflects vulnerability
characteristics. Thus, each context is composed of structural and behavioral characteristics
and consequences. The context provides the basic unit of analysis for comparing the strength
of the connections between vulnerabilities. In order to achieve this, An application of
the cosine similarity [124] is proposed to create a similarity matrix showing the distance
among the vulnerabilities’ analysis tuple. The critical aspect of the context is the behavioral
keywords that are extracted from the vulnerability description. The current state-of-the-
art schemes use Bag of Words (BoG) representation to convert the textual description of
the vulnerability to the vector space model. However, this technique is not employed,
as BoG has several limitations. First, the order and sequence are not maintained in the
BoG representation and for an exploit, it is important to conduct the steps in the given
order. Second, the BoG representation cannot be used to extract the syntactical semantics
of textual description. However, both of these requirements are critical in creating context
representing the characteristics of the vulnerability. Therefore, the bi-gram model is utilized
to retain the order of words by considering two consecutive words from the vocabulary.
To comprehensively cover different writing aspects of the summary, I create an alternative
context by varying the order in a bi-gram. Both of these contexts are shown as:

Context 1 = [SC][(w1,w2)(w2,w3)(w3,w4)...(wn−1,wn)][CN(s)] (6.1)

Context 2 = [SC][(w1,w3)(w3,w5)(w5,w7))...(wn−2,wn)][CN(s)] (6.2)

The structural keywords are not subjective and do not depend on the security expert.
Opposite to that, the textual description is highly subjective. Thus, in order to comprehend
multiple writing styles, multiple contexts of the same vulnerability are derived based on the
behavioral semantics. Another reason for creating multiple contexts is the lack of ground
truth of the vulnerability for validating the context.

6.1.4 Stage D. Clustering

The created contexts form the basic unit to compare vulnerabilities. Thus, the next step is
to perform hierarchical clustering to cluster the vulnerabilities that have a high similarity
index. The reason for selecting hierarchical clustering is twofold. Firstly, it is critical to
assess each vulnerability’s contextual similarity with the rest of the data samples and this is

82 Requirements-based Threat Analysis

exactly what the hierarchical clustering algorithm is suitable for. Secondly, the hierarchical
algorithm can have multiple distance metrics that can be used to assess the distance between
the data samples. For this case, cosine similarity index [124] is used to compute the distances
between the vulnerabilities. Cosine similarity is widely used to estimate text similarity as it
works by evaluating the angular difference between the texts rather than their magnitudes.
Thus, texts with the same orientation will have a cosine similarity of 1, and the texts with
opposite orientation have a cosine similarity value of 0. This makes the cosine similarity
index a suitable choice for the problem. By utilizing it, I create a cosine matrix between the
vulnerabilities which is shown in Equation (6.3)

SM =

Vul1 Vul2 . . . Vuln
Vul1 V1,1 V1,2 . . . V1,n

Vul2 V2,1 V2,2 . . . V2,n
...

...
Vuln Vn,1 Vn,2 . . . Vn,n

 (6.3)

The matrix SM is then given as input to the clustering algorithm to cluster vulnerabilities
with high similarity (lowest distance). An example of a clustering vector is shown in Equa-
tion (6.4). The cluster consists of vulnerabilities (Vul1 and Vul2) with distance representing
the respective distance between the pair. To further fine-tune the clustering distance among
the two vulnerabilities can be set to a lower value resulting in clustering vulnerabilities
with maximum similarity index or lowest distance. The count identifies the number of data
samples of the respective iteration of the clustering algorithm.

Cluster = (Vul1 Vul2 Distance Count) (6.4)

The result of applying cosine similarity is a matrix with values ranging between 0 and
1. A Similarity Matrix (SM) between the N vulnerabilities is shown in the matrix 6.3. The
cosine similarity ranks the potential variants of a vulnerability based on the similarity among
their contexts. An evaluation for OpenStack [125] is performed to explore vulnerabilities
that are contextually equivalent and a potential result is shown in matrix 6.5.

SM =

CV...8914 CV...5362 CV...5363

CV...8914 1 0.73 0.66
CV...5362 0.73 1 0.77
CV...5363 0.66 0.77 1

 (6.5)

The matrix 6.5 shows that the vulnerabilities are closely related and in the presence of a
vulnerability the existence of remaining vulnerabilities should be checked. The advantage

6.1 Investigating Variants of Threats 83

of such classification results in revealing further vulnerabilities that have the potential to
undermine the security of the system. This leads to patching a class of vulnerabilities instead
of individual vulnerability patches.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
57 0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6.2 Context-based similarity among the Cloud vulnerabilities

The similarity among OpenStack vulnerabilities is shown in Figure 6.2. As mentioned
before, I use OpenStack as a use case but the methodology is a technology and product
independent. The X and Y-axis are data points representing vulnerabilities and the colors
represent the extent to which the vulnerabilities are related to each other. As the cosine
similarity of 1 represents the maximum similarity, therefore, the diagonal of the heatmap
shows this evidence since it represents self-comparison. From Figure 6.2, it is evident that
the vulnerabilities between 42 to 52 have higher similarities. A further fine-tune analysis
can be achieved to investigate the similarity among the vulnerabilities in terms of attack
mechanisms, preconditions, etc. For instance, Figure 6.3 illustrates the similarity among the
vulnerabilities, in terms of the attack mechanism used in the vulnerabilities. This essentially
enables the security analysts to better understand the attack mechanism used in multiple
vulnerabilities. Consequently, an effective countermeasure against the attack mechanism
patches a class of vulnerabilities and thus, limits the reuse of the attack mechanism.

84 Requirements-based Threat Analysis

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
57 0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6.3 Attack mechanism similarity among the Cloud vulnerabilities

6.1.5 Results and Discussion

The application of the proposed approach to the OpenStack vulnerabilities reveals interesting
results which can be summarized as follows:

• The initial observation the analysis shows is that there exists a similarity among the
vulnerabilities that go beyond the common consequence of the vulnerabilities. I
investigated OpenStack vulnerabilities and observe that around 10 percent (cf., Figure
6.2) of the reported vulnerabilities have a varying degree of correlation between them.
Moreover, the degree of correlation is higher among the vulnerabilities exploiting
the same service. This is partially due to the deployment of a "similar" attack to
exploit the functionality of the service. On the other hand, the similarity between the
vulnerabilities exploiting different services shows a lower correlation.

• Similarly, the degree of attacker’s reliance on utilizing the same mechanism in different
vulnerabilities is also explored. Out of the vulnerabilities investigated, around 15
percent of the vulnerabilities have strong similarity (cf., Figure 6.3), i.e., the cosine
similarity is above 0.5. Furthermore, I investigated the applicability of an attack
mechanism across different services. The insight into this investigation is similar to
the results of contextual similarity. I see a high degree of re-usability of the attacks

6.2 Requirement based Threat Modeling 85

for the same service. For instance, there is a high chance of using cross-site scripting
attacks with different payloads for authentication services. However, the same attack
is less effective on other services in the Cloud platform.

• I also investigate the possible attack surface for both the authenticated and non-
authenticated attackers. In the former case, I observe that most of the vulnerabilities or
the attacker’s actions were related to the manipulations of the VM that could lead to
either a denial of service or cause the VM to behave incorrectly. In the latter case, since
the attacker is not authenticated, therefore, the primary target of the vulnerabilities is
the authentication service.

Thus, this contribution asserts that by revealing more elaborate patterns among the
vulnerabilities, system defenders can patch subsequent vulnerabilities in the presence of
a primary vulnerability. This ensures that the same vulnerability cannot be exploited on
a different system or that a variant of the vulnerability cannot be used to compromise the
system. Furthermore, a system defender can proactively hypothesize different threats that
could potentially damage the critical services of the system.

6.2 Requirement based Threat Modeling

The previous section investigated the extent to which different vulnerabilities are related to
each other. This section focuses on exploring the interplay between security requirements,
services, and the corresponding threats to develop a requirements-based threat modeling and
analysis of the Cloud. An ontology is developed depicting the relationships among different
actors involved in the ontology. The primary actors are user, Cloud, and threats as shown
in Figure 6.4. I explain ontology from the perspective of users and vulnerabilities in the
following sections.

6.2.1 Users and Requirements Capturing

The users specify their requirements for the Cloud. For prioritizing the requirements, the user
can specify the criticality of the requirement by assigning weight to it. These weights are
assigned by using linguistic terms such as Highly-Critical (HC), Critical (C), Less-Critical
(LC), and Not-Critical (NC)), i.e., the HC requirements are more critical and hence a violation
of these requirements or threats arising from the violation also have high severity than the rest.
As can be seen in Figure 6.4, requirements satisfy security goals which could be maintaining
confidentiality, integrity, or availability.

86 Requirements-based Threat Analysis

Vulnerability Exploit A�acker Infrastructure

Exper�se Issues Precondi�on

Ac�on

Consequence

A�ack Surface

Core Class Secondary Class

Availability Confiden�ality Integrity

Cra�edAc�on VMAc�on

Remote

Local So�ware Version

Configura�on Setup

So�ware Hardware

Low

Medium Token Mishandling

Improper
Authen�ca�on

is_
a is_a

is_
a is_a

is_a is
_a

is_a

has

Exists in

ha
s

has

ha
s

u�lizes

ha
s

ha
s

is_a
is_a

is_a
is_a

is_a
is_a

is_a
is_a

Fig. 6.4 Correlation among Services, requirements and threats

6.2.2 Vulnerability Perspective of the Ontology

This section describes the utility of an ontology from a vulnerability perspective that exists
in a Cloud component or a service. The consequence of the vulnerability exploit is to violate
the security goals and cause damage to the user and the Cloud. In order to undermine
the system’s security goals, an attacker tries to exploit the vulnerability by satisfying its
pre-conditions. For this work, I restrict myself to these characteristics of the vulnerability
without exploring the actual exploitation of the vulnerability by the attacker.

6.2.3 Using Design Structure Matrix for Threat Analysis

In order to perform threat analysis from the perspectives of varied actors, a mapping from
the ontology to a Design Structure Matrix (DSM) data structure is achieved to show the
cross-relations across the row/column entities. The advantages of a DSM include multi-facet
representation and reordering of a DSM to a particular perspective. Furthermore, the DSM
provides a coherent visualization of the ontology and the relationships across the actors and
allows restructuring for varied actors. The mapping of the ontology to a DSM is shown in
Figure 6.5.

Row#1 in Figure 6.5 exhibits the relation (marked as X) between requirement R1, service
S1, and vulnerability V1. The requirement applies to the service S1 and the potential
vulnerability V1 can be used to violate the requirement by exploiting it on S1 and thus,
undermining the security goal of R1. The DSM can also maintain a transitive relation, for

6.2 Requirement based Threat Modeling 87

Fig. 6.5 Interactions and variants of a vulnerability

example, row #4 in Figure 6.5 identifies a transitive relation between R1 and S3 through
service S1. Furthermore, the interaction between S1 and S3 could be utilized in launching
a multi-stage attack. Similarly, a requirement can depend on another requirement for its
proper functionality. This is shown in row #3 where requirement R3 depends on R2 and
in case of R3 violation, the functionality of R2 could also suffer. The DSM also offers
varied options for partitioning and restructuring its data elements as a means of exploring
inter-relations. For example, the DSM can be re-structured to identify the highest influential
actor, i.e., the actor with the highest dependencies or interactions. This can be achieved
by reordering the DSM rows and columns to transform the DSM into a matrix that has the
highest dependency/interactions at the first row and the least dependent/interactions placed
at the last row. This is achieved using the following two steps:

• Step 1: Actors with the highest number of dependencies/interactions have a maximum
number of values (marked as X) in their respective columns and thus, placed at the top
of the DSM.

• Step 2: Actors that are ad-hoc and do not provide information on other actors are placed
at the bottom of the DSM. This can be identified by observing the empty columns in
the DSM.

Applying these two steps to Figure 6.5 recursively reorders the DSM with actors having
the highest dependency/interactions placed at row number 1. This reordered DSM is shown
in Figure 6.6 which shows that requirement R3 has the highest number of dependency/inter-
actions among the actors. Thus, the requirement R3 is the most influential while the service
S2 has the least influence on other actors involved in the ontology.

The use of DSM is useful to visualize the interplay between requirements, services, and
threats. Further, the DSM can be re-structured to visualize different perspectives represented

88 Requirements-based Threat Analysis

Fig. 6.6 Interactions and variants of a vulnerability

in the matrix. In the following section, an application of the DSM is demonstrated in profiling
the security of the Cloud.

6.2.4 Profiling Security of the Cloud

In this section, I elaborate, using a case study, on the effectiveness of the proposed ontology
and DSM-based approach for profiling Cloud threats from varied perspectives of the involved
actors. Table 6.2 presents an excerpt of the data from the actors that are used to assess the
threats holistically considering the relationship among the actors. The requirements field in
the table describes the user requirement, its goal, and the respective priority assigned by the
user. The goal indicates the security purpose of the requirement while vulnerabilities are
exploited by the attacker to undermine this security goal. The vulnerabilities presented in
the table are extracted from publicly available databases, e.g., NIST’s national vulnerability
database [30]. The database discloses every vulnerability, its impact, and affected products
to the public. The Cloud services presented in the table are extracted from the model.
However, a mapping between the respective services of the model to the actual OpenStack
service name is achieved. Thus, the name field in Table 6.2 represents the corresponding
OpenStack service name performing the designated functionality. For example, the Keystone
service in OpenStack is responsible for identity and access management. The relations
among requirements, threats, and services are also indicated in the table. For example, the
requirement R1 serves multiple security purposes (CIA) for the user while the associated
threat delineates CI of the security purposes by exploiting the vulnerability of the responsible
service S1.

To comprehensively cover different aspects of the threat assessment, a DSM is created,
shown in Figure 6.7, using the data of Table 6.2. The relationship among the Cloud actors is
represented in the DSM by marking X in the respective row and column. For completeness, I

6.2 Requirement based Threat Modeling 89

Table 6.2 Excerpt of the actors data for profiling threats in the Cloud

Requirements Threats Cloud Services
ID Description Prio-

rity
Goal ID Imp-

act
Description Name (ID) Function-

ality
Interco-
nnection

R1 Each user should
have a unique user
name and password
to utilize Cloud ser-
vices

HC CIA V1 CI Incorrect times-
tamps comparison
for tokens leads to
retaining access via
an expired token

Keystone
(S1)

Identity and
Access Man-
agement

Database
Service
(S2)

R2 The data at rest
should be encrypted
and only the autho-
rized user should be
able to decrypt

C A V2 I improper client con-
nections handling
leads to denial of
service

Keystone
(S1)

Identity and
Access Man-
agement

Storage
(S3)

R3 The data in transfer
should be encrypted

C C V3 A Changing the device
owner of the port
leads to bypassing
IP anti-spoofing con-
trols.

Neutron
(S4)

Network
related opera-
tions

Hypervisor
(S5)

R4 The Cloud service
providers should
not be able to
delete, modify or
access user’s data.

HC CIA V4 CIA When using Xen as
a hypervisor, attack-
ers can obtain sen-
sitive password in-
formation by reading
log files

Hypervisor
(S5)

Virtualiza-
tion Manage-
ment

Keystone,
Storage

included goal and priority for identifying threats violating a specific goal or assessing the
influence of the requirement in the Cloud. In the following section, a DSM utilization is
shown by reordering and restructuring the DSM to assess the influence of different actors in
the Cloud.

6.2.5 Extracting Influential Actors using DSM

This section illustrates how reordering the DSM (steps from Sec 3.4) can help identify
the most influential actor. To rearrange the DSM, the steps presented in Section 6.2.3 are
followed, i.e., by placing the most interconnected element, marked as X, in the first row and
recursively performing this operation. The rearranged DSM is shown in Figure 6.8 having
the most influential actor in the first row. The most influential component is requirement R1
a highly critical requirement for the user and also the most influential due to its interactions
with most of the actors involved. Thus, violating this requirement or vulnerability affecting
this requirement has the potential to propagate across the system due to its high degree of
connections. Alternatively, from the threat analysis perspective, the DSM identifies critical
aspects of the threat propagation and impact on the system. For example, vulnerability
V1 can be used to undermine R1 by compromising service S1. However, S1 can also be
compromised by vulnerability V2 and due to S1 interactions with services S2 and S3, the
likelihood of propagation of threats should also be assessed. The DSM can also be used to
lower the number of dependencies to restrict the impact of the respective actor.

90 Requirements-based Threat Analysis

Fig. 6.7 Design structure matrix of the case study data

Besides reordering, many other algorithms are available for DSM to highlight the respec-
tive perspective. These algorithms are briefly explained below.

Sequencing: It enables understanding of the interactions among the vulnerabilities and
the propagation of the vulnerabilities in the system. This is equivalent to traversing a path in
the attack tree to determine possible exploits.

Tearing: It can be applied to limit a DSM structure to a point of interest. For ex-
ample, a point of interest could be to reveal only vulnerabilities belonging to a particular
service/technology.

Pattern Matching: This is useful in determining whether a particular pattern/set of
vulnerabilities exists in the system. This can be used to reveal composite vulnerabilities, i.e.,
vulnerabilities composed of multiple other vulnerabilities.

Applying these algorithms not only reveals direct threats pertinent to the Cloud but also
the indirect threats that violate specific requirements of a user. Also, the sequencing algorithm
can be utilized to traverse the DSM structure to assess multi-stage attacks. Alternatively,
the tear algorithm can be applied to the DSM to analyze it from a specific perspective. For
example, Figure 6.9 shows the perspective of tearing the DSM for analyzing threats that
impact the confidentiality of the system. As the Figure depicts, the critical vulnerability to
undermine confidentiality is V 1 which is exploited on service S1. Similarly, V 1 can be used
to undermine the requirements R1 and R2. Therefore, V 1 patching should be prioritized in
order to maintain the confidentiality of the system.

6.3 Conclusion 91

Fig. 6.8 Reordering to extract most influential actor.

The previous sections covered the use of DSM to investigate the interplay between
security requirements, services, and the threats in the Cloud. However, the threat’s variant
also poses a security risk to the system. Therefore, in the following sections, I explore the
threats and their potential variants that should also be included in the threat analysis process.

6.3 Conclusion

This Chapter explored threat variants from the publicly available information and investigated
the interplay between threats, security requirements, and the services in the Cloud. The
potential variants of the vulnerabilities are explored from the public reports published in
the databases. The advantage of including variants in the assessment is twofold. First, it
allows the system administrators to analyze the security of their systems holistically. Second,
it enables system administrators to prioritize patching based on the combined impact of
vulnerability and its variants. A feature space is created from the vulnerability databases to
define a context that becomes a unit of comparison among the vulnerabilities. This enables
fine-grained classification of the vulnerabilities and reveals vulnerabilities that have similar
exploit semantics in contrast to the current classification which is based solely on using the
consequence of the vulnerability for classification. The second facet of the Chapter focused
on the development of the requirements-based threat analysis. It is achieved by DSM which
can be utilized to identify the most critical/influential as well as least critical/influential actors
in the Cloud.

92 Requirements-based Threat Analysis

Fig. 6.9 Viewpoint of the confidentiality requirement

Chapter 7

A Customer-Centric Approach to
Validate the Cloud

The previous chapters have focused on the security assessment of the Cloud from the
provider’s perspective to identify threats facing the Cloud. The process of security assessment
considered the varied attacker profiles and user requirements. On the other hand, this Chapter
addresses the security concerns from the users’ perspective, i.e., how can the Cloud users
assess that their requirements (qualitative and quantitative) are satisfied by the Cloud Service
Providers (CSPs)? To this end, this Chapter contributes by proposing an approach that users
can utilize to validate the fulfillment of their requirements by CSPs. In case of a violation,
the trust state of the CSP is downgraded, reflecting the violation of the requirement.

The services offered by the Cloud are attracting businesses and individuals to use the
Cloud. However, the non-transparent architecture of the Cloud, the paucity of mechanisms
to provide definitive assurance about the fulfillment of user requirements by Cloud Service
Providers (CSPs), and the unclear assurance on security facets of service delivery impede
many businesses from adopting the Cloud services. These often result in Cloud Service Cus-
tomers (CSCs) being unable to trust the CSPs. Broadly, trust implies reliance on something
that is expected to behave or deliver as promised [126]. In the context of the Cloud, trust is
referred to as the degree of reliance on the services offered by the CSP with respect to the
customer’s requirements.

Members of the Cloud community1 advocate specifying service provisions in Service
Level Agreements (SLAs) to establish common semantics to provide and manage assurance.
Fundamentally, an SLA represents a formal contract between a customer and a CSP that
specifies service provisions with respect to the customer’s requirements. The SLA includes a

1For example, standard bodies such as NIST, the European Network and Information Security Agency
(ENISA), Cloud Security Alliance (CSA), ISO/IEC, and the European Commission.

94 A Customer-Centric Approach to Validate the Cloud

list of attributes which are the measurable elements that specify service levels provided by
the CSP in comparison to the customer’s requirements along with the agreed-upon quality
level for each attribute (e.g., latency, throughput, etc) along with penalties for non-delivery
of services. Thus, a logical way to assess the trust of the CSP is to validate the SLA.

Although the state of the art predominantly focuses on the methodologies to negotiate
and design Cloud SLAs [127–130], most of these methodologies assume that the CSPs
are actually providing the services as agreed in the SLAs. The techniques to detect SLA
violations are conspicuous by their paucity. A violation happens if an agreed SLA is not
fulfilled by the CSP. In other words, the SLA is violated if the CSP is not provisioning the
services according to the customer’s requirements. Therefore, it is important to provide
customers with comprehensive support in order to (i) validate the SLA through the course of
time and operations at the CSP and (ii) enable automatic detection of SLA violations.

Thus, this Chapter aims to solve the aforementioned issues by proposing a novel reasoning
approach to:

• Assess the qualitative and quantitative attributes ‘to-be-provided’ by the CSP and
‘required’ by the customer. Set theory is used for the qualitative attributes, and propose
pairwise comparators for quantitative attributes. This comparison forms the basis to
validate the SLA and detect violations on the customer’s requirements.

• Classify violations into “trust states” according to the preferences specified by the
customer.

• Validate the trust of Cloud IaaS by applying the proposed methodology to detect SLA
violations during the launch and migration of a virtual machine.

The rest of the Chapter is organized as follows. Section 7.1 introduces the basic concepts
on SLAs. Section 7.2 reviews contemporary SLA validation approaches. Subsequently,
Section 7.3 describes the proposed methodology, and in Section 7.4, case studies are presented
to evaluate the services involved in a Cloud IaaS. Section 7.5 concludes the Chapter.

7.1 Basic Concepts

A Cloud SLA describes the provided services and represents a binding commitment between
a CSP and a customer. The SLAs outline the desired services, each of which contains a
list of attributes. Each attribute is composed of one or more metrics, as relevant, that help
in the measurement of the Cloud services by defining parameters and measurement rules.
Hence, the SLA contains a list of attributes, with corresponding desired values, that the CSP

7.2 Related Work 95

is committed to fulfilling. If any of these committed values is not fulfilled by the CSP, then
the SLA is violated. In practice, one way to assess the trust of the CSP is by periodically
validating the SLA. Thus SLA monitoring schemes are used to quantitatively validate what a
CSP is providing and which assurances are actually met.

Based on the analysis of the state of practice presented in [131], Cloud SLAs are typically
modeled using a hierarchical structure as shown in Figure 7.1. The root of the structure
defines the main container for the SLA. The intermediate levels (second and third levels in
Figure 7.1) are the services and the lowest level represents the actual attributes committed
by the CSP and consequently offered to the customer. These attributes form the threshold
values which are specified in terms of metrics in relation to the customer’s requirements.

The concept of an SLA is formalized using the following definition.

Definition 2 An SLA consists of a set of services S = s1, . . . ,sn. Each service s consists of
a finite positive number n of attributes ki; where i = 1 . . .n. Each attribute ki consists of m
different values vi; such that ki = vi,1,vi,2, . . . ,vi,m. Each value implies a different service level
offered by the CSP and required by the customer. Each ki value is mapped to a numerical
value according to its type/range.

Note that, the attributes can have varied types/ranges of qualitative and quantitative values.
Hence, a process for comparing different attributes across the customer’s requirements is
needed in order to detect SLA violations by the CSP.

7.2 Related Work

With the rapid growth of Cloud services, multiple approaches have emerged to assess
the functionality and security of CSPs. In [132], the authors proposed a framework to
compare different Cloud providers across performance indicators. In [129], an Analytic
Hierarchy Process (AHP) based ranking technique was proposed that utilizes performance
data to measure various Quality of Service (QoS) attributes and comparatively ranks the
CSPs. In [133], a framework that enables a comparison of Cloud services based on critical
characteristics is presented. However, these studies (i) focused on assessing the performance
of Cloud services but not their security properties and (ii) did not consider SLA validation
for identifying violation-prone service providers.

Security requirements for non-Cloud scenarios have been addressed by Chaves et al.
[134] who explored security in SLAs by proposing a monitoring and controlling architecture
for web services. In [135] and [136], the authors proposed a technique to aggregate security
metrics from web services. However, the authors did not propose any techniques to assess

96 A Customer-Centric Approach to Validate the Cloud

Fig. 7.1 Cloud SLA hierarchy

Cloud SLAs or empirically validate the proposed metrics. Luna et al. [127] presented a
methodology to quantitatively benchmark Cloud security with respect to the customer’s
defined requirements (based on control frameworks). In [128], the authors presented a
framework to compare, benchmark, and rank security levels provided by two or more CSPs.
However, in both of them, the SLA validation was not covered.

An SLA validation framework can help in identifying violation-prone service providers.
However, in order to serve the customer best, a trust model should take into account all the
available sources of information including the customer’s requirements and feedback. In
[137], the authors proposed a multifaceted Trust Management (TM) to identify trustworthy
Cloud providers in terms of different attributes. However, their assessment considered trust
as a security service level and furthermore, they did not manage and maintain dynamically
changing trust values. In both [138, 139], the authors considered the SLA validation as the
main factor for establishing trust in grid and web service providers. However, they only
considered QoS attributes.

7.3 Proposed Methodology 97

The methodology presented in this Chapter differs from the above-mentioned works in
respect to the attributes under consideration and maintaining the dynamic state of trust. Trust
models for Cloud computing need to take Cloud specific attributes into account and these go
beyond the usual QoS parameters. The Cloud-specific attributes are considered by evaluating
services in launching and migrating a VM. A validation of these attributes to detect violations
periodically and the effect of these violations on the state of trust. A state transition-based
approach is used to model different trust states and demonstrate how violations dictate the
transition across them.

7.3 Proposed Methodology

This section describes the research methodology to validate an SLA by comparing the service
provisions of a CSP with the customer requirements over the lifetime of the service. The
stages involved in the methodology are shown in Figure 7.2. In Stage A, the customers specify
their requirements, and the CSPs specify their service provisions. The customers then select
a CSP that "best" matches their requirements. In Stage B, the selected CSP is monitored to
acquire the attribute values of the desired services. Stage C validates these attributes with the
customer’s requirements and assesses the current state of trust. As mentioned earlier, trust is
referred to as the degree of reliance on the offered services with respect to the customer’s
requirements. Therefore, if a CSP is provisioning the services according to the requirements,
the CSP is consequently fulfilling the SLA to be deemed to be in a trusted state. However, if
the requirements are violated, consequently, the state of trust is changed to reflect the degree
of violation. The methodology is periodically2 applied to assess the current state of trust
which is modeled in Stage D using a state diagram.

7.3.1 Stage A. Requirements Specification

In this stage, the customers specify their requirements, and the CSPs specify their provisions.
The customer evaluates and ranks each CSP according to the requirements and selects a CSP
that best matches these requirements. Any ranking algorithm can be used to select the CSP,
e.g., the ranking algorithm proposed in [128]. A periodical validation of the selected CSP
provisions is targeted in this Chapter. For clarity, the customer’s requirements are specified
that are used to validate the CSP provisions. The same SLA hierarchical structure (cf., Figure
7.1) is used to model requirements. The customer can specify his/her requirements at different

2A periodic interval can be chosen or an event-based schema using a violation threshold as a trigger can be
used.

98 A Customer-Centric Approach to Validate the Cloud

Fig. 7.2 Stages of the proposed methodology

levels of granularity and can specify the priorities of the requirements by assigning weights
to them. Furthermore, the customer can specify weights by using linguistic terms (Highly-
Critical (HC), Critical (C), Less-Critical (LC), and Not-Critical (NC)) for the attributes
and/or services. The highly-critical attributes have high importance for the customer, while
not-critical attributes have the least importance. Thus, violating highly-critical attributes have
severe implications on trust than the rest of the attributes. Critical and less-critical specify
the customer’s different degrees of importance regarding these requirements, where they can
accept varied values depending on the considered scale.

7.3.2 Stage B. Monitoring the Selected CSP

This stage involves monitoring the selected CSP to capture the values of the attributes.
Monitoring plays a significant role in identifying violations as it provides the attribute values
from the CSP for comparison. There are various monitoring schemes proposed by industry

7.3 Proposed Methodology 99

and academia, e.g., Cloud Watch [140] which is used to monitor Amazon EC2, Cloud Stack
[141] as an open source framework for monitoring the Cloud, and Ayad and Dipel [142]
proposed agent-based monitoring for virtual machines in an IaaS environment. The primary
interest of the proposed methodology is in the values of the attributes from the CSP to
compare with the requirements of the customer. Thus, any monitoring technique can work
with the approach, and thus, the details of these monitoring schemes are beyond the scope of
this thesis. Interested readers are referred to [143], a survey on monitoring schemes for the
Cloud.

7.3.3 Stage C. Service Validation

The goal of this stage is to validate the service provisions of the CSP in comparison to the
requirements of the customer. As mentioned in Section 7.1, each service consists of a set
of attributes that are necessary to provide the desired functionality. Therefore, services are
validated using the attribute values provided by the CSP and required by the customer.

Service validation forms the basis to detect a requirement violation. If a CSP is fulfilling
all the customer’s requirements, consequently, the CSP is in a trusted state. However, in
presence of a requirement violation, the Impact Factor (IF) of the violation is assessed, which
determines the severity of the violation by measuring the distance between the provided
and the required values. In Table 7.1, different levels of IF are defined that relate to the
severity of the violation. The levels are normalized between 0 and 1 based on the degree
of deviation from the required value, i.e., the greater the deviation, the more severe the
violation. Ideally, IF should be 0, which indicates no violation from the CSP. The second
level (0.1 < IF ≤ 0.25) indicates violations that have minimum severity as IF deviated
minimally. The third level (0.25 < IF ≤ 0.5) indicates the medium severity of the violations,
while the last level (0.5 < IF ≤ 1) specifies that the distance between the service provision
of the CSP and the customer’s requirement is the farthest and hence, indicates the maximum
severity of the violation.

Table 7.1 The relation of Impact Factor to the severity of the violation(s).

Impact Factor Severity of violation(s)
IF = 0 No Violation

0.1 < IF ≤ 0.25 Minimum Severity
0.25 < IF ≤ 0.5 Medium Severity

0.5 < IF ≤ 1 Maximum Severity

100 A Customer-Centric Approach to Validate the Cloud

The subsequent Phases I and II evaluate each discrete service to detect requirement
violations and to assess the impact of these violations according to the levels described in
Table 7.1.

Phase I. Service Evaluation

The services can have multiple attributes that can be either quantitative or qualitative in nature.
The attributes such as CPU, RAM and disk space are quantitative attributes while scheduling
policy and authentication methods are examples of qualitative attributes. This complicates
the process of modeling and comparing values to evaluate a quantitative metric. To address
this complexity, I first classify different types of attributes and provide a validation method
for each type. The attributes can be classified as either numerical or unordered sets. This
classification sets the basis for validating attributes, as the validation method for numerical
values differs from the validation of the unordered set.

Numerical: The attributes such as are CPU, network latency and bandwidth are classified
as numerical since their values can monotonically increase or decrease. A validation for
numerical attributes is achieved by comparing values provided by the CSP with the values
required by the Cloud Service Customer (CSC). The relationship between the CSP and the
CSC with respect to attribute k and value V is represented using a pairwise comparison such
that:

CSPk/CSCk =
V1

V2
(7.1)

i.e., assume a CSP and a CSC, with values V1 and V2 for network latency attribute respec-
tively, such that: the CSC’s required value for network latency is 100ms (i.e., V2 = 100ms)
and assume 100ms is provided by the CSP (i.e., V1 = 100ms). The pairwise comparison

relation between V1,V2 is defined as:
V1

V2
= 1. Therefore, CSP is fulfilling the requirement.

If the result of the pairwise comparison is not equal to 1, this indicates a violation. This
violation could be due to over-provisioning when the result is greater than 1, or under-
provisioning when the result is less than 1. The over-provisioning of resources is also
considered a violation since a malicious administrator or an inside attacker could over-
provision the attribute and the customer would have to pay for this additional provisioning.

In case of a violation, the impact factor of the violation is calculated as:

IFk = |1− CSPk

CSCk
| (7.2)

Equation 7.2 calculates the impact factor of the violation as an absolute value. The same
levels as mentioned in Table 7.1 are used to indicate the severity level of the violation. An

7.3 Proposed Methodology 101

impact factor IFk of 1 indicates that the CSP has violated the attribute with maximum severity
while IFk of 0 indicates no violation.

Unordered Set: An unordered set is defined for the attributes that are qualitative in
nature. These attributes include access policy and authentication methods and validating
these attributes comparatively is not possible. For qualitative attributes set theory is utilized
to detect violations and estimate the impact factor of violations. The advantages of set theory
are twofold. Firstly, its ability to generalize logic behavior, i.e., the same operations work
for access policy and scheduling techniques although they belong to different services and
have a different set of values. Secondly, using sets for qualitative attributes provide support
to evaluate the impact factor of the violations by calculating dissimilarity between sets. This
dissimilarity could be a result of adding or removing a value in the set. Assuming that for a
CSC the required set for access policy is {read,write}. A violation is detected whenever a
CSP adds/deletes any value to/from the access policy and as a result its impact factor should
be assessed.

The violations are identified by calculating the symmetric set difference between the
CSP provided set and the CSC requested set. If the symmetric difference results in a null
set, this implies that the CSP provisions and the CSC requests are the same and hence no
violation. However, if the result is not a null set, then a violation has occurred. Lets suppose
the following sets list an attribute k values of a CSP and a CSC.

CSPk = {v1,v3,v5}
CSCk = {v1,v3}

To find out the violation(s), I calculate the symmetric difference between the values
provided by the CSP and those requested by the CSC, such that:

CSPk −CSCk ̸=CSCk −CSPk ̸= { /0} (7.3)

If the result of the symmetric difference is not a null set, then the CSP is violating the
customer’s requirement(s). To detect a violation due to the addition or the removal of a value,
CSPk −CSCk = {v5} ̸= { /0} and CSCk −CSPk ̸= { /0} is respectively used.

After identifying the violations, the impact factor of these violations is calculated similarly
to the numerical type. For sets, the Jaccard Index [144] is a natural choice as it calculates
dissimilarity between the sets by estimating the distance between the provided and the
required values. This distance measurement is equivalent to the definition of the impact
factor and calculated as:

102 A Customer-Centric Approach to Validate the Cloud

IFk = 1− |CSPk ∩CSCk|
|CSPk ∪CSCk|

(7.4)

Equation (7.4) evaluates the impact factor of the violation. The same levels as mentioned
in Table 7.1 are used for qualitative attributes, i.e., IF = 0 indicates no violation while IF = 1
indicates the maximum severity of the violation.

Using the above comparison metrics for each attribute, the impact factor(s) of the violating
attribute(s) is obtained. This results in a matrix of size N if there are N attributes in a service.
In order to evaluate the service assurance, I aggregate the impact factors of all attributes
belonging to a service.

Phase II. Service Aggregation

After validating the lowest (attribute) level of the SLA, I move up in the hierarchy (cf., Figure
7.1) and assess the aggregated assurance of the service provided by the CSP. In Phase I, the
impact factors of each attribute is evaluated and these are further used as input in this phase
for an aggregation method. Equation 7.5 is used to aggregate the impact factors of attributes
IFi along with their weights to evaluate the service impact factor.

IFservice =
n

∑
i=1

(
IFi ∗weighti

n

)
(7.5)

By using this equation, IFservice results in a value between 0 and 1 and uses the same levels
as described in Table 7.1. Thus, IFservice of value 0 indicates that the service is provisioned
as required by the customer while value 1 indicates that every requirement was violated with
the maximum severity level.

7.3.4 Stage D. Trust State

After assessing services individually, the next step is to aggregate the impact factors of the
services (IFservice) to calculate the impact factor at root level IFroot . Services are aggregated
according to Equation 7.5 and IFroot uses the same levels as described in Table 7.1. I use
IFroot to assess the state of trust and implications of the violations using a state diagram
which is shown in Figure 7.3. Each state represents the severity level of the violations, i.e.,
state 1 represents no violation while states 2, 3 and 4 represents minimum, medium and
maximum severity of the violations respectively.

• State 1: I evaluate IF at the root level and if IF = 0, this implies that the CSP has not
violated any requirement and consequently, it is in the trusted state. This is shown as

7.3 Proposed Methodology 103

Fig. 7.3 Effect of impact factor on states of trust

transition 1 in the state diagram. However, if violations are detected, then the state of
the CSP is changed to either state 2, state 3 or state 4 (as indicated by the respective
transitions 2, 2’ and 2”) corresponding to the severity of the violations.

• State 2: The transition 2 in the state diagram illustrates that the state of the CSP is
changed to state 2 as the violations result in an IF value of between 0.1 and 0.25. I
evaluate IF again in state 2 to deduce the next state of the CSP. If the CSP has not
violated any requirement (IF = 0) then the state is changed back to state 1. However,
if there are again violations with minimum severity (0.1 < IF ≤ 0.25) then the state is
changed to state 3 to indicate the aggregated impact of violations.

• State 3: The CSP state is changed to this state from state 1 if the detected violations in
state 1, resulted in medium severity. Thus, the CSP is moved to state 3 to indicate this
behavior. A counter is used in states 3 and 4 to ascertain how many times these states
have been transited. The threshold is a value specified by the customer to signify how
many times the customer can endure violations. This counter plays an integral role in
deciding the next state of the CSP. From state 3, the CSP can recover to state 1 if no
further violations are detected, and the count is below a specified threshold.

104 A Customer-Centric Approach to Validate the Cloud

• State 4: This state indicates the maximum impact of violations and the state of the CSP
is changed to this state if the (aggregated) impact factor of violations results in a value
of between 0.5 and 1. From this state, CSP cannot recover to state 1.

• State 5: This is the untrusted state and the state of the CSP is permanently changed
to this state if the CSP violates requirements more than the threshold specified by the
customer.

The state diagram is useful in determining the current state of trust of the CSP based on
the customer’s requirement violations. In the next section, the methodology is applied to
detect violations and assess the trust of the CSP during Cloud operations.

7.4 Case Study: Trust Assessment of the Cloud

This initial validation scenario demonstrates how a Cloud customer can apply the method-
ology presented in this Chapter to assess the state of trust of the CSP during the course of
operations. I evaluate the trust of the CSP by considering two scenarios: (1) launching a VM
and (2) migrating a VM. To start a VM, the customer requests the CSP to boot an instance
of a VM according to his/her requirements. IFroot is evaluated to determine the state of
trust during the course of launching a VM. The migration scenario considers moving a VM
from one physical host to another in compliance with the customer’s requirements. IFroot is
evaluated again to ascertain violation(s) during the migration phase and the impact of these
violations on the state of trust.

The services involved in the operation of the Cloud are comprehensively covered in
Chapter 3. Table 7.2 presents a sample dataset used for the services involved and the values
associated with these services. In order to perform a comprehensive validation, the selected
attributes include both qualitative and quantitative attributes. Furthermore, weights assigned
by the customer to indicate his/her priorities are specified as a numerical value such that
Highly-Critical (HC) indicates a relative value of 1. Critical (C) and Not-Critical (NC) can be
considered any intermediate values between 1 and 0. In this analysis they indicate a relative
values of 0.7 and 0.3 respectively.

In the rest of the section, I outline the computation process to assess the state of trust of
the CSP with respect to the requirements defined in Table 7.2.

7.4.1 Case I: Launching a VM

Chapter 3 comprehensively covers the services interaction in launching and migrating a VM.
Therefore, with respect to these services, I use the data shown in Table 7.2 for assessing

7.4 Case Study: Trust Assessment of the Cloud 105

Table 7.2 Excerpt of SLA’s from CSPs and customer’s requirements.

Cloud secSLA Customer (CSC) CSP
Services Attributes Values req weight Case I Case II

Root

ID Man-
agement
IM

Authncation
IM1

Auth
IM1.1

Unordered
set

Credentials
HC

Credentials Credentials

Authorization
IM2

Policy
IM2.1 Unordered

set

launch,
restart C

launch,
restart,
delete

launch,
restart

Roles
IM2.2

user user user

IaaS IS
Provisioning
IS1

CPU IS1.1
Numeric

6.4 GHZ
LC

2.4 GHZ 6.4 GHZ
RAM IS1.2 8 GB 8 GB 8 GB
DISK IS1.3 1 TB 1 TB 1 TB
Scheduling
technique
IS1.4

Unordered
set

Location
based

HC
Location
based

Random

Storage
SO

Storage SO1
Type SO1.1

Numeric
Persistent

C
Persistent Persistent

Location
SO1.2

Local Local Local

Network
NW

Network
NW1

BW
NW1.1 Numeric

100 Mbps

NC

10 Mbps 100 Mbps

Latency
NW1.2

100 ms 10 ms 100 ms

the state of the trust of the CSP. The evaluation starts from the attribute level, i.e., IM1.1 is
assessed to check if there is any violation in authentication during the course of launching
a VM at the CSP. Equation 7.3 is used to detect violation by calculating the symmetric
difference between the sets provided by the CSP and requested by the CSC, such that:

CSPIM1.1 −CSCIM1.1 =CSCIM1.1 −CSPIM1.1 = { /0}

The result of the symmetric difference is the empty set which indicates that the CSP
is fulfilling the customer’s requirement and hence the impact factor is 0. As IM1 service
consists of only one attribute and, therefore, the service impact factor is the same as the
attribute, i.e., IFIM1 = IFIM1.1 = 0.
Next authorization is evaluated by validating IM2.1 and IM2.2 using symmetric difference
calculation.

CSPIM2.1 −CSCIM2.1 ̸=CSCIM2.1 −CSPIM2.1 ̸= { /0}
CSPIM2.1 −CSCIM2.1 = {delete}

106 A Customer-Centric Approach to Validate the Cloud

Since the symmetric difference is not the empty set, this indicates a violation and,
therefore, I assess its impact factor using the Jaccard Index (cf., Equation 7.4) such that:

IFIM2.1 = 1− J(CSPIM2.1,CSCIM2.1)

Where,

J(CSPIM2.1,CSCIM2.1) =
|CSPIM2.1 ∩CSCIM2.1 |
|CSPIM2.1 ∪CSCIM2.1 |

=
2
3

Thus IFIM2.1 = 1− 2
3
=

1
3

In a similar way, IM2.2 impact factor is calculated. Using Equation 7.3, I premeditate
the symmetric difference for IM2.2 which detects no violation.

CSPIM2.2 −CSCIM2.2 =CSCIM2.2 −CSPIM2.2 = { /0}

The impact factor of IM2.1 and IM2.2 is 0.66 and 0 respectively. These impact factors are
aggregated to assess service provision using Equation 7.5.

IFIM2 =
IFIM2.1 ∗weightIM2.1 + IFIM2.2 ∗weightIM2.1

2

IFIM2 =
0.66∗0.7+0∗0.7

2
= 0.23

After each service calculation, the transition to an upper level in the hierarchy happens to
calculate the impact factor of the domain that contains these services. IFIM1 and IFIM2 are
aggregated to get the IFIM such that:

IFIM =
IFIM1 + IFIM2

2
= 0.11

As expected IFIM is above 0, which implies that the CSP violated requirements for the
identity management domain IM.

Similarly, the remaining services are evaluated using their attributes. Since IS1.1 metric
value is represented by numeric as shown in Table 7.2, Equation 7.2 is used to calculate IS1.1

7.4 Case Study: Trust Assessment of the Cloud 107

impact factor such that:

IFIS1.1 =

√(
1− CSPIS1.1

CSCIS1.1

)2

=

√(
1− 2.4

6.4

)2

= 0.625

This means that the CSP is under-provisioning the customer’s requirement for IS1.1 and
thus violating the requirement. I calculate the impact factors for IS1.2, IS1.3, and IS1.4 in a
similar way and aggregate them to calculate the impact factor of the service IFIS.

IFIS = IFIS1 =
IFIS1.1 + IFIS1.2 + IFIS1.3 + IFIS1.4

4
= 0.07

Similarly, the impact factors of storage SO and network NO are calculated and their impact
factors are aggregated to calculate IFroot as:

IFRoot =
IIM + IIS + ISO + INW

4

=
0.11+0.07+0+0.45

4
= 0.15

The IFroot indicates that CSP has violated requirements and the overall impact of these
violations is minimum. Consequently, the state of trust is changed from trusted (IFroot = 0)
to (IFroot = 0.25). Figure 7.5 shows the aggregated impact factors of attributes belonging to
a single service. In the figure, the root impact factor depicts the current "Trust State" for the
CSP during launching and migrating a VM.

7.4.2 Case II: VM Migration

In Case I, the state of trust of the CSP by evaluating the IFroot is assessed. The IF value
of 0.15 indicated that the CSP violated requirement(s) and the aggregated impact of these
violations was minimal. Hence, the state is changed to IFroot = 0.25. From this state, I again
evaluate the IFroot to assess the CSP trust level by considering the migration process. For
completeness, the services involved in the VM migration are shown in Figure 7.4. After the
user has been authenticated, the provisioning service starts a new instance of the VM and
provides details of the instance to the migration service. The role of the migration service is
to migrate data from the old VM to the new VM. Therefore, the migration service accesses
the old VM and transfers data over the network to the new instance of the VM as shown in
transitions 4-6 of the figure.

I assess services IM1.1 to check if requirements are violated by the CSP during the VM
migration process. Equation 7.3 is used to calculate the symmetric difference between IM1.1

108 A Customer-Centric Approach to Validate the Cloud

Fig. 7.4 Services and their communication in migrating a VM

values provided by the CSP and requested by the CSC so that:

CSPIM1.1 −CSCIM1.1 =CSCIM1.1 −CSPIM1.1 = { /0}

The null set indicates that there are no violations. Using Equation 7.5, the impact factor of
the service can be calculated as:

IFIM1.1 = 1− J(CSPIM1.1,CSCIM1.1)

= 1− |CSPIM1.1 ∩CSCIM1.1 |
|CSPIM1.1 ∪CSCIM1.1 |

= 1−1 = 0

Similarly, both IM2.1 and IM2.2 impact factors are calculated. Using Equation 7.3, I
premeditate the symmetric difference for both IM2.1 and IM2.2 such that:

IFIM2.1 = 1−1 = 0

IFIM2.2 = 1−1 = 0

This means that the CSP is offering IM2.2 and IM2.1 as agreed with the customer. Thus the
IM2 impact factor is then premeditated by aggregating IFIM2.1 and IFIM2.2 using Equation
7.5

such that:

IFIM2 =
IFIM2.1 + IFIM2.2

2
= 0

7.5 Conclusion 109

Subsequently, both impact factors IFIM1 and IFIM2 are aggregated to get IFIM such that:

IFIM =
IFIM1 + IFIM2

2
= 0

Similar to case I, the values of IS, SO, and NW are calculated. Finally, the IFroot impact
factor is calculated such that:

IFRoot =
IFIM + IFIS + IFSO + IFNW

4
=

0+0.25+0+0
4

= 0.06

As the current trust value is evaluated to be 0.06, this indicates that the state of the trust
should be changed to the trusted state (IF = 0) state (cf., Figure 7.3). Thus the proposed
methodology enables the customers to (a) assess the state of trust of the CSP during the
course of operations and (b) also provide traceable justification for trusting the CSP.

IM IS SO NW Root

0

0.2

0.4

Im
pa

ct
fa

ct
or

CaseI CaseII

Fig. 7.5 Service and root Impact factors of Cloud IaaS

7.5 Conclusion

Cloud service providers expect their customers to "trust" the CSP services offered to them but
not every customer is willing to grant this trust without justification. It should be possible for
a customer to establish that their SLA requirements are fulfilled by the CSP’s provisioning of
the specified services. With this aim, a methodology is proposed that enables the customer to

110 A Customer-Centric Approach to Validate the Cloud

identify the CSP violation of requirements over the life of the service. For violation detection,
I compare and validate each SLA attribute with respect to the customer requirements. In case
of a requirement violation, I calculate the severity of the violation by calculating an impact
factor. The impact factor determines the degree of deviation of the provided value from the
required value and consequently dictates the change in the level/state of trust in the CSP. The
customer can periodically apply the proposed methodology to assess the behavior of the CSP
over the life of the service. The application of the proposed trust assessment methodology
was established via two actual use cases of CSPs offering IaaS.

Chapter 8

Conclusions and Future Work

Cloud computing is a technology paradigm to facilitate the delivery of services and computing
resources over the Internet that can be rapidly and flexibly provisioned to users. Due to
its inherent elasticity, the Cloud can give the illusion of containing an infinite amount of
resources shared among the users. Moreover, the pay-as-you-go model offered by the Cloud
providers offers economic benefits to the organizations. Therefore, many organizations have
migrated their businesses to the Cloud or adopted a “Cloud first" strategy. The proliferation of
the Cloud is expected to increase over the next years. However, security remains a significant
concern for both individual Cloud users and organizations.

To address these security concerns, threat analysis is advocated to examine a system’s
exposure to threats. Microsoft pioneered STRIDE, a model to classify threats to a system
into different categories. The model is useful in investigating architectural flaws and is an
attacker-centric model. On the other hand, many effective threat analysis approaches exist
that explore the potential threats at the system level or at the application level. Furthermore,
graphical security models such as attack graphs/trees have also been applied to the Cloud to
understand the attack paths in the Cloud. These techniques are either technology-focused or
assume that the interconnection among the assets (e.g., service, data, resources, etc.) is static.
Thus, these schemes reveal threats pertinent to the specific technology. However, the Cloud
is a complex and dynamic environment entailing both the physical and virtual resources that
can migrate from one physical host to another. Therefore, assessing the security of the Cloud
requires analyzing threats across the operational stack to evaluate the security of the Cloud
holistically. Moreover, incorporating users’ requirements and potential variants of the threats
enables the threat analysis process to be comprehensive.

112 Conclusions and Future Work

8.1 Conclusions

This thesis investigated assessing the security of the Cloud holistically: First, a multi-layer
functional model of the Cloud is developed. Second, the model is translated to an information
flow model that is agnostic to underpinning technologies. From the perspective of threat
analysis across the abstraction, the information flow model captures the services interaction
in fundamental operations of the Cloud, e.g., the instantiation of a virtual machine. Third,
the interplay between the users’ requirements, Cloud services, and threats is investigated to
identify the relationship between the requirements and the threats in the Cloud. Additionally,
variants of the threats are also included to assess their potential in compromising the Cloud.
Finally, from the perspective of Cloud users, the goal was to enable users to validate if their
requirements are provisioned according to the signed contract, i.e., the service level agree-
ment. In summary, this thesis investigated the following research questions and proposed the
contributions detailed under the respective research question.

Research Question 1 (RQ1): How can Cloud Service Providers (CSPs) examine the security
of the Cloud at different abstractions of the operations?

A broad spectrum of issues impeded the adoption of Cloud computing, with security arguably
among the most significant. To address the security issues, threat analysis is often used to
determine the threats targeting the Cloud. However, the lack of transparency in the archi-
tecture and the complexity of the Cloud make threat analysis for the Cloud a challenging
task. Further, the Cloud comprises various technologies/services necessary for the proper
functioning of the Cloud, and numerous attack surfaces exist across these technologies.
Thus, threat analysis approaches for Cloud typically target a specific technology to reveal
threats pertinent to the technology. The effectiveness of these techniques beyond the targeted
technology is limited and thus, making these techniques technology-dependent. Furthermore,
the operational behavior of the technology is often overlooked in these techniques. For
instance, the interaction of the technology with other services/technologies in the Cloud.
Thus, this question investigates assessing the security across the entire operational stack of
the Cloud to enable providers to assess the threats at different abstractions of the functionality
stack.

Contribution 1 (C1): A Cloud model capable of representing the fundamental operations of
a Cloud in a technology agnostic manner.

8.1 Conclusions 113

The security assessment of the Cloud at different abstractions strongly depends on the
model of the Cloud used. Typically, modeling the Cloud implies modeling the running
application for performance optimization, and this abstraction of the Cloud operation does
not contemplate the Cloud’s internal functionality. However, to assess the security of the
Cloud at different abstractions, the model needs to be comprehensive to cover the entire
spectrum of the functionality. This reveals the potential of a threat’s propagation from
the internal Cloud functionality to the application layer. For example, a denial of service
attack targeting the Cloud might consequently limit an application’s availability, although
the application is not directly attacked. Thus, to comprehend the threats facing the Cloud,
representing the operations of the Cloud is essential to determine the presence of attack
surfaces at an attacker’s disposal.

Therefore, the development of the Cloud model is the thesis’s first contribution, detailed
in Chapters 3 and 4. Chapter 3 detailed the multi-layer functional model of the Cloud
and the interaction of the services abstractly. The sequence of operations in launching a
virtual machine is also explained in the Chapter. Chapter 4 translated the functional Cloud
model into a technology-agnostic information flow model applicable to a spectrum of Cloud
offerings. The information flow model is based on Petri nets that supports dynamically
capturing the services interaction and time-driven information flow across the services. The
states in Petri nets are distributed, enabling Cloud providers to examine the security of the
Cloud at different. The Cloud’s functionality in Petri nets is represented through conditional
transitions triggered after their respective preconditions are satisfied. Thus, both Chapters 3
and 4 contributed toward (a) examining the benign behavior of the Cloud in the absence of
threats and (b) analyzing the interactions amongst the services belonging to different layers
in the Cloud.

Research Question 2 (RQ2): How can the effects of a threat in a service on other intercon-
nected services be identified?

The significant factor that differentiates the Cloud environment from the traditional IT en-
vironment is that the Cloud is a dynamic environment. It means that new interconnection
occurs at run-time, e.g., when a user requests a new resource or when a resource migrates
among the physical hosts. In addition, due to the coupling of various technologies/services
in the Cloud operation, the number of attacks targeting multi-layer/multi-technologies has
increased, highlighting the need for multi-layer and dynamic threat analysis approaches
applicable to the Cloud environments. Specifically, this question investigated the attack paths
at an attacker’s disposal, considering the holistic view of the Cloud operations. Furthermore,

114 Conclusions and Future Work

this question investigated the visibility of the Cloud operations with respect to varied attacker
profiles.

Contribution 2 (C2): A path-illustrative approach to profile threats, analyze their impact on
targeted services and the propagation of threats across the multiple layers of the Cloud.

In Chapter 5, I presented threat analysis approaches Threatpro, and AttackDive, which
explore attack paths that lead to violating the security requirements. The Chapter provided
details on the addition of threats to the Cloud model. i.e., the necessary preconditions of
a threat. The threats were also defined using Petri nets, and including threats at different
layers/services facilitates examining the cause-effect relationship between a threat and a
service. Consequently, it enables analyzing the propagation of the threats in the Cloud.

Both ThreatPro and AttackDive simulated (a) the benign Cloud functioning to baseline
the operational behavior of the Cloud, (b) the impact of a threat on a particular service/tech-
nology, and (c) the effect of multiple threats across the services belonging to different layers
of the Cloud. Furthermore, these techniques are capable of performing what-if analysis
using the vulnerabilities reported in the national vulnerability database to determine the
corresponding attack scenarios. The what-if analysis can investigate paths that an attacker
could use to undermine a security requirement. Additionally, the Chapter detailed different
operational views of the Cloud with respect to different attacker profiles. For example, insider
attackers have a different view of the operations than outsider attackers.

Research Question 3 (RQ3): How can the Cloud service providers gather and organize
knowledge concerning the interplay between security threats and a user’s requirements?

The disclosed vulnerabilities require significant effort from system administrators to assess
each vulnerability’s potential to compromise their system. Therefore, this research ques-
tion investigated the inclusion of requirements into the threat analysis process to prioritize
the vulnerabilities pertinent to the security requirements of a user. The requirement-based
threat analysis facilitates Cloud providers to comprehend the relationship between security
requirements, threats, and the targeted services. Moreover, this question also examined the
limitation of the current vulnerabilities classification, which is based on using vulnerability
consequence as a criterion to classify them into general categories such as denial of service,
etc. Thus, this question investigated the extent to which different vulnerabilities are related
to each other beyond their common consequence.

8.1 Conclusions 115

Contribution 3 (C3): Development of requirement-based threat analysis to prioritize threats
according to the user’s requirements.

Chapter 6 also presented the application of clustering to reveal common patterns between
different vulnerabilities. For instance, the analysis showed that many vulnerabilities correlate
with each other regarding attack mechanisms. Thus, adding these potential correlations (or
variants) in the threat analysis process is helpful to Cloud providers in the organization of the
knowledge associated with vulnerabilities.

Moreover, Chapter 6 presented the relationship among different actors involved in the
Cloud ecosystem using the Design Structure Matrix (DSM). The advantage of using a DSM
is that it helps visualize the relationship between requirement specifications, the Cloud
model, and vulnerabilities targeting the services. The approach presented in the Chapter is
adaptable to assess the security of the Cloud from varied actor perspectives. This is achieved
by applying different algorithms to the DSM, e.g., DSM can be re-arranged to identify the
most critical/influential.

Research Question 4 (RQ4): How can Cloud users assess that their requirements (qualitative
and quantitative) are satisfied by the Cloud Service Provider (CSP)?

The perceived lack of trust and the security concerns affiliated with the Cloud hinder a wider
adoption of the Cloud, specifically to critical applications. To remedy this, Cloud Service
Providers (CSPs) typically set up Service Level Agreements (SLAs) that are legally binding
between CSPs and Cloud Service Customers (CSCs). SLAs list the attributes the CSP must
provide in compliance with the customer’s requirements. While SLAs are promising as a
concept, the inadequacy of validating SLAs during the operation of the Cloud limits the
customer’s capability to evaluate if the offered services meet their requirements. Thus, this
question investigated the customer-centric mechanism of validating an SLA to evaluate any
deviations from the SLA. In case of an SLA violation, a user is entitled to compensation.

Contribution 4 (C4): A customer-centric approach to assess the fulfillment of security re-
quirements by the CSP.

Chapter 7 presented a customer-centric approach to validate the SLA signed with the CSP.
The purpose of the approach is to verify that the attributes promised by the Cloud service
providers are fulfilled during the Cloud operation. The approach proposed an evaluation
mechanism for both qualitative and quantitative attributes. Moreover, the user can specify

116 Conclusions and Future Work

weights to different attributes to rank the violation of these attributes accordingly. In case
a violation occurs in the attribute provisioning, the severity of the violation is evaluated by
calculating an impact factor of the violation. The impact factor establishes the degree of
deviation from the required value of the provided attribute. Consequently, the higher the
degree of deviation, the more severe the violation. Furthermore, the impact factor is used to
determine the change in the level/state of trust in the CSP. The CSP can be in varied trust
states depending on the severity level of the violations. A periodic application of the proposed
methodology leads to assessing the behavior of the CSP over the life of the service. The trust
state of a CSP during the launch of a VM and migration of a VM is used to determine any
deviation between the provisioning of services from the CSP and the requirements of the user.

The Cloud proliferation is projected to grow over the following years, but the security
challenges in the Cloud are still a significant hindrance to its adoption. This thesis has
confirmed that there exists a plethora of attack surfaces across the operational stack of the
Cloud that an attacker can use. These attack surfaces are specific to the Cloud; therefore,
threat analysis approaches that are designed explicitly for the Cloud are required. Moreover,
the thesis investigated single-stage and multi-stage attack scenarios to examine the security
assessment of the Cloud holistically and independently of the underlying technologies.
Addressing the security issues in the Cloud will expedite its adoption to industries still
reluctant to migrate their operations to the Cloud, e.g., the health care industry. In the
following, a potential future direction is presented that compliments the thesis by mitigating
the threats proactively.

8.2 Future Work: Proactive Threats Mitigation Techniques 117

8.2 Future Work: Proactive Threats Mitigation Techniques

This thesis has investigated the security assessment of the Cloud by exploring threats across
the operational stack of the Cloud and the interplay between threats, their variants, and the
user’s security requirements. On the other hand, mitigating threats in the theses was largely
unexplored. Therefore, a natural extension of the thesis is to propose proactive methodologies
for mitigating threats against the Cloud.

Moving Target Defense (MTD) [145] techniques are advocated as a promising proactive
approach to improve the security of a system. The basic premise behind the MTD techniques
is that it is impossible to secure the system completely, so introducing uncertainty and
complexity for attackers might thwart the attacks. This is eventually achieved through
changing the attack surfaces that reduce the window of opportunity and/or increase the
cost of an attack. Multiple MTD techniques can be broadly organized into categories
following a taxonomy proposed in [146]. These are dynamic run-time environments, dynamic
platforms, dynamic software, dynamic networks, and dynamic data. The MTDs focusing
on a dynamic run-time environment change the execution environment presented to the
application [147, 148]. In contrast, MTDs for dynamic platforms disrupt the attack that
typically relies on specific platform characteristics (e.g., a specific OS version) by replacing
the platform [149]. The MTDs belonging to dynamic software operate similar to the dynamic
platform MTDs, but their focus is on the software/application layer [150, 151] instead. At the
network layer, MTDs techniques target modifying the network characteristics (e.g., IP/MAC
addresses) [152–154] while changing the data format used in the application is termed as
dynamic data MTDs [155].

The thesis has proposed a technology-agnostic Cloud model which can be used as a basis
for applying the MTDs across the different layers of the Cloud as deploying an individual
MTD, e.g., OS diversity at the VM level or changing hypervisor might not be sufficient to
limit multi-stage attacks. Therefore, a combination of MTDs at different layers is required
to maximize the security gains of the MTD techniques. Moreover, it is essential to figure
out the placement and triggering of an MTD technique depending on the potential actions
of an attacker. Thus, the aim of the future work is to explore the combination of different
MTDs at different layers to maximize the security gains offered by the MTDs. Furthermore,
I will propose a set of actions for MTD deployment (wait, deploy and reset) to determine
the optimal MTD strategy coupled with selecting different MTDs across various layers. A
quantification mechanism and metrics (attack path disruption and attack surface reduction)
are proposed to evaluate the effectiveness of the MTDs against the attacks in the Cloud.

118 Conclusions and Future Work

VM

HYP

HW NET DI

Recon Exploit IP Shuffling OS/ Hyp
Diversity

MTD TechniquesThreatsCloud Model

Fig. 8.1 Proposed moving target defense approach

Moving Target Defense Framework

The MTD framework is shown in Figure 8.1. There are three layers in our framework. The
first is the set of MTD techniques such as IP shuffling, OS diversity, etc. The second layer
is the threats that MTDs have an impact on. In order to attack a system, an attacker has
to know the weaknesses of the system and how to exploit them. Therefore, threats have
primarily two main blocks. Preconditions encompass the knowledge about the weaknesses
of a system, and exploitation is the process of exploiting these weaknesses. It might be noted
here that an MTD can affect any or both of the blocks. Finally. the third layer is the system
under investigation. In my case, I show a subset of the Cloud operations since the goal is to
determine the effectiveness of MTDs (or combination of MTDs) considering a holistic view
of the Cloud.

Now I have defined the Cloud system and the threats, the last layer introduces the MTDs.
Therefore I can now define an overall MTD framework as follows: An MTD quantification
framework can be defined as a 5-tuple (M,T,C,Rmt ,Rmc,Rtc) where

• M is a finite set of MTDs.

• T is a finite set of threats.

• S is a finite set of services in the Cloud.

• Rmt ⊆ M ×T is the relationship between MTDs and the threats. It determines the
corresponding impact of MTDs on threats.

• Rms ⊆ M × S defines the relationship between MTDs and services in the Cloud. It
signifies the applicability of an MTD on the service. For instance, dynamic application
data is only applicable to the application running on the VM.

8.2 Future Work: Proactive Threats Mitigation Techniques 119

• Rts ⊆ T × S defines the relationship between threats and the targeted services. It
identifies the threats that could potentially target a specific service.

Utilizing these, I get a tripartite graph. The relationship among different layers is defined
in the following:

Defining the threat to service relationship: A service can be compromised by exploit-
ing vulnerabilities that target the service. A single or combination of vulnerabilities can
compromise a service. Therefore, the probability of successfully compromising a service can
be calculated using Equation (8.1). It assumes that vulnerabilities are independent of each
other:

Pr(Xt = s) =

Pr(Ta ∪Tb) ∃Ta ∈ T : (Ta,s)∨

∃Tb ∈ T : (Tb,s)

0 otherwise

(8.1)

Satisfying a threat’s precondition: In order to compromise a service, a vulnerability
has to be exploited. However, there could exist preconditions that need to be satisfied to
exploit the specific vulnerability. Therefore, the P(Ta) can be further broken down into the
satisfaction of each individual precondition. This can be done by simply calculating the
likelihood of satisfying different preconditions of the vulnerability. This can be calculated as:

P(Tt) = max(
n

∏
i=0

P(Preconditiont)) (8.2)

Effectiveness of MTDs on threats: Finally, the relationship between MTDs, threats,
and the services is defined. It is assumed that in case an MTD is not deployed, an attacker
can successfully exploit the system, i.e., the probability of the attack success is 1. Thus, the
effectiveness of a single instance of MTD on a threat targeting a service can be calculated as:

E(Mm,Tt ,Ss) =

1 ∃(Tt ,Ss) ∈ Rts ∧∄(Mm,Tt) ∈ Rmt∨

∄(Mm,Ss) ∈ Rms

0 otherwise

(8.3)

120 Conclusions and Future Work

Equation (8.3) dictates that an MTD is not effective for a given threat on a service. In
other words, this also means that an MTD has not been deployed, and the attacker’s success
is one as no mitigation strategy has been deployed for the threat.

The framework can be extended to include the effectiveness of each MTD and evaluate
the aggregated effectiveness of the MTDs across the Cloud. This results in exploring the
optimal place for MTD deployment for single- and multi-stage attack scenarios. However,
it is evident that the relationship between the layers is many-to-many and thus, making the
exploration of an optimal solution challenging. Furthermore, the cost function could be added
as an alternative criterion to tweak the optimal solution accordingly. Therefore, the future
objective of my work is to use the Cloud model as a basis to find the optimal solution for the
deployment of the MTD that provides maximum security gains considering the holistic view
of the system.

References

[1] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

[2] Amazon. Amazon web services, 2022.

[3] Google. Google cloud services, 2022.

[4] Microsoft. Microsoft azure, 2022.

[5] Simon Sharwood. Cloud a three-player market dominated by aws, google, microsoft,
2022.

[6] Dropbox. Keep life organized and work moving—all in one place, 2022.

[7] Github. Where the world builds software, 2022.

[8] Ron Miller. The cloud infrastructure market hit $129b in 2020, 2021.

[9] Louis Columbus. Public cloud soaring to $331b by 2022 according to gartner, 2019.

[10] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and Anand Ghalsasi.
Cloud computing—the business perspective. Decision support systems, 51(1):176–
189, 2011.

[11] Abhijit Dubey and Dilip Wagle. Delivering software as a service. The McKinsey
Quarterly, 6(2007):2007, 2007.

[12] Eric Keller and Jennifer Rexford. The" platform as a service" model for networking.
INM/WREN, 10:95–108, 2010.

[13] Sushil Bhardwaj, Leena Jain, and Sandeep Jain. Cloud computing: A study of
infrastructure as a service (iaas). International Journal of engineering and information
Technology, 2(1):60–63, 2010.

[14] Kui Ren, Cong Wang, and Qian Wang. Security challenges for the public cloud. IEEE
Internet computing, 16(1):69–73, 2012.

[15] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+ flush:
a fast and stealthy cache attack. In Proceedings of the International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, pages 279–299,
7-8 Jul, San Sebastián, Spain, 2016. Springer.

[16] Wayne A Jansen, Tim Grance, et al. Guidelines on security and privacy in public
cloud computing. 2011.

122 References

[17] Flexera. State of the cloud, 2021.

[18] Check Point. Top trends in cloud security, 2020.

[19] Richard Speed. Github saved plaintext passwords of npm users in log files, post
mortem reveals, 2022.

[20] Jon Porter. Amazon mitigated the largest ddos attack ever recorded, 2020.

[21] Bruce Lynch. 5 high-profile ddos attacks that should chill you to the bone, 2021.

[22] Samuel King and Peter M Chen. Subvirt: Implementing malware with virtual ma-
chines. In Proceedings of the IEEE Symposium on Security and Privacy, pages 14–327,
Oakland, USA, 2006.

[23] Pratyusa Manadhata and Jeannette Wing. An attack surface metric. IEEE Transactions
on Software Engineering, 37(3):371–386, 2011.

[24] Nils Gruschka and Meiko Jensen. Attack surfaces: A Taxonomy for Attacks on Cloud
Services. In Proceedings of the International Conference on Cloud Computing, pages
276–279, 05-10 Jul, 5–10 July 2010. IEEE.

[25] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, Dawn
Leaf, et al. Nist cloud computing reference architecture. NIST special publication,
500(2011):1–28, 2011.

[26] M. Marlinspike. Null prefix attacks against ssl/tls certificates. Thoughtcrime.org,
2009.

[27] Jeanna Matthews, Eli Dow, Todd Deshane, Wenjin Hu, Jeremy Bongio, Patrick Wilbur,
and Brendan Johnson. Running Xen: a hands-on guide to the art of virtualization.
Prentice Hall, 2008.

[28] Jerry Honeycutt. Microsoft virtual personal computer. Microsoft Technical Overview,
2003.

[29] Forbes Guthrie, Scott Lowe, and Kendrick Coleman. VMware vSphere design. John
Wiley & Sons, 2013.

[30] NIST. National vulnerability database, 2022.

[31] Bruce Potter. Microsoft sdl threat modelling tool. Network Security, 2009(1):15–18,
2009.

[32] Adam Shostack. Experiences threat modeling at microsoft. MODSEC@ MoDELS,
2008:35, 2008.

[33] Hesham Abusaimeh. Security attacks in cloud computing and corresponding defending
mechanisms. In International Journal of Advanced Trends in Computer Science and
Engineering, volume 9, pages 4141–4148, 2020.

References 123

[34] Hsin-Yi Tsai, Melanie Siebenhaar, Andre Miede, Yulun Huang, and Ralf Steinmetz.
Threat as a service?: Virtualization’s impact on cloud security. IT professional,
14(1):32–37, 2011.

[35] Daniele Sgandurra and Emil Lupu. Evolution of Attacks, Threat Models, and Solutions
for Virtualized Systems. In ACM Computing Surveys, 48:1–38, 2016.

[36] Limin Wang, Ziyuan Zhu, Zhanpeng Wang, and Dan Meng. Colored Petri net Based
Cache Side Channel Vulnerability Evaluation. IEEE Access, 7:169825–169843, 2019.

[37] Ronald Ritchey and Paul Ammann. Using model checking to analyze network vulner-
abilities. In Proceedings of the Symposium on Security and Privacy, pages 156–165,
Berkeley, CA, USA, 14–17 May 2000. IEEE.

[38] Devdatta Akhawe, Adam Barth, Peifung Lam, John Mitchell, and Dawn Song. To-
wards a formal foundation of web security. In Proceedings of the IEEE Computer
Security Foundations Symposium, pages 290–304, 17–19 July, Edinburgh, UK, 17–19
July 2010.

[39] Kennedy Torkura, Muhammad Sukmana, Michael Meinig, Anne Kayem, Feng Cheng,
Hendrik Graupner, and Christoph Meinel. Securing Cloud Storage Brokerage Systems
Through Threat Models. In Proceedings of the International Conference on Advanced
Information Networking and Applications, pages 759–768, Krakow, Poland, 16–18
May 2018. IEEE.

[40] Nawaf Alhebaishi, Lingyu Wang, Sushil Jajodia, and Anoop Singhal. Threat Modeling
for Cloud Data Center Infrastructures. In Proceedings of the International Symposium
on Foundations and Practice of Security, pages 302–319, 24–25 October, Québec,
Canada, 2016. Springer.

[41] Armstrong Nhlabatsi, Jin Hong, DongSeong Kim, Rachael Fernandez, Alaa Hussein,
Noora Fetais, and Khaled Khan. Threat-specific security risk evaluation in the cloud.
IEEE Transactions on Cloud Computing, 9:1–13, 2018.

[42] Salman Manzoor, Jesus Luna, and Neeraj Suri. Attackdive: Diving deep into the
cloud ecosystem to explore attack surfaces. In Proceedings of the IEEE International
Conference on Services Computing, pages 499–502, 25-30 Jun, Honolulu, USA, 2017.
IEEE.

[43] Salman Manzoor, Ahmed Taha, and Neeraj Suri. Trust validation of cloud iaas: A
customer-centric approach. In Proceedings of the IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, pages 97–104, 23-26
Aug, Tianjin, China, 2016. IEEE.

[44] Salman Manzoor, Antonios Gouglidis, Bradbury Matthew, and Neeraj Suri. Threatpro:
Multi-layer threat analysis in the cloud". In ACM Transactions on Privacy and Security
(Under Review), 2022.

[45] Salman Manzoor, Tsvetoslava Vateva-Gurova, Rubén Trapero, and Neeraj Suri. Threat
modeling the cloud: An ontology based approach. In Proceedings of the International
Workshop on Information and Operational Technology Security Systems, pages 61–72,
13 Sept, Crete, Greece, 2018. Springer.

124 References

[46] Salman Manzoor, Daniel Prince, and Neeraj Suri. Ontologies for vulnerability terrain
mapping and attack reasoning. International Conference on Network and System
Security (Under Review), 2022.

[47] Sunilkumar Manvi and Gopal Shyam. Resource management for infrastructure as a
service (iaas) in cloud computing: A survey. International Journal of Network and
Computer Applications, 41:424–440, 2014.

[48] Andrew Younge, Gregor Laszewski, Lizhe Wang, Sonia Lopez-Alarcon, and Warren
Carithers. Efficient Resource Management for Cloud Computing Environments. In
Proceedings of the International Conference on Green Computing, pages 357–364,
Chicago, IL, USA, 2010. IEEE.

[49] Umesh Deshpande, Danny Chan, Ten-Young Guh, James Edouard, Kartik Gopalan,
and Nilton Bila. Agile live migration of virtual machines. In Proceedings of the IEEE
International Parallel and Distributed Processing Symposium, pages 1061–1070,
23-27 May, Chicago, USA, 2016. IEEE.

[50] Waltenegus Dargie. Estimation of the cost of vm migration. In Proceedings of the
IEEE International Conference on Computer Communication and Networks, pages
1–8, 04-07 Aug, Shanghai, China, 2014. IEEE.

[51] Tiago Gama Rodrigues, Katsuya Suto, Hiroki Nishiyama, and Nei Kato. Hybrid
method for minimizing service delay in edge cloud computing through vm migration
and transmission power control. In IEEE Transactions on Computers, 66(5):810–819,
2016.

[52] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack. Uncover
security design flaws using the STRIDE approach. MSDN Magazine, Nov. 2006.

[53] Sven Bugiel, Stefan Nürnberger, Thomas Pöppelmann, Ahmad-Reza Sadeghi, and
Thomas Schneider. Amazonia: When elasticity snaps back. In Proceedings of the
ACM Conference on Computer and Communications Security, pages 389–400, 17-21
Oct, Chicago, USA, 2011. ACM.

[54] Akond Rahman, Chris Parnin, and Laurie Williams. The seven sins: Security smells
in infrastructure as code scripts. In Proceedings of the IEEE/ACM International
Conference on Software Engineering, pages 164–175, 25-31 May, Montreal, Canada,
2019. IEEE/ACM.

[55] Akond Rahman, Rayhanur Rahman, Chris Parnin, and Laurie Williams. Security
smells in ansible and chef scripts: A replication study. ACM Transactions on Software
Engineering and Methodology, 30(1):1–31, 2021.

[56] Chun-Ting Huang, Lei Huang, Zhongyuan Qin, Hang Yuan, Lan Zhou, Vijay Varad-
harajan, and Jay Kuo. Survey on securing data storage in the cloud. APSIPA Transac-
tions on Signal and Information Processing, 3, 2014.

[57] Sugumaran, Bala Murugan, and Kamalraj. An architecture for data security in cloud
computing. In Proceedings of the World Congress on Computing and Communication
Technologies, pages 252–255, 27 February - 01 March, Trichirappalli, India, 2014.
IEEE.

References 125

[58] Michele De Donno, Alberto Giaretta, Nicola Dragoni, Antonio Bucchiarone, and
Manuel Mazzara. Cyber-storms come from clouds: Security of cloud computing in
the iot era. Future Internet, 11(6):127, 2019.

[59] Haifa Mohamed Al Nasseri. Detecting Cloud Virtual Network Isolation Security for
Data Leakage. PhD thesis, University of St Andrews, 2019.

[60] Fabiao Miao, Liming Wang, and Zailong Wu. A vm placement based approach
to proactively mitigate co-resident attacks in cloud. In Proceedings of the IEEE
Symposium on Computers and Communications, pages 00285–00291. IEEE, 2018.

[61] Mohamed Elshabka, Hanan Hassan, Walaa Sheta, and Hany Harb. Security-aware
dynamic vm consolidation. Egyptian Informatics Journal, 22(3):277–284, 2021.

[62] Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project guide to
network discovery and security scanning. Insecure. Com LLC (US), 2008.

[63] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you,
get off of my cloud: Exploring information leakage in third-party compute clouds.
In Proceedings of the ACM Conference on Computer and Communications Security,
pages 199–212, 9-13 Nov, Chicago, USA, 2009.

[64] Diego Perez-Botero, Jakub Szefer, and Ruby Lee. Characterizing hypervisor vul-
nerabilities in cloud computing servers. In Proceedings of the ACM International
Workshop on Security in Cloud Computing, pages 3–10, 8 May, Hangzhou, China,
2013. ACM.

[65] Ori Or-Meir, Nir Nissim, Yuval Elovici, and Lior Rokach. Dynamic malware analysis
in the modern era—a state of the art survey. In ACM Computing Surveys, 52(5):1–48,
2019.

[66] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre attacks:
Exploiting speculative execution. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 1–19, 19-23 May, CA, USA, 2019. IEEE.

[67] Yuval Yarom and Katrina Falkner. {FLUSH+ RELOAD}: A high resolution, low
noise, l3 cache {Side-Channel} attack. In USENIX Security Symposium, pages 719–
732, San Diego, CA, 2014. USENIX Association.

[68] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby Lee. Last-level cache
side-channel attacks are practical. In Proceedings of the IEEE symposium on Security
and Privacy, pages 605–622, 17-21 May, CA, USA, 2015. IEEE.

[69] Hsin-Yi Tsai, Melanie Siebenhaar, Andre Miede, Yulun Huang, and Ralf Steinmetz.
Threat as a service?: Virtualization’s impact on cloud security. IT professional,
14(1):32–37, 2011.

[70] Thomas Ball. The concept of dynamic analysis. In Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages 216–234, 6-10 Sept,
Toulouse, France, 1999. ACM.

126 References

[71] Athanasios Naskos, Anastasios Gounaris, Haralambos Mouratidis, and Panagiotis
Katsaros. Online analysis of security risks in elastic cloud applications. IEEE Cloud
Computing, 3:26–33, 2016.

[72] Adrian Duncan, Sadie Creese, Michael Goldsmith, and Jamie Quinton. Cloud com-
puting: Insider attacks on virtual machines during migration. In Proceedings of the
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, pages 493–500, 16-18 Jul, Melbourne, Australia, 2013. IEEE.

[73] Hua Deng, Qianhong Wu, Bo Qin, Jian Mao, Xiao Liu, Lei Zhang, and Wenchang Shi.
Who is touching my cloud. In Proceedings of the European Symposium on Research
in Computer Security, pages 362–379, 7-11 Sept, Wroclaw, Poland, 2014. Springer.

[74] Yujue Wang, Qianhong Wu, Duncan Wong, Bo Qin, Sherman Chow, Zhen Liu, and
Xiao Tan. Securely outsourcing exponentiations with single untrusted program for
cloud storage. In Proceedings of the European Symposium on Research in Computer
Security, pages 326–343, 7-11 Sept, Wroclaw, Poland, 2014. Springer.

[75] Jon Oberheide, Evan Cooke, and Farnam Jahanian. Empirical exploitation of live
virtual machine migration. In Proc. of BlackHat DC convention, pages 1–6. Citeseer,
2008.

[76] Jia-Rung Yeh, Hsu-Chun Hsiao, and Ai-Chun Pang. Migrant attack: A multi-resource
dos attack on cloud virtual machine migration schemes. In 2016 11th Asia Joint
Conference on Information Security (AsiaJCIS), pages 92–99, 2016.

[77] Atif Saeed, Peter Garraghan, Barnaby Craggs, Dirk van der Linden, Awais Rashid,
and Syed Asad Hussain. A cross-virtual machine network channel attack via mirroring
and tap impersonation. In Proceedings of the IEEE International Conference on Cloud
Computing, pages 606–613, 02-07 Jul, CA, USA, 2018. IEEE.

[78] Atif Saeed, Peter Garraghan, and Asad Hussain. Cross-vm network channel attacks
and countermeasures within cloud computing environments. IEEE Transactions on
Dependable and Secure Computing, 19(3):1783–1794, 2022.

[79] Xen. Xen server architecture, 2022.

[80] L Kurth. Xenserver. org and the xen project. Xen Project, 2003.

[81] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented
programming: Systems, languages, and applications. ACM Transactions on Informa-
tion and System Security, 15(1):1–34, 2012.

[82] Marco Prandini and Marco Ramilli. Return-oriented programming. IEEE Security &
Privacy, 10(6):84–87, 2012.

[83] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.

[84] Ping Wang, Wen-Hui Lin, Pu-Tsun Kuo, Hui-Tang Lin, and Tzu Chia Wang. Threat
risk analysis for cloud security based on attack-defense trees. In Proceedings of the
International Conference on Computing Technology and Information Management,
pages 106–111, Seoul, South Korea, 2012. IEEE.

References 127

[85] Saif Malik, Samee Khan, and Sudarshan Srinivasan. Modeling and analysis of
state-of-the-art vm-based cloud management platforms. IEEE Transaction on Cloud
Computing, 1:50–63, 2013.

[86] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette Wing.
Automated generation and analysis of attack graphs. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 273–284, 12-15 May, Berkeley, USA,
2002. IEEE.

[87] Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajodia. An attack
graph-based probabilistic security metric. In Data and Applications Security XXII,
pages 283–296, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[88] Marcel Frigault and Lingyu Wang. Measuring network security using bayesian
network-based attack graphs. In Proceedings of the IEEE International Computer
Software and Applications Conference, pages 698–703, 28 Jul-01 Aug, Turku, Finland,
2008.

[89] Armstrong Nhlabatsi, Khaled Khan, Jin Hong, Dong Kim, Rachael Fernandez, and
Noora Fetais. Quantifying Satisfaction of Security Requirements of Cloud Software
Systems. IEEE Transactions on Cloud Computing, pages 1–18, 2021.

[90] Amartya Sen and Sanjay Madria. Risk assessment in a sensor cloud framework using
attack graphs. IEEE Transactions on Services Computing, 10:942–955, 2017.

[91] Shareeful Islam, Moussa Ouedraogo, Christos Kalloniatis, Haralambos Mouratidis,
and Stefanos Gritzalis. Assurance of security and privacy requirements for cloud
deployment models. IEEE Transactions on Cloud Computing, 6:387–400, 2018.

[92] Prasad Saripalli and Ben Walters. QUIRC: A Quantitative Impact and Risk Assessment
Framework for Cloud Security. In Proceedings of the International Conference on
Cloud Computing, pages 280–288, 05-10 July, Miami, USA, 2010. IEEE.

[93] Arpan Roy, Dong Seong Kim, and Kishor Trivedi. Attack countermeasure trees
(act): Towards unifying the constructs of attack and defense trees. Security and
Communication Networks, 5(8):929–943, 2012.

[94] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. Dynamic security risk manage-
ment using bayesian attack graphs. IEEE Transactions on Dependable and Secure
Computing, 9:61–74, 2012.

[95] Dan Gonzales, Jeremy Kaplan, Evan Saltzman, Zev Winkelman, and Dulani Woods.
Cloud-trust—a security assessment model for infrastructure as a service (iaas) clouds.
IEEE Transactions on Cloud Computing, 5:523–536, 2017.

[96] Archana Ganapathi, Yanpei Chen, Armando Fox, Randy Katz, and David Patterson.
Statistics-driven workload modeling for the cloud. In Proceedings of the International
Conference on Data Engineering Workshops, pages 87–92, 1-6 Mar, Long Beach,
USA, 1–6 March 2010. IEEE.

128 References

[97] Fumio Machida, Ermeson Andrade, Dong Kim, and Kishor Trivedi. Candy:
Component-based Availability Modeling Framework for Cloud Service Management
Using SysML. In Proceedings of the International Symposium on Reliable Distributed
Systems, pages 209–218, Madrid, Spain, 4–7 October 2011. IEEE.

[98] Florian Metzger, Tobias Hoßfeld, André Bauer, Samuel Kounev, and Poul Heegaard.
Modeling of aggregated iot traffic and its application to an iot cloud. Proceedings of
the IEEE, 107:679–694, 2019.

[99] Roger Smith. Computing in the cloud. International journal of research-technology
management, 52:65–68, 2009.

[100] Xin Jin, Qixu Wang, Xiang Li, Xingshu Chen, and Wei Wang. Cloud virtual machine
llifecycle security framework based on trusted computing. Journal of Tsinghua Science
and Technology, 24:520–534, 2019.

[101] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: Toward
an open-source solution for cloud computing. International Journal of Computer
Applications, 55(3):38–42, October 2012.

[102] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman,
Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus Open-Source Cloud-
Computing System. In Proceedings of the International Symposium on Cluster
Computing and the Grid, pages 124–131, Shanghai, China, 2009. IEEE/ACM.

[103] Ankita Desai, Rachana Oza, Pratik Sharma, and Bhautik Patel. Hypervisor: A survey
on concepts and taxonomy. International Journal of Innovative Technology and
Exploring Engineering, 2:222–225, 2013.

[104] Vijay Varadharajan. Petri net based modelling of information flow security require-
ments. In Proceedings of the Computer Security Foundations Workshop, pages 51–61,
Franconia, NH, USA, 1990. IEEE.

[105] Zakaria Benzadri, Faiza Belala, and Chafia Bouanaka. Towards a Formal Model for
Cloud Computing. In Service-Oriented Computing, pages 381–393. Springer, 2013.

[106] Károly Bósa, Roxana Holom, and Mircea Vleju. A Formal Model of Client-Cloud
Interaction, pages 83–144. Springer, 2015.

[107] Hamza Sahli, Chafia Bouanaka, and Ahmed Dib. Towards a Formal Model for Cloud
Computing Elasticity. In Proceedings of the International WETICE Conference, pages
359–364, 20 Oct, Parma, Italy, 23–25 June 2014. IEEE.

[108] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Progress
on the State Explosion Problem in Model Checking, pages 176—-194. Springer-Verlag,
Berlin, Heidelberg, 2001.

[109] Khodakaram Salimifard and Mike Wright. Petri net-based modelling of workflow
systems: An overview. European Journal of Operational Research, 134:664–676,
2001.

References 129

[110] Antonio Brogi, Andrea Canciani, Jacopo Soldani, and PengWei Wang. A Petri Net-
Based Approach to Model and Analyze the Management of Cloud Applications, pages
28–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[111] Renée Boubour, Claude Jard, Armen Aghasaryan, Eric Fabre, and Albert Benveniste.
A petri net approach to fault detection and diagnosis in distributed systems. In
Proceedings of the IEEE Conference on Decision and Control, pages 720–725, 12
Dec, San Diego, USA, 12 December 1997. IEEE.

[112] ISO Central Secretary. High-level Petri nets — Part 1: Concepts, Definitions and
Graphical notation. Standard ISO/IEC 15909-1:2019, International Organization for
Standardization, Geneva, Switzerland, August 2019.

[113] Raymond M Smullyan. First-order logic. Courier Corporation, 1995.

[114] Kurt Jensen and Lars Kristensen. CPN ML Programming, chapter 3, pages 43–77.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[115] Kurt Jensen, Lars Kristensen, and Lisa Wells. Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software
Tools for Technology Transfer, 9:213–254, 2007.

[116] Ping Wang and Christopher Johnson. Cybersecurity incident handling: a case study of
the equifax data breach. Issues in Information Systems, 19:150–159, 2018.

[117] Stacy Cowley. Equifax to Pay at Least 650 Million in Largest-Ever Data Breach
Settlement, 2019.

[118] Cloudfare. Famous DDoS attacks: The largest DDoS attacks of all time, 2021.

[119] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
DDoS in the IoT: Mirai and other Botnets. Computer, 50(7):80–84, 2017.

[120] Juraj Somorovsky, Mario Heiderich, Meiko Jensen, Jörg Schwenk, Nils Gruschka,
and Luigi Lo Iacono. All your clouds are belong to us: Security analysis of cloud
management interfaces. In Proceedings of the ACM workshop on Cloud Computing
Security, pages 3–14, 21 Oct, Chicago, USA, 2011. ACM.

[121] Su Zhang, Xinwen Zhang, and Xinming Ou. After we knew it: Empirical study and
modeling of cost-effectiveness of exploiting prevalent known vulnerabilities across
iaas cloud. In Proceedings of the ACM Symposium on Information, Computer and
Communications Security, pages 317–328, 4-6 Jun, Kyoto, Japan, 2014.

[122] FIRST. Common vulnerability scoring system, 2022.

[123] Luca Allodi and Fabio Massacci. Comparing vulnerability severity and exploits
using case-control studies. In ACM Transactions on Information and System Security,
volume 17, pages 1–20, 2014.

[124] Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison of document
clustering techniques. In Proceedings of ACM workshop on Knowledge Discovery,
Data and Text Mining, pages 525–526. ACM, 2000.

130 References

[125] OpenStack. OpenSack cloud platform. http://www.open- stack.org/, 2010.

[126] Mass Lund, Bjornar Solhaug, and Ketil Stolen. Evolution in relation to risk and trust
management. In IEEE Computer, 43(5):49–55, 2010.

[127] Jesus Luna, Robert Langenberg, and Neeraj Suri. Benchmarking Cloud Security Level
Agreements Using Quantitative Policy Trees. In Proceedings of the ACM Workshop
on Cloud Computing Security, pages 103–112, 19 Oct, North Carolina, USA, 2012.

[128] Ahmed Taha, Ruben Trapero, Jesus Luna, and Neeraj Suri. AHP-Based Quantita-
tive Approach for Assessing and Comparing Cloud Security. Proceedings of the
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, pages 284–291, 2014.

[129] Kumar Garg, Steve Versteeg, and Rajkumar Buyya. A framework for ranking of
cloud computing services. In Future Generation Computer Systems, 29(4):1012–1023,
2013.

[130] Zia Rehman, Farookh Hussain, and Omar Hussain. Towards multi-criteria cloud
service selection. Proceedings of the IEEE International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, pages 44–48, 2011.

[131] Jesus Luna, Ahmed Taha, Ruben Trapero, and Neeraj Suri. Quantitative reasoning
about cloud security using service level agreements. IEEE Transaction on Cloud
Computing, (99):457–471, 2015.

[132] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: Comparing
public cloud providers. pages 1–14, 1-3 Nov, Melbourne, Australia, 2010. ACM.

[133] Jane Siegel and Jeff Perdue. Cloud services measures for global use: the service
measurement index (smi). In Proceedings of the Global Conference, pages 411–415,
24-27 Jul, San Jose, USA, 2012. IEEE.

[134] Shirlei Chaves, Carlos Westphall, and Flavio Lamin. SLA perspective in security man-
agement for cloud computing. In Proceedings of the IEEE International Conference
on Networking and Services, pages 212–217, 07-13 Mar, Cancun, Mexico, 2010.

[135] Ganna Frankova and Artsiom Yautsiukhin. Service and protection level agreements
for business processes. Proceedings of the European Young Researchers Workshop on
Service Oriented Computing, pages 38–43, 2007.

[136] Leanid Krautsevich, Fabio Martinelli, and Artsiom Yautsiukhin. A general method
for assessment of security in complex services. pages 153–164, 26-28 Oct, Poznan,
Poland, 2011. Springer.

[137] Sheikh Habib, Sebastian Ries, and Max Mühlhäuser. Towards a trust management
system for cloud computing. Proceedings of the IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, pages 933–939, 2011.

[138] Shou Wang, Li Zhang, Shuai Wang, and Xiang Qiu. A cloud-based trust model for
evaluating quality of web services. In Computer Science and Technology, 25(6):1130–
1142, 2010.

References 131

[139] Irfan Haq, Rehab Alnemr, Adrian Paschke, Erich Schikuta, Harold Boley, and
Christoph Meinel. Distributed trust management for validating sla choreographies.
In Proceedings of the International Conference on Grids and Service-oriented Archi-
tectures for Service Level Agreements, pages 45–55, 31 Jul, New York, USA, 2010.
Springer.

[140] Developer Guide. Amazon cloudwatch. 2009.

[141] CloudStack. Open source cloud computing, 2013.

[142] Anas Ayad and Uwe Dippel. Agent-based monitoring of virtual machines. In Interna-
tional Symposium on Information Technology, volume 1, pages 1–6, 2010.

[143] Giuseppe Aceto, Alessio Botta, Walter de Donato, and Antonio Pescapè. Cloud
monitoring: A survey. In International Journal of Computer Networks, volume 57,
pages 2093–2115, 2013.

[144] Lieve Hamers, Yves Hemeryck, Guido Herweyers, Marc Janssen, Hans Keters, Ronald
Rousseau, and André Vanhoutte. Similarity measures in scientometric research:
The jaccard index versus salton’s cosine formula. In Information Processing &
Management, 25(3):315–318, 1989.

[145] Rui Zhuang, Scott A DeLoach, and Xinming Ou. Towards a theory of moving target
defense. In Proceedings of the ACM Workshop on Moving Target Defense, pages
31–40, 7 Nov, Scottsdale, USA, 2014.

[146] Hamed Okhravi, Thomas Hobson, David Bigelow, and William Streilein. Finding
focus in the blur of moving-target techniques. IEEE Security & Privacy, 12(2):16–26,
2013.

[147] Ping Chen, Jun Xu, Zhiqiang Lin, Dongyan Xu, Bing Mao, and Peng Liu. A practical
approach for adaptive data structure layout randomization. In Proceedings of the
European Symposium on Research in Computer Security, pages 69–89, 21-25 Sept,
Vienna, Austria, 2015. Springer.

[148] Kanad Sinha, Vasileios P Kemerlis, and Simha Sethumadhavan. Reviving instruction
set randomization. In Proceedings of the IEEE International Symposium on Hardware
Oriented Security and Trust, pages 21–28, 01-05 May, Mclean, USA, 2017. IEEE.

[149] Jin-Hee Cho, Dilli Sharma, Hooman Alavizadeh, Seunghyun Yoon, Noam Ben-Asher,
Terrence Moore, Dong-Seong Kim, Hyuk Lim, and Frederica Nelson. Toward proac-
tive, adaptive defense: A survey on moving target defense. IEEE Communications
Surveys & Tutorials, 22:709–745, 2020.

[150] Andrei Homescu, Todd Jackson, Stephen Crane, Stefan Brunthaler, Per Larsen, and
Michael Franz. Large-scale automated software diversity—program evolution redux.
IEEE Transactions on Dependable and Secure Computing, 14(2):158–171, 2015.

[151] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti Mäkelä, Johannes
Holvitie, Sami Hyrynsalmi, and Ville Leppänen. Diversification and obfuscation
techniques for software security: A systematic literature review. Information and
Software Technology, 104:72–93, 2018.

132 References

[152] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. An effective address mutation
approach for disrupting reconnaissance attacks. IEEE Transactions on Information
Forensics and Security, 10(12):2562–2577, 2015.

[153] Dilli Prasad Sharma, Dong Seong Kim, Seunghyun Yoon, Hyuk Lim, Jin-Hee Cho,
and Terrence J Moore. Frvm: Flexible random virtual ip multiplexing in software-
defined networks. In Proceedings of the IEEE International Conference On Trust,
Security And Privacy In Computing And Communications, pages 579–587, 01-03 Aug,
New York, USA, 2018. IEEE.

[154] Stefan Achleitner, Thomas La Porta, Patrick McDaniel, Shridatt Sugrim, Srikanth
Krishnamurthy, and Ritu Chadha. Deceiving network reconnaissance using sdn-
based virtual topologies. In IEEE Transactions on Network and Service Management,
volume 14, pages 1098–1112. IEEE, 2017.

[155] Stephen Boyd and Angelos Keromytis. Sqlrand: Preventing sql injection attacks. In
Proceedings of the International Conference on Applied Cryptography and Network
Security, pages 292–302, 8 Jun, Berlin, Germany, 2004. Springer.

	Table of contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 A Brief Overview of the Cloud Environment
	1.2 Security of the Cloud
	1.3 Research Questions and Contributions
	1.4 Thesis Organization

	2 Background & Related Work
	2.1 VM Life Cycle
	2.2 Asset-based Threat Analysis
	2.2.1 Creation Stage
	2.2.2 Storage Stage
	2.2.3 Deployment Stage
	2.2.4 Execution Stage
	2.2.5 Exit and Deletion Stages
	2.2.6 Migration Stage
	2.2.7 Categorizing Threats using the STRIDE Model

	2.3 Graphical Security Models
	2.4 Conclusion

	3 Designing and Modelling the Cloud
	3.1 Functional Cloud Model
	3.2 Defining the Functional Model of the Cloud
	3.2.1 Control Layer
	3.2.2 Infrastructure Layer
	3.2.3 Storage Layer
	3.2.4 Information Flow in Launching a VM

	3.3 Conclusion

	4 Information Flow Model
	4.1 A Transition System
	4.1.1 Normal Behavior
	4.1.2 Incorporating Malicious Inputs to the System
	4.1.3 Representing a Transition System
	4.1.4 Information Flow Model Requirements

	4.2 Modelling the Cloud operations
	4.2.1 Instantiation of the Cloud Functional Behavior

	4.3 Instantiation of a Threat's Behavior
	4.3.1 Reconnaissance Step
	4.3.2 Exploit Step

	4.4 Connecting the Cloud Model and Threats
	4.5 Conclusion

	5 Threat Analysis
	5.1 Enumerating the Cloud behavior
	5.2 ThreatPro: A Multi-layer Dynamic Threat Analysis
	5.2.1 Validation: Real-world Case Studies
	5.2.2 Case II: Availability as a requirement

	5.3 AttackDive: Exploring Attack Surfaces
	5.3.1 Insider Attacker vs. Outsider Attackers

	5.4 Conclusion

	6 Requirements-based Threat Analysis
	6.1 Investigating Variants of Threats
	6.1.1 Stage A. Vulnerability Data
	6.1.2 Stage B. Feature Extraction
	6.1.3 Stage C. Creating Context
	6.1.4 Stage D. Clustering
	6.1.5 Results and Discussion

	6.2 Requirement based Threat Modeling
	6.2.1 Users and Requirements Capturing
	6.2.2 Vulnerability Perspective of the Ontology
	6.2.3 Using Design Structure Matrix for Threat Analysis
	6.2.4 Profiling Security of the Cloud
	6.2.5 Extracting Influential Actors using DSM

	6.3 Conclusion

	7 A Customer-Centric Approach to Validate the Cloud
	7.1 Basic Concepts
	7.2 Related Work
	7.3 Proposed Methodology
	7.3.1 Stage A. Requirements Specification
	7.3.2 Stage B. Monitoring the Selected CSP
	7.3.3 Stage C. Service Validation
	7.3.4 Stage D. Trust State

	7.4 Case Study: Trust Assessment of the Cloud
	7.4.1 Case I: Launching a VM
	7.4.2 Case II: VM Migration

	7.5 Conclusion

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work: Proactive Threats Mitigation Techniques

	References

