
On More Effective Performance Testing

Yiqun Chen

Supervisor: Prof. Neeraj Suri

Dr. Matthew Bradbury

School of Computing and Communications
Lancaster University

This dissertation is submitted for the degree of
Doctor of Philosophy

System Security Group September 2023

This page is intentionally left blank

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Yiqun Chen
September 2023

Acknowledgements

As a life long gamer since 90s, it seems no surprise that I walk on the path of computer
science. It is not surprising after all that, besides games, I started with the LOGO language
in the kindergarten, when I could hardly enumerate 26 letters across the keyboard. I still
remember my first X86 computer, a Pentium 133 MHz laptop (people had really strong and
high-temperature tolerant laps in 90s!) with old Windows operating systems (OS). The
laptop has a spring loaded compact disc (CD) drive, whose clutch is broken and could eject
while the computer is accessing data on the CD. When the CD is ejected unexpectedly, the
system crashes with a blue screen claiming the accessed memory address is invalid. A hard
reboot upon the blue screen sometimes loses the data pending at I/O cache queues, which
eventually corrupts the hard drive data and the Windows graphic interface is no longer able
to start properly. After 20 years, I know this is a system reliability problem and a security
vulnerability in terms of system availability. More specifically, it is an exaggerated error
handling problem, discussed by Pakki and Lu [122]. Perhaps, I am destined to research
software and system reliability problems 20 years ago.

First and foremost, I would like to thank my PhD supervisor and mentor, Prof. Neeraj Suri,
PhD. I appreciate the opportunity you granted me, and your constant support on this tortuous
journey of computer science research. I am also grateful for your invaluable suggestions for
my research. It is an honor to work under your advice, along with the great groups you built
in Technische Universität Darmstadt and Lancaster University. Also I would like to thank Dr.
Matthew Bradbury for your help and edits on my writings.

Thank you Stefan for your introduction into the fun world of computer science research,
as well as your senpai experience not only in computer science, but also in craft beers. I
would also like to thank Olli, for your help during my time in UK, and your guidance towards
quality liqueurs and spirits. Thank you Salman and Heng for having to listen to my complains
and non-sense chit-chat all the time from Germany to UK, physically and remotely. Thank
you Nico for nitpicking my C++ code from time to time and that is a lot of fun to explore
how ugly C++ actually is. Also a thank you to Habib for drinking together with Stefan,
Olli and Nico. That was a seriously important part of a PhD life to keep sanity! Thank
you Sabine, for your tremendous help in administrative work and free us from repetitive

viii

and tedious documents in German. I also owe Ute a big thank you for your infrastructure
administration, which is so crucial that saves us tons of time to focus more on our researches!
I am also grateful for being together with all other former DEEDS group members, Ahmed,
Hatem, Kubi, Patrick and Tsveti. It was such a memorable and amazing period to work with
you! I am thankful for Prof. Roberto Natella as my co-author, as well as your support and
suggestions backed by profound experience in computer science!

I would thank all members in the system security group at Lancaster University as well.
Yiqun Chen

Lancaster, March, 2023

Abstract

Software on modern computer systems is ubiquitous in our daily lives, running on a wide
range of devices, from smart watches to super computers. Such software systems grant us
with the versatility of their functionality, and become increasingly complex during years of
development to adapt the increasing demands of users. However, the software systems may
not be dependable per se, on which we rely more and more in recent years, as the human
mistakes in the code could turn to bugs, defects or vulnerabilities. To minimize both the
number and the severity of such human mistakes, developers usually test the software before
releasing it to public. Software tests verify if the behavior of the underlying software, or
software under test (SUT), deviates from a specification, which states the required functional
or non-functional properties of the SUT. One of the key aspects of non-functional properties
is the software performance, which measures how fast a SUT processes its inputs. In
comparison with functional testing, performance testing lacks testing oracles, is flaky with
testing environment. In this thesis, a piece of inefficient code causing the SUT to deviate from
specification is considered as a performance bug. Developers usually utilize performance
testing similar to aforementioned functional testing to identify performance bugs. This
thesis aims to improve performance testing by performance mutation testing (PMT) and
performance fuzzing.

A natural question is, as developers err in the SUT, a test writer may also make mistakes
when devising the test suite, and it remains unknown whether performance testing is caliber-
ated correctly to be able to find performance bugs. So, an approach to grade the quality of
performance testing is needed. As performance testing usually lacks testing oracles, the first
step towards evaluating performance testing is to study and understand existing performance
bugs. A complete study of more than 700 performance bugs with the discussion on their
semantic commonalities is hence presented.

Based on investigated performance bugs as well as the extracted semantics, the mutation
testing (MT) technique is adopted to grade the effectiveness of performance testing. MT
injects known bugs into SUT, and checks if the testing suite is capable of identifying artificially
injected bugs. In addition, MT could also be used to determine if injected bugs are covered,
thus determining the code coverage of the testing suite. Performance bugs to be injected are

x

synthesized based on the fault models derived from the aforementioned investigation. In this
thesis, an effective PMT framework is developed and evaluated.

PMT tells merely how effective performance testing is, and a lot of manual efforts are
nevertheless needed to find proper inputs for a test case. In recent years, fuzz testing (or
fuzzing for short), was utilized to search for proper inputs for SUT automatically. Despite
existing approaches exploited the capability of fuzzing to identify performance bugs, the
existing discussion mainly focuses on how a performance fuzzer could explore the longest
execution path. An early experiment shows that each node of the execution path, on which
fuzzing is guided, may not yield the same performance impacts. As many factors could impact
the performance of generated inputs, e.g., fuzzing timeout limits, this thesis reevaluates a
performance testing framework, known as PERFFUZZ, to provide general recommendations
on using performance fuzzing.

In summary, this thesis a) provides a dataset of performance bugs, and b) presents
a PMT framework accepting performance bug semantics, and c) investigates significant
configurations of performance fuzzing and provides suggestions on the effective usage of
performance fuzzing.

Table of contents

List of figures xv

List of tables xvii

1 Introduction 1
1.1 Software Dependability and Security . 1
1.2 Performance Testing and Performance Bugs 4
1.3 Research Questions and Contribution . 6
1.4 Publications . 11
1.5 Organization . 11

2 Related Work and Background 13
2.1 Performance Issues and Diagnostic Approaches 13
2.2 Code Instrumentation and Performance Profilers 15
2.3 Empirical Study on Performance Bugs . 18

2.3.1 Performance Bugs for Evaluating and Training Detection and Local-
ization Approaches . 18

2.3.2 Empirical Studies of Performance Bugs 19
2.4 Performance Mutation Testing . 19
2.5 Performance Fuzzing . 22

3 Empirical Study on Performance Bugs 25
3.1 Introduction . 25
3.2 Methodology . 27

3.2.1 Selection of Projects and Commits 27
3.2.2 Taxonomy . 29
3.2.3 Bug Fix Time . 30
3.2.4 Seniority of Fixers . 31
3.2.5 Number of Changed Lines . 32

xii Table of contents

3.2.6 Bug Collections . 33
3.3 The Shape and Variety of Fixed Performance Bugs 33

3.3.1 Fast-path . 33
3.3.2 Arguments . 34
3.3.3 Cache memoization . 35
3.3.4 Data Access . 36
3.3.5 Synchronization . 38
3.3.6 Miscellaneous . 38

3.4 Performance Bugs Characteristics . 39
3.4.1 Bug Pattern Distribution . 39
3.4.2 Performance Bug Fix Duration . 41
3.4.3 Performance Bug Fixing Developer Experience 43
3.4.4 Performance Bug Fix Size . 43

3.5 Threats to Validity . 45
3.6 Conclusion . 48

4 Performance Mutation Testing 49
4.1 Introduction . 49
4.2 Background . 51

4.2.1 Performance Mutation Testing . 51
4.2.2 PMT Fault Models . 52

4.3 SLOWCOACH: A PMT Framework . 56
4.3.1 Overview and Workflow . 56
4.3.2 Mutation Operators . 57
4.3.3 Implementation . 62
4.3.4 Prototype Limitations . 62

4.4 Evaluation . 63
4.4.1 Experimental Setup . 63
4.4.2 RQ 1: Mutant Generation and Overheads 65
4.4.3 RQ 2: Functional Equivalence . 67
4.4.4 RQ 3: Mutation Score and Discussion 68
4.4.5 Internal and External Validity . 72

4.5 Conclusion . 73

5 Performance Fuzzing 75
5.1 Introduction . 75
5.2 Background . 80

Table of contents xiii

5.3 Study Design . 83
5.3.1 The Input with Worst Performance and Performance-Size Ratio (PSR) 84
5.3.2 Performance Relevant Input (PRI) 84

5.4 Evaluation . 85
5.4.1 Evaluation Setup . 85
5.4.2 Overview . 85
5.4.3 Discussion . 86
5.4.4 Future Work . 89

5.5 Conclusion . 90

6 Future Work 91

7 Conclusion 93

References 97

Appendix A Case Studies in grep 115
A.1 Case 1 . 115
A.2 Case 2 . 118
A.3 Case 3 . 123

Appendix B Complete Performance Fuzzing Experiment Data 125
B.1 S1 . 126
B.2 S2 . 129
B.3 S3 . 132
B.4 S4 . 135
B.5 V1 . 137
B.6 V2 . 139

List of figures

1.1 Software Dependency . 2
1.2 Threats to Dependability . 3
1.3 Kernel Device Driver Example . 5
1.4 Performance Testing Procedure . 6

2.1 Taxonomy of Performance Issues . 14
2.2 Proposed llvm Based Profiler . 15
2.3 A Flame Graph Example . 17

3.1 Distribution of performance bug patterns across all investigated commits . . 40
3.2 Distribution of the identified performance bug patterns relative to the number

of investigated commits (stated on top of the bars) for each project. 40
3.3 Performance bug fix duration for different bug patterns measured by FTCF

(see Section 3.2.3) . 42
3.4 Seniority of bug fixing developers across performance bug patterns. The

metric captures the distance of a project-local seniority metric from the
median seniority of all candidate developers for the fix on the same project.
A seniority of 0 indicates experience matching the median, positive seniority
higher experience, and negative seniority lower experience. 44

3.5 Modified source lines of code per bug fixing commit across performance bug
patterns . 45

3.6 Relative distribution of source line of code change types (addition, deletion,
modification) in performance bug fixes by bug pattern 46

4.1 PMT Fault Models . 56
4.2 SLOWCOACH Workflow . 57
4.3 Cache Memoization optimization pattern (Q4-B in Table 4.3) 58
4.4 Functional Equivalence by Operators and Programs 66
4.5 Mutation Scores of P-mutants by Operator Types and Programs 70

xvi List of figures

4.6 Mutation Scores of P-mutants by Operator Types and Programs 74

5.1 Execution Time and Path Length . 78
5.2 A simplified common procedure of the fuzz testing 82
5.3 Execution Time (Median) of the Slowest Input by Projects and Setups . . . 86
5.4 PSR of the Slowest Input by Projects and Setups 87
5.5 PRI across Projects and Setups . 88

List of tables

3.1 Total commit counts for each project . 28

4.1 Performance Mutation Testing vs. Mutation Testing [112] 53
4.2 Evaluation Software Projects . 63
4.3 Mutation Operators. 64

5.1 Evaluation Targets . 83

Chapter 1

Introduction

1.1 Software Dependability and Security

Software systems and services are permeating in recent years, running on a huge variaty
of devices, ranging from smart watches, smart phones to supercomputers and Cloud sys-
tems. Software services bring unimaginable convenience to our lives. Daily shopping or
entertainment can be easily accessed via smart devices. For example, software running
on old handheld cellular phones in 80s and 90s was relatively simple by design, on which
user interaction is limited to number pads and no third-party software is allowed. In early
2000s, smart phone precursors, e.g. personal digital assisstant (PDA), allow users to interact
with them on a touch screen and developers to extend the functionalities of such portable
devices with software development kits (SDKs). In recent years, two notable modern mobile
operating systems (OS), Android and iOS, enable smart phones to provide most function-
alities that are expected on a desktop system, far beyond a portable phone. According
to the Cisco annual report in 2022 [30], there will be 3.6 network devices per capita and
two-thirds of the entire population over the world will have Internet access. Moreover, the
artificial intelligence (AI) technology has drastically changed software sevices in recent years.
Learning based AI technologies, such as machine learning, deep learning or reinforcements
learning, see wide applications, ranging from recommendation systems [129, 130, 48] to
voice recognition [127, 93, 49], computer vision [147, 77].

Despite the improvement in the functionality, software also becomes bulky and complex
by magnitudes at the same time. The Linux kernel as an example, had around 10 000 lines
of code (LoC) in 1991, and now 31 495 026 lines in 20221. This increased complexity is
multiplied by the software running on the kernel, as shown in Figure 1.1. Users interact

1Only C source files and header files are counted. Linux v6.1.

2 Introduction

Hardware

Operating System Kernel

System Call

Library

Runtime Framework

Application

User Space

Kernel Space

Fig. 1.1 Software Dependency

with applications, which are software programs help users perform activities. Applications
need to operate the underlying computer and hence depend on either various libraries to run
natively, or some programming language runtimes, e.g., server programs on a Java virtual
machine or AI programs by the Python interpreter2. Both runtime or libraries eventually
request the OS kernel to operate the computer via an interface known as system calls.

If any component in Figure 1.1 is broken, the quality of service (QoS) would be impacted
at the user side, as the error would propagate along the dependency chain. Avizienis et al.
[10] discussed the problem and software dependability relevant concepts. A correct software
system provides correct services that behave in accordance to the specification, and any
deviation of the specification is considered as a failure. Such failure is caused by the deviation
of internal states of a program, known as errors, and errors are instances activated by faults.
Figure 1.2 illustrates the causality relations among faults, error and failure. For example, a
code snippet contains a bug, and the bug is known as a fault. Given a test suite and some
inputs, the buggy code is covered during the test, and the fault is activated. The erroneous

2It is possible that applications could directly access system calls, but such cases are very rare.

1.1 Software Dependability and Security 3

Fault Error Failure

Activation
Propagation
(External)

Propagation
(Internal)

Fig. 1.2 Threats to Dependability

states by the buggy code propagate across the software components until the program crashes.
The crash is known as the failure.

Generally, confidentiality, integrity and availability are widely considered as significant
security properties, also known as the CIA triad:

• Confidentiality: The information of a system is not disclosed to unauthroized third-
party.

• Integrity: The information of a system is not altered.

• Availability: The readiness of a system to provide services with accordance to the
specification.

The CIA triad partially overlaps with the attributes to build a dependable system defined
by Avizienis et al. [10]:

• Availability: The system is available for correct services.

• Reliability: The system could continously provide services.

• Safety: The failure of the system would not cause catastrophic consequences.

• Integrity: The system would not be improperly altered.

• Maintainability: The system is able to be repaired and modified.

From the perspective of software, a certain type of software faults could threat different
security attributes. In C and C++ for example, a typical fault is invalid memory accesses, such
as dereferencing freed memory, which is an undefined behavior (UB) [161, 162, 91]. Usually,
such accesses would trap an page fault and the program crashes with a segmentation fault
(SIGSEGV) [102, 15, 131], which is a threat to availability. Unfortunately, an out-of-bound

4 Introduction

memory access (buffer overflow) could yield more catastrophic results than sheer availability
problems, e.g., by allowing attackers to execute arbitraty code [167]. Another (in)famous
example is the heartbleed attack, where a single memory copy could unveil credentials and
caused massive data breach in 2014 and 2015 [19, 57].

There are many approaches and practices manipulated and adopted to assure the quality of
service, such as to build dependable systems and mitigate threats to dependability. In addition
to widely accepted software engineering practices such as software design [58, 16, 104]
or software testing [101], a lot of state-of-the-art approaches are proposed in the research
communities, which will be discussed in detail in Chapter 2. These approaches can be
classified into the following 4 categories [10]:

1. Fault Prevention: To prevent the introduction of faults. For example, utilizing the
right programming language for certain problems, carefully designing the software
components, rigorous code review or effective system testing [104].

2. Fault Tolerance: To keep providing correct services at the presence of faults. For
example, microkernels split OS kernels into small chunks in the hope that the system
does not crash upon the failure of a single kernel module [149, 150, 74].

3. Fault Removal: To reduce the number or severity of faults. For example, a lot of
approaches have been proposed to recover from software failures [41, 64, 72, 73, 71].
Recent researches have explored approaches to automatically repair simple faults [79,
81, 80].

4. Fault Forecasting: To estimate the number and impacts of faults. For example, Cotro-
neo et al. [40] predict software aging bugs by the underlying software complexity.

1.2 Performance Testing and Performance Bugs

Many researches mentioned in the previous section [149, 150, 74, 79, 81, 80, 41, 64, 72,
73, 71] are oriented towards functional faults, i.e., the deviation of the system by functional
properties. Software systems could also deviate from non-functional properties, e.g., per-
formance bugs, also known as performance issues or performance defects. These bugs can
significantly impact the speed and efficiency of a software application. There are a variety
of factors causing such bugs, including inefficient code, poorly designed algorithms, and
resource contention. The consequences of performance bugs can be severe, ranging from
a poor user experience to lost revenue for businesses. In today’s digital age, where users
expect fast and seamless performance from software applications, it is critical for developers

1.2 Performance Testing and Performance Bugs 5

efficient inefficient

36 s

38 s

40 s

42 s

44 s

46 s

ex
ec

ut
io
n
tim

e

(a) Execution Time of 4000
Threads on 100 Devices

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

number of threads

0 s

5 s

10 s

15 s

20 s

25 s

30 s

35 s

40 s

ex
ec

ut
io
n
tim

e

real time of efficient module
real time of inefficient module

(b) Execution Time Median on
100 Devices

(c) Execution Time Median on
10 Devices

Fig. 1.3 Kernel Device Driver Example

to prioritize the prevention and resolution of performance bugs. Though Jin et al. [84] define
that performance bugs are “software defects where relatively simple source-code changes
can significantly speed up software, while preserving functionality”, performance bugs can
nonetheless be notoriously difficult to identify and fix. There are many reasons causing
performance bugs hard to be identified, as performance bugs often do not manifest until
certain conditions are met, for example, the application is under heavy load, running for an
extended period of time [43, 40, 41] or running under some configuration [69].

To demonstrate performance bugs and performance testing, a series of experiments are
carried out, among which one experiment with 100 devices (Figure 1.3a and Figure 1.3b)
and the other with 10 devices (Figure 1.3c) are detailed in this chapter3. The experiment is
composed of two kernel first-in-first-out (fifo) queue implementations resembling the scull
example of Corbet et al. [37], with the support of blocking accesses from the user space
and parameterized number of devices, and a parameterized multi-threaded test program
that spawns its threads to read from or write to a given fifo device. The “efficient” module
distributes a lock for every device, while the lock is acquired upon reading and writing of the
corresponding device until the reading or writing is complete. The “inefficient” module, on
the other hand, defines a global lock for all devices which serializes the request processing of
all devices. In the user space test program, each thread needs to read or write a fixed amount
of data, which means the number of threads represents the workload size. The causality
of the inefficient module is similar to the big kernel lock problem in the Linux kernel for
years [102, 15, 97].

3The original experiments are carried out with 100 to 4000 threads (increment by 100 threads)
as workloads running on 10 to 100 devices (increment by 10 devices). Figure 1.3b emphesizes
the impacts of performance bugs and it was presented on ECOOP doctoral symposium 2018, which
can be found at https://2018.ecoop.org/details/ecoop-issta-2018-doctoral-symposium/11/
Testing-for-Performance-Issues-in-OS-Kernels. Figure 1.3b shows part of the experiment results on
100 devices for clarity, while Figure 1.3c is the complete raw results on 10 devices.

https://2018.ecoop.org/details/ecoop-issta-2018-doctoral-symposium/11/Testing-for-Performance-Issues-in-OS-Kernels
https://2018.ecoop.org/details/ecoop-issta-2018-doctoral-symposium/11/Testing-for-Performance-Issues-in-OS-Kernels

6 Introduction

Detection Localization Optimization

Fig. 1.4 Performance Testing Procedure

Figure 1.3 presents the test results of experiments. The y-axis represents the execution
time in seconds, or the wall clock time executing the program (collected by the time utility),
and the x-axis is the number of threads. Each bar in Figure 1.3a represents the execution time
when there are x threads reading from and writing to 100 devices. As the figure suggests,
the effect of the optimization can make a execution time difference of up to 9 seconds with
a maximum relative difference of roughly 300% in the case of 200 threads. However, if
the test is repeated 50 times, some repetitions of the “efficient” version only yield 2 s or 3 s
improvement, where the best case of the “inefficient” version has only less than one second
performance overhead than the worst case of the “efficient” version (see Figure 1.3b).

A typical procedure to fix a performance bug is shown in Figure 1.4. Given the imple-
mentation of the inefficient kernel module as the instance of a performance bug case, the first
step is to detect the performance bug, which is to determine the existence of performance
bugs. In this example, the detection is to compare the performance of the inefficient module
with the efficient one as the reference. Then, developers would continue to localize the
causality of the performance bottleneck upon the occurence of performance bottlenecks, i.e.,
to pinpoint where performance bugs dwell in the code, usually by profilers[152, 124]. In
the same example, unnecessary lock contention is the causality of the performance bug, and
many performance tools, e.g. perf [124], LTTng [152] or lockstat are able to demonstrate
where the lock contention happens. Such localization information entails the number of
attempts to hold the underlying lock, the time a task waiting for this lock, etc. Most profilers
are capable of capturing more information other than locks, and will be discussed in details
in Chapter 2. Once the causalities of performance degradation is spotted, developers would
analyze the causality and devise the solution to mitigate performance bugs, which is desig-
nated as the code optimization in Figure 1.4. It is observed that performance bug detection is
often strongly coupled with the causality analysis [144, 168, 4], which can be challenging to
analyze automatically or with context-free heuristic rules [144, 27, 134].

1.3 Research Questions and Contribution

The efficacy of the performance testing depends largely on the effectiveness of performance
detection. A successful detection provides not only the localization of a pathological entity

1.3 Research Questions and Contribution 7

(a test case and an input or workload), but also hints the code optimization by the causality
analysis. In the previous kernel module example, the performance bug detection is based
on the reference implementation of an efficient module. In the real world however, there is
seldom such a luxury of a reference implementation (a program with optimal performance),
but sometimes requirements on the performance in a specification. The performance specifi-
cations (requirements) differ on different platforms and scenarios. For example, 1 s latency is
usually not a concern for a desktop applications, but could be a hard functional requirement
in real-time systems [149]. The performance detection is hence challenging due to the lack
of a test oracle, which specifies whether the software under test (SUT) is correct or incorrect.
Hence, this thesis aims to formalize and address the research problems caused by the lack of
testing oracles for performance testing.

Reseach Question 1: What are the characteristics of performance bugs?

In practice, artificial test oracles are usually adopted to identify performance bugs. A
prominent example is the regression testing, in which the updated code is tested and compared
with the original code during software development cycles [13]. A performance regression
is the case when the code change degrades the performance in comparison with that of the
original code, where the performance of the original code is the test oracle. Recent researches
aim to exploit the opportunities to identify performance bugs more aggresively. Jin et al. [84]
for example, proposed a performance bug detection approach that match certain syntactic
patterns, such as some functions must be invoked before others, which are specific to a project
context. Wen et al. [164], Chabbi et al. [20], Song and Lu [144] proposed approaches based
on pathological memory accesses analysis. Unfortunately, the dataset of known performance
bugs used by these approaches is no longer available and there is a need for systematic
investigation of performance bugs to guide the future research.

Contribution 1: A dataset and semantic taxonomy of known performance bugs.

The missing of known performance bug datasets limits further research on generalized
performance bug identification approaches. Hence the first contribution of this thesis is the
dataset of performance bug instances in the real-world. Since many performance diagnostic
tools are specialized in certain kinds of performance bugs, this dataset is organized by
the semantic taxonomy of performance bugs. The classification of known performance
bugs help establish performance bug fault models, which will be used for the performance
mutation testing (PMT), and detailed in Chapter 4. This dataset can not only assess the

8 Introduction

alignment of performance bug models and existing performance diagnostic tools, but also
provide a large body of instances for future research evaluation, thanks to its large number of
performance bugs studied (over 700 bugs). In addition, this dataset also studied characteristics
of performance bugs in terms of performance bug complexity, which are used to prioritize
certain types of performance bugs in the future research.

Research Question 2: How to determine if the performance testing is well calibrated to
identify potential performance problems?

Another performance bug detection challenge is that, the selection of workload could
impact the performance bug detection. In another experiment with identical setups of the
previous one, except only 10 devices are available, sometimes the “efficient” module is even
less efficient than the “inefficient” module, as demonstrated in Figure 1.3c. The underlying
problem is caused by the non-determinism of the lock contention [149], which is also one of
the major sources of testing flakiness [98]. The low number of repetitions is another potential
problem, as the execution time medium could be statistically biased to check the alignment
of the underlying performance with the requirements [110]. An approach to identify correct
configurations for performance testing is hence needed.

Contribution 2: A performance mutation testing (PMT) framework and a set of useful
mutation operators.

Recent researches aim to verify the correctness of a test suite with mutation testing [123,
78]. The mutation testing technique is based on fault injection, which aims to inject faults
into the SUT to test the robustness of the underlying software. There are two hypotheses
on which mutation testing (MT) assumes. One is known as the competent programmer
hypothesis stating that the buggy code is behaviorally close to the correct code [52], the
other is coupling effects stating that test suites capable of detecting a certain type of bugs
are able to detect more complex bugs [117]. Based on these hypotheses, if injected artificial
errors can be detected by a test suite, this test suite should be robust enough to identify more
complicated bugs. Mutation testing is therefore to inject faults into the code and to check if
test suites are able to identify these faults.

Similarly, performance mutation testing (PMT) injects performance bugs to test if a
performance testing suite (benchmark and its workloads) is well calibrated to be able to find
mismatch of the SUT performance and performance requirements, if there is any. In Chapter 4,
a PMT framework named SLOWCOACH is implemented and evaluated on 4 real-world

1.3 Research Questions and Contribution 9

projects. As the result of the earlier research (Contribution 1) shows, performance bugs
are usually difficult to be generalized without contextual information, and therefore general
syntactic rules may not be able to generate useful mutants. Chapter 4 hence discusses the
taxnomy of performance fault models, based on which SLOWCOACH adopts configurations
to embed contextual information into mutation operators.

Research Question 3: How to effectively use and adopt performance fuzzing?

One of the conclusions by the evaluation of the Contribution 2 is that the workload
selection is crucial to the effectiveness of performance testing, as well as performance bug
detection. So, automatic approaches to properly generate good performance test cases are
expected to be helpful. Thus, the fuzz testing technique4 [169] is worth of discussing in
detail.

The procedure of fuzzing is a loop randomly mutating inputs and selecting inputs for
the next iteration of random mutation, until the time budget runs out. In classic fuzzing, the
inputs to be selected are those either yield larger code coverage, and any inputs crash the
SUT are recorded. Lemieux et al. [92] proposed a performance fuzzing framework, known as
PERFFUZZ, to automatically generate pathological inputs yielding performance degradation.
PERFFUZZ guides the fuzzing by both code coverage and path length (the number of each
control flow graph edge, or CFG edge being traversed), where the longer a path length is, the
worse its algorithmic cases are explored.

Lemieux et al. [92] have not discussed how PERFFUZZ generated inputs could be used in
performance analysis (cf. Figure 1.4), as the evluation focuses on the path length only. Due
to the discrepancy between classic fuzzing and performance fuzzing in terms of interesting
inputs, the interpretation of interesting inputs would differ greatly. A fuzzing process often
generates thousands of inputs, and there is no clear standard to select which to be used
for performance analysis, because performance analysis relies on the performance metrics
which are not directly provided by fuzzed inputs. In spite of the reasonable approximation
of the worst algorithmic case to the “bad” performance of a program, it remains unknown,
if a longer path length does yield interesting inputs, which are small in size and large in
performance impacts. Performance impacts can be measured by different dimensions and
execution time is adopted in this thesis, which is the most direct performance metrics related
to the denial of service (DoS) attacks [46]. The measurement of such impacts could be
affected by many factors, and the selection of interesting inputs would be affected as a result.

4Fuzz testing is also shortened as fuzzing. These two terms will be used interchangably throughout the
thesis.

10 Introduction

Another problem with the path length is the inconsistency of performance costs among
CFG edges. Some CFG edges could be slower than others, and hence may not be an
ideal fuzzing guidance as admitted by Lemieux et al. [92]. However, it remains unclear,
which fuzzing guidances could fit into PERFFUZZ, and what is the efficacy of these fuzzing
guidances.

Contribution 3: An empirical study on the efficacy of PERFFUZZ with various fuzzing
configurations and variants based on PERFFUZZ

In Chapter 5, an empirical study on the efficacy of PERFFUZZ [92] is carried out. This
study comprises of comparisons of 4 performance fuzzing setups, as well as 2 PERFFUZZ

based variants. These fuzzing setups encode the aforementioned factors that could affect the
results of performance measurements, and eventually the efficacy of performance fuzzing.

The result of comparisons provides advices to explore effective usage of performance
fuzzing. The general recommendation to apply performance fuzzing is to customize fuzzing
parameters, notably the timeout value as well as the file size limit. The timeout value should
be set as large as possible for the fuzzing tool to fully explore generated inputs, and it would
nevertheless be dynamically limited by AFL based fuzzers, such as PERFFUZZ. The file size
limit should be set based on developers’ experience, as a too small size limit would confine
the fuzzer search space, and a too large one would allow the fuzzer to explore a lot of linearly
increasing workloads, which are known to be less interesting. Other conclusions suggest to
use custom inputs as well as to keep the compiler optimization levels aligned.

The evaluation on PERFFUZZ argues that the PERFFUZZ framework is limited to gen-
erated more interesting inputs with other performance fuzzing guidances. The first limit is
that the timeout value is dynamically computed and users can merely set an upper bound.
For example, in the experiments on libjpeg, the fuzzer usually stops exploring an input
if it takes longer than 12 to 13 seconds, despite the manual timeout value is 100 s. The
second limit is that performance relevant information is confined within a static program,
which is referred as internal factors. Moreover, many performance related metrics require
contextual information, such as the names of memory allocation functions to guide the
fuzzing by memory allocation, as most C/C++ programs implement their own allocators
for performance. The result of the second part of the study shows that performance fuzzing
timeout and the fuzzing guidance relying on internal factors are the limits to overcome in the
future research on performance fuzzing.

1.4 Publications 11

1.4 Publications

The following publications have, in parts verbatim, been included in this thesis.

[27] Yiqun Chen, Stefan Winter, and Neeraj Suri. Inferring performance bug patterns
from developer commits. In 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), pages 70–81, 2019. doi: 10.1109/ISSRE.2019.00017

[29] Yiqun Chen, Oliver Schwahn, Roberto Natella, Matthew Bradbury, and Neeraj Suri.
Slowcoach: Mutating code to simulate performance bugs. In 2022 IEEE 33rd Interna-
tional Symposium on Software Reliability Engineering (ISSRE), pages 274–285, 2022.
doi: 10.1109/ISSRE55969.2022.00035

[28] Yiqun Chen, Matthew Bradbury, and Neeraj Suri. Towards effective performance
fuzzing. In 2022 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 128–129, 2022. doi: 10.1109/ISSREW55968.2022.00055

The following publications are related to different aspects covered in this thesis, but have
not been included.

[172] Shujie Zhao, Yiqun Chen, Stefan Winter, and Neeraj Suri. Analyzing and improving
customer-side cloud security certifiability. In 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pages 300–307, 2019. doi:
10.1109/ISSREW.2019.00088

1.5 Organization

This thesis is organized as follows. Chapter 2 discusses the general background related to
the performance, existing tools as well as diagnostic approaches. Related work for every
forementioned contributions are discussed in further details. Chapter 3 discusses the empirical
study on performance bugs across 13 real world C/C++ projects, and the characteristics of
performance bugs. Chapter 4 discusses the performance mutation testing (PMT) technique
and evaluates it on 4 real world projects. Chapter 5 investigates the performance fuzzing
technique. This chapter emphesizes the different performance related scenarios and the
limits of applying different fuzzing guidances in current performance fuzzing frameworks.
Chapter 6 expands the discussion on the research problems on performance bugs to be
addressed in the future. Chapter 7 summarizes the research problems and contributions of
this thesis.

Chapter 2

Related Work and Background

This chapter discusses the background information and literature reviews corresponding to
Chapter 3, Chapter 4 and Chapter 5. Section 2.1 and Section 2.2 focus on the real-world
performance bugs and the technology behind performance bug diagnostic tools. Section 2.1
discusses the general classfication of performance bugs and early research efforts to help
address performance problems of this thesis. Section 2.2 discusses existing performance
profiling tools and code instrumentation, which is a technique behind many performance diag-
nostic tools with insights into the runtime information of a program. Section 2.3, Section 2.4
and Section 2.5 review the state-of-the-art performance testing techniques corresponding
to Chapter 3, Chapter 4 and Chapter 5 respectively. Section 2.3 discusses the performance
bugs and is related to Chapter 3. Section 2.4 discusses trending topics of mutation testing
in the software engineering and testing community and is related to Chapter 4. Section 2.5
discusses trending topics of the fuzzing technology in the software engineering and security
communities and is related to Chapter 5.

2.1 Performance Issues and Diagnostic Approaches

Performance issues can be generally classified by sympotoms into on and off CPU related, as
depicted in Figure 2.1. On-CPU performance issues are usually caused by performance bugs
that redundantly computate and fully utilize the CPU [144]. Off-CPU issues on the other
hand, indicates unnecessary synchronization events of a program, during which the CPU is
not utilized [173]. A prominent cause of off-CPUs events is I/O operations. Given sufficient
workload, off-CPUs performance issues could be detected by the CPU utilization.

On-CPU issues can be further divided into CPU-bound or memory-bound performance
issues. CPU-bound issues are typically algorithmic problems that redundantly compute
unnecessary results [164, 144]. Memory-bound issues are caused by inefficient data accesses,

14 Related Work and Background

Performance Issues

On-CPUOff-CPU

CPU-boundMemory-bound

vector vs listIO, mutex contention,
Etc..

Fig. 2.1 Taxonomy of Performance Issues

due to the huge discrepency of data access performance between CPU and memory [149].
An example of such issues is the time to sum a vector and a list of integers in C++, where the
vector based sum needs merely half of the time needed by the list based sum. Memory-bound
issues directly impact the effectiveness of performance sensitive services such as game
engines or low-latency I/O in FinTech. To mitigate memory-bound issues, developers usually
design the software from data perspective in contrast to classic design patterns [138].

The concurrency synchronization problem is between on and off CPU. The lock con-
tention on sleep based locks, such as mutex [97, 102, 15], which put the underlying process
(thread) into sleep, are off-CPU events. The contention on polling based locks, such as spin
locks, which repeated querying whether the lock is available, are on-CPU events. Mutex
contentions can be detected by the CPU utilization, while spin lock contentions can only be
detected by tools such as lockstat.

In the early stage of this thesis, a profiler was also proposed to capture finer-grained
performance details, as detailed in Figure 2.2. The left part of the figure is the on-site tracing.
The basic block tracing pass implements the module pass interface provided by LLVM and
inserts an instruction to call the profiling function. The profiling function records event traces
on /sys or /proc. The right part of the figure is the construction of the primitive data used
for post-processing. After parsing the traced records from /sys or /proc, a list of events
sequence is built with the composition pattern [58]. The traced records are the raw data to be
used to detect and localize performance bottlenecks.

2.2 Code Instrumentation and Performance Profilers 15

Fig. 2.2 Proposed llvm Based Profiler

The proposed approach for detection and localization could then apply various analytic
strategies, as the primitive event list is flexible enough for different mutation and aggregation
operations. The most intuitive usage of the primitive list is to check the synchronization-
working-ratio, which is the proportion of the time spent on interrupt/scheduling/locking
events and the time spent on their corresponding parent basic blocks. The synchronization-
working-ratio is a useful criterion to detect performance bottlenecks caused by various kinds
of overheads, while the suspected basic block is also localized by the profiler. Additionally,
the primitive event list provides the information on other processors while a processor is
blocked.

Due to overlaps on functionalities seen in other researches [168, 4, 145], this proposed
profiler was never published. However, the prototype of this profiler provides valuable
information as proof-of-concept for researches in this thesis, e.g., measuring the wall clock
time of basic blocks in Chapter 5.

2.2 Code Instrumentation and Performance Profilers

Code profilers are used to demonstrate the performance of a program and its components,
e.g., by showing how many seconds a procedure1 takes or how many times a procedure is
invoked. The common technique behind profilers starts by instrumenting small pieces of
probe code into points of interest (POI) to collect basic performance related information.
POIs are usually the entrance and exits of a function or a procedure, and the probe records
the information like the time stamp and execution counts. After the execution of a program
profilers aggregate the recorded information and visualize the performance overheads of
POIs.

1In C or C++ it is called a function, in Java it is called a method and the language agnoistic term used in
compilers is a procedure [2]. I will use these synonyms interchangeably throughout the thesis.

16 Related Work and Background

Since profilers need to intrument probes into code, the profilers are almost always strongly
coupled with the underlying programming language and runtime environment. For C and
C++ programs, gprof [61] is developed based on gcc and X-Ray2 [11] is based on llvm.
Similarly, there is Java VisualVM bundled with JDK and Python has built-in profiling
facilities.

Besides programming languages, operating system (OS) kernels also need dedicated
profilers due to different runtime environments, as instrumenting code into a running program
is technically very complicated3. The Linux kernel provides a set of tracepoints that facilitates
code instrumentation, performance tracing and kernel events audition [62]. Tracepoints are
the POIs defined by kernel developers where the code is relevant to the performance or
security properties. For example, the kprobe module in the Linux kernel allows developers
to dynamically instrument code at the function entrance and exit, as well as lock contentions
or other events. Other kernel tracing approaches like ftrace [34], SystemTap [35] or
LTTng [152] are also based on the kernel instrumentation and tracepoints. Tracepoints by
these tracing subsystems can be dynamically turned on and off to prevent system-wide
performance degradation. Besides tracepoints, the Linux kernel also utilizes the hardware
features, such as performance monitoring units (PMUs) on X86, as performance counters.
One of the most commonly used Linux profiler is called perf which samples the CPU time
of functions or records these performance counters and visualize the data. perf shows
not only the percentage of sampled CPU time of each function, but also relative CPU time
percentage of functions with the call graph as well as the disassembly code annotated with
the CPU time percentage.

In recent years, Linux kernel developers exploit the power of the old Berkley packet
filter (BPF) mechanisms to enhance the kernel traceability and observability [63]. BPF was
originally designed to allow developers to define the kernel packets handling policies at the
user space, e.g., to modify the IP headers when creating a network address translation (NAT)
bridge or firewall rules [107, 63]. Linux has an extended BPF subsystem, called eBPF, which
allows developers to customize instrumented code with more versatile tracing capabilities.
Since BPF is running at user space and defines kernel behavior, any security vulnerabilities
of the instrumented code could break the entire OS. Hence, the kernel refuses to load a BPF
program with pointers and loops4. There are bcc that provides easy-to-use programming
interfaces along with many predefined performance tracing scripts, and bpftrace which is
a powerful command line utility with a lot of performance tracing functionalities targeting
various kernel scenarios [63].

2There is another similar profiler called X-Ray by Attariyan et al. [9]
3It is also possible to statically instrument the kernel, but instrumented kernels are too slow to be useful.
4Recent patches have added the support for pointers in BPF programs.

2.2 Code Instrumentation and Performance Profilers 17

Search ic

stress
[libc.so.6]

f32xsq.. rand random_rrandom[stress]

Fig. 2.3 A Flame Graph Example

In addition to the Linux tools, DTrace is a great alternative tracing tool on Unix vari-
ants. DTrace was originally developed by SUN for Solaris [103, 105] and adopted by
FreeBSD [107] as well as Linux [119] to trace kernel events besides kernel functions. There
is even a domain specific language (DSL) known as the D language that allows users to
define the instrumented behavior at POIs. Such tracing mechanisms are more generalized
and provide finer granular information on the kernel performance, e.g., how many I/Os have
been done or how many lock contentions in the kernel have occured.

To help performance bug localization, the data collected by perf, BPF based tools or
other tools are usually visualized as graphs, e.g., flame graphs. Figure 2.3 illustrates such
an example, in which the stress command tests the CPU with computing sqaure roots of
random numbers for one minute5. The performance data is the CPU time of each function
collected by perf. The x-axis in the graph represents the percentage of a performance metric
by the function (which is the CPU time in the example), while the y-axis represents the call
stack depth. Each bar in the graph is a stack frame (a function), and the wider the bar is,
the longer its CPU time is. In the example of Figure 2.3, the performance bottle neck is not
the function computing square roots (f32xsqrt), but the function computing the random
numbers. The CPU time to compute random numbers is more than half of the total CPU time
(random() + random_r()).

5stress -c$(nproc) -t1m

18 Related Work and Background

2.3 Empirical Study on Performance Bugs

2.3.1 Performance Bugs for Evaluating and Training Detection and
Localization Approaches

Performance bugs have been studied extensively in recent years and a large number of
detection and localization approaches have been proposed. Interestingly, their efficacy has
often been evaluated on applications with previously unknown (or disregarded) rather than
known performance bugs [87, 85, 118, 4]. A great advantage of such an evaluation is the
potential discovery of previously undiscovered bugs. While the detection of every single
formerly unknown performance bug is a great achievement, only few bugs are found by each
individual approach and bugs from many approaches would need to be combined to form a
suitable performance bug data set to evaluate future approaches against. Unfortunately, newly
found bugs are commonly described in insufficient detail in (space constrained) research
articles to enable their reliable extraction as a reusable performance bug data set, which is
the target of the study in Chapter 3.

A number of articles on approaches to detect or localize performance bugs use actual
performance bugs or performance bug simulations to demonstrate the aproaches’ efficacy
[143, 94, 3]. These evaluations commonly focus on few bugs (between 15 and 70 in the cited
articles) and do not report the relative occurrence of the targeted bug types compared to other
bug types or the complexity of the targeted bugs.

Other articles explicitly state certain performance bug patterns they attempt to detect or
localize [142, 26, 156, 146, 155]. Some of these patterns are highly application dependent
(e.g., [26]). The patterns in the study in Chapter 3 are mapped to existing patterns based on
the information provided in the respective articles.

PerfLearner successfully uses 300 randomly sampled performance bug reports from a total
of 1383 reports across three projects to generate performance test frames that are evaluated
against 10 other reported performance bugs [68]. The authors of PerfLearner report that
extracting and reproducing these 10 performance bugs took approximately 400 work hours,
which illustrates the complexity of reproducing performance bugs and relating them with
performance bug reports. problems are avoided by directly targeting performance bug fixing
commits. A downside of this decision is that there is no way to quantify the performance
impact of the bugs in the study. This is believed to be tolerable, as such quantifications
are highly sensitive to changes in the studied programs’ operational environment, such as
hardware and software configurations.

2.4 Performance Mutation Testing 19

2.3.2 Empirical Studies of Performance Bugs

A number of studies target the assessment and characterization of performance bugs [170,
84, 171, 114, 66] similar to the study in Chapter 3.

Zaman et al. compare quantitative characteristics of performance and security bugs in
Firefox [170]. Their automated analysis of more than 180 000 bug reports, out of which
4293 are performance bugs, reveals that performance bugs take more time to fix and are
tackled by more experienced developers. The study in Chapter 3 targets a smaller sample
of performance bugs, but from a larger variety of projects, which are manually analyzed
to confirm they are indeed performance bugs and characterize them according to how they
hamper performance. Zaman et al. also present a smaller scale qualitative study of 400
randomly sampled performance and non-performance bug reports from Firefox and Chrome,
which reveals that the performance bug reports tend to suffer from poor reproducibility [171].

Jin et al. present an empirical study of 109 randomly sampled performance bug reports
from five applications. Their categorization according to how these bugs are fixed resembles
the categorization presented in this study with the main difference that the categorization
focuses on the intended semantics of performance bug fixes instead of their syntactical
appearance, as elaborated in Section 3.2.2.

Nistor et al.’s comparison of 210 performance bugs against non-performance bugs in
three software projects shows that performance bug fixes are equally likely to introduce new
functional bugs as non-performance bugs and that performance bugs are more difficult to fix
than non-performance bugs [114].

Han and Yu conclude from a study of 193 manually inspected performance bug reports
and related changelogs across three projects that performance bug observability is highly
configuration dependent, while fixing performance bugs does require source changes [66].
This supports the decision to focus the study in Chapter 3 of performance bugs on source
code changes.

2.4 Performance Mutation Testing

The term performance bug was coined by Jin et al. [84], who investigated more than 100
performance bugs in real-world C/C++ projects and developed a tool for detecting these bugs.
Chen et al. [27] surveyed and semantically categorized more than 700 performance bugs
from real-world developer commits from 13 popular C/C++ projects. Sánchez et al. [134]
investigated the performance bugs across multiple publications in the research community
and Tizpaz-Niari et al. [153] surveyed performance bugs in machine learning libraries.

20 Related Work and Background

Many approaches based on the symptoms of performance bugs have been proposed. Su
et al. [145], Chabbi et al. [20], and Wen et al. [164] detect performance bugs by processor
event based sampling (PEBS), which samples hardware events, such as memory or cache
accesses, on modern processors. This facility can be used to identify 1. dead store, where
data are stored to memory but never loaded later, 2. redundant load, where data are loaded
but never stored back to memory, and 3. false sharing, where memory accesses from different
threads are close together, resulting in cache thrashing. To detect these bugs with PEBS,
performance tests are needed so that dynamic memory accesses can be analyzed. Dynamic
memory access patterns are also helpful to detect and localize redundant computation in
loops [144]. Moreover, performance bottlenecks caused by off-CPU events [173] and lock
contention [148, 4, 168] can be detected using dynamic runtime information. Attariyan et al.
[9] propose a more generic state-of-the-art performance profiler to localize performance bugs.
State-of-the-practice performance diagnostic tools, e.g., perf [124] and lttng [152], are
capable of profiling both on-cpu and off-cpu events, as well as numerous additional kernel
events.

Besides various performance bug diagnostic approaches in different domains, many
researchers also consider computational redundancy as a significant indicator for performance
bugs. Wen et al. [163] define the same return value being computed by repeatedly calling
a function as a source of performance bugs. Song and Lu [144] propose a more generic
approach to detect whether the results of each iteration are redundant in a loop. Besides
logical approaches to detect computational redundancies, Della Toffola et al. [51] aim to
find locations where the computational results can be cached by deep learning. The fixing
strategies often applied to mitigate redundancy are to either skip the computation, e.g., by
introducing a fast path, or cache the results of computation for future usage. Interestingly,
these two strategies are among the dominating performance bug fixing patterns in real-world
scenarios [27]. Despite many variants of PMT fault models, the computational redundancy
anti-patterns from the aforementioned works is adpoted in Chapter 4 since computational
redundancies are a stronger indicator for performance bugs in comparison to other metrics.

MT techniques are well studied across the research communities. Papadakis et al. [123] as
well as Jia and Harman [78] review the development of MT techniques covering various pro-
gramming languages from 1970 to 2017. Besides 22 mutation operators for the FORTRAN
programming language, Jia and Harman [78] also discussed major problems in the mutation
testing. One of the problems is that many mutants are functionally equivalent, which leads to
the equivalent mutant problem [18]. Such functionally equivalent mutants cause duplicated
mutation testing, which gravitates the already high demands on the computational power
by the mutation testing procedure itself. In PMT however, the functional equivalence is

2.4 Performance Mutation Testing 21

considered as a premise for a valid performance mutant, as the performance of a functionally
deviated mutant is not a right measure for the performance of a normally executed program.
A recent research [99] shows that, from 1979 to 2010, 17 approaches have been proposed,
aiming to address the functionally equivalent mutant problem, covering programming lan-
guages such as C, Java or FORTRAN. Efforts to eliminate functionally equivalent mutants
can be divided into three categories. The first category is the mutant detection, which aims to
find equivalence by compiler optimization or mathematical constraints. The second one is to
avoid functionally equivalent mutants from being generated, e.g., by randomly selecting the
mutants to be generated, or by checking logical constraints during the mutation procedure.
The third one is to suggest the potential functionality equivalence of mutants. As detailed
in Chapter 4, the PMT procedure is complicated (c.f. Figure 4.2). To prevent deviating
from the research on PMT itself, the random mutant selection approach is adopted [109] (c.f.
Section 4.4.3), meanwhile some hearistics to retain functional equivalence are also applied
(c.f. Section 4.3.1). As mentioned by Jia and Harman [78], the functional equivalent mutant
problem cannot be completely solved. For the PMT framework in Chapter 4, more functional
equivalence check could be applied, as will be discussed in Chapter 6.

Chekam et al. [21] implement and evaluate an early mutation testing framework. Chekam
et al. [22] develop a symbolic execution approach to search for the input to kill hard-to-kill
mutants (please refer to Table 4.1 for definitions). Devroey et al. [53] propose an approach to
identify equivalent mutants by NFA simulation. Recent research [125] also confirmed the
efficacy of mutation testing in industry practices.

Natella et al. [112] provide an overview of mutation testing techniques in the context
of assessing systems against software failures. Research in this area has been focused on
the representativeness of injected faults, which is a indicator of whether artificial bugs are
hard-to-kill, and thus subtle enough to cause realistic software failures [111]. However,
simulating failures through code mutation can be cumbersome, as the mutated program may
need to be recompiled, and the mutants have often no effect on the program (i.e., equivalent
and hard-to-kill mutants, see Table 4.1). Thus, previous studies have investigated how to effi-
ciently perform mutations on binary code [42], and whether faults injected inside a software
component (i.e., through code mutation) can be replaced by more convenient injections at
software interface level (i.e., by corrupting data returned from a component) [113]. Other
work has also developed a PMT framework with many MT operators [50]. As will be demon-
strated in Sections 4.3 and 4.4, SLOWCOACH shows better results in terms of evaluating a
performance testing environment by careful implementation of mutation operators and better
interpretation of mutation scores. In Chapter 4, efficiency and representativeness issues in the
context of performance bug injection are also investigated, by exploring different approaches

22 Related Work and Background

from the design space of PMT techniques. Cotroneo and Natella investigate fault injection
techniques from a diverse spectrum, e.g., to support the certifiability of software by fault
injection [38], the application of fault injection on the Android platform [44], testing binary
level mutation efficacy [42], to support the system failure identification in cloud systems [45].

2.5 Performance Fuzzing

The fuzzing technique was first proposed by Miller et al. [108], who found dozens of crashes
and hangs in several UNIX systems. In recent years there are enormous work around the
fuzzing techniques in the research community, and it is impossible to enumerate all of them.
In this section, most representative and relevant work on fuzzing techniques are focused.

AFL [169] is one of the most widely used fuzzer in the research community, as many
researches such as the fuzzer discussed in Chapter 5 [92] are based on it. Coppik et al. [36]
extended AFL with the guidance that traces memory accesses and found more unique crashes.
Böhme et al. [14] proposed AFLGO which targets the modified code coverage for regression
testing. AFLGO is guided by a Markov decision process that prioritizes control flow graph
(CFG) edges towards the modified code. Chen et al. [24] formalized desired properties for
grey-box fuzzing and improved AFLGO. Some programs, e.g. an xml parser, need well
formed inputs and many randomly mutated inputs by AFL are rejected. Hence fuzzers are
less efficient in these scenarios. Padhye et al. [120] proposed parametric generation of inputs
for fuzzing, known as Zest to mitigate well-formed inputs problem. Le et al. [90] improved
Zest by using probalistic heuristics to generate inputs on a grammar. Padhye et al. [121]
later generalized the idea of parametric generation by Zest and proposed a fuzzing technique
based on the domain specific context. Wang et al. [160] proposed a data driven approach to
generate seeds for the fuzzing process.

Fuzzing operating system (OS) kernels is another interesting domain. A popular fuzzer
for OS kernels is syzkaller [60], which synthesizes system calls as inputs for fuzz testing.
Schumilo et al. [136] fuzzes OS kernels by hardware virtualization utilities (Processor
Trace) [76] and mutate an entire disk image as input. Zou et al. [176] proposed an innovative
approach to mutate the network packets as well as system calls and guide the fuzzing by TCP
state transitions. This has proven to be effective against vulnerabilities and RCF violations
in the TCP/IP stack implementation of the Linux kernel. The fuzzer by Jiang et al. [82]
aims to address the problem that error handling code in OS kernels can hardly be covered
by test cases as these errors hardly occur at experimental environments. This work injects
errors to the kernel so that the error code will always be executed if its precedent code is
executed, then fuzzes injected kernels. Jiang et al. [83] later expand this technique to user

2.5 Performance Fuzzing 23

space software. Wang et al. [159] applied reinforcements learning to guide the kernel fuzzing.
Shi et al. [140] summarizes how industry carries out fuzz testing.

As Crosby and Wallach [46] discussed how algorithmic complexity could impact the
performance, many researches explored various static and dynamic approaches in searching
for the worst algorithmic cases. Koo et al. [89] use reinforcement learning to continuously
update the symbolic execution policies for worst-case test generation. Saumya et al. [135]
analyzed branches in a program statically to generate worst-case test inputs. Other ap-
proaches [139, 154, 137] investigate synthesized test cases for performance bottlenecks with
profiling data. Han et al. [67] investigated the performance bugs reports and developed an
SQL based test generation approach.

Besides performance test cases synthesis, there are also many researches on performance
fuzzing. Petsios et al. [126] developed a fuzzing technique to identify worst algorithmic
cases, based on Clang libFuzzer [33]. Lemieux et al. [92] proposed another performance
fuzzing technique that exploits worst algorithmic cases, based on AFL [169]. Liščinský,
Matúš [95] developed a performance fuzzer guided by profiling data. More in-depth details
on performance fuzzing will be discussed in Section 5.2.

Recently, many researches also investigated the performance impacts of side channel
attacks. Allan et al. [7] for example, discussed various of performance related side channel
attacks and how can such attacks be utilized for information leakage. Aldaya and Brumley
[6] demonstrated the performance degradation caused by side channel attacks can make
programs several magnitudes slower.

Chapter 3

Empirical Study on Performance Bugs

Performance bugs, i.e., program source code that is unnecessarily inefficient, have received
significant attention by the research community in recent years. A number of empirical
studies have investigated how these bugs differ from “ordinary” bugs that cause functional
deviations and several approaches [115, 168, 4, 144] to aid their detection, localization,
and removal have been proposed. Many of these approaches focus on certain sub-classes
of performance bugs, e.g., those resulting from redundant computations or unnecessary
synchronization, and the evaluation of their effectiveness is usually limited to a small number
of known instances of these bugs. To provide researchers working on performance bug
detection and localization techniques with a larger corpus of performance bugs to evaluate
against, I conduct a study of more than 700 performance bug fixing commits across 13
popular open source projects written in C and C++ and investigate the relative frequency
of bug types as well as their complexity. My results show that many of these fixes follow a
small set of bug patterns, that they are contributed by experienced developers, and that the
number of lines needed to fix performance bugs is highly project dependent.

3.1 Introduction

Performance is among the most important non-functional properties of programs [88, 166].
Unfortunately, performance bugs accompany the software development process like func-
tional bugs and software quality is equally deteriorated by those, e.g., in the form of decreased
end-user interaction, wasted computing resources, or even DoS attacks [92]. A variety of
performance diagnosis tools and approaches have emerged over the past decade to assist
developers with the identification and localization of a wide range of performance bugs in
different scenarios [84, 168, 4, 148]. While it is expected that these tools/approaches cannot
eradicate performance bugs entirely, it remains unclear which performance bugs are how well

26 Empirical Study on Performance Bugs

addressed by these tools or to which degree these tools are being used in practice. Therefore,
it is important to investigate which types of performance bugs get fixed (and how) to guide
future research in this area.

For this purpose I have conducted a large scale study on 733 performance bug fixing
commits across 13 popular open source projects. To illustrate how well existing tools
and approaches support developers with the detection and removal of performance bugs, I
investigate the duration between the introduction and removal of performance bugs as well
as the expertise of the bug fixing developer and the bug complexity in terms of lines modified
by the fix. For example, if performance bug detection and removal are well addressed by
existing approaches or tools, they must be expected to have a short performance bug fix time.
Similarly, with proper tool support, even inexperienced developers should be able to identify
and remove performance bugs. Besides these measures, the number of the changed lines in
bug fix commits also indicates how complicated performance bug fixes are.

Since tools and approaches for performance bug detection and localization usually spe-
cialize for certain classes of performance bugs, I perform a classification of the performance
bug fixing commits to assess which classes dominate the bugs being fixed.

Besides assessing the alignment of existing tools and approaches for performance bug
detection and localization with characteristics of performance bug fixing commits, I hope
that my study can serve as a benchmark that future tools and approaches can be evaluated
against, similar to CoREBench [13] or BugSwarm [55] for correctness bugs and I make the
entire data set publicly available for this purpose1. Despite the relatively large number of
subjects in my data set, there are applications that require even larger numbers of defects to
obtain statistically significant evaluation results. For these scenarios I envision the creation of
performance mutants, along the lines proposed in recent work[31] and proposals [133], and
provide insights to support the creation of performance mutants that resemble performance
bugs fixed in real world projects.

Summing up the above discussion, my study makes the following contributions:

• I present results from a large scale study of 13 open source projects from different
domains with a total of 733 manually analyzed performance bug fixing commits.

• Using data from this study I assess the alignment of the current state of the art in
performance bug detection and localization with performance bugs that get fixed in
practice.

1https://yqchen.gitlab.io/perf-bugs/

https://yqchen.gitlab.io/perf-bugs/

3.2 Methodology 27

• The result of my study provides a database of performance bug fixes to serve as a
benchmark for the further development and improvement of performance bug detection
and localization techniques.

• The discussion on how the presented work can serve as the basis for performance muta-
tion operators, but also why this basis is not (yet) sufficient for a practical performance
mutation approach.

The remainder of the chapter is structured as follows. After reviewing related work in
Section 2.3, I discuss the methodology adopted in this study in Section 3.2. Then I will
discuss the categorization of performance bug code patterns in Section 3.3, followed by an
analysis of other performance bug fixes (fix duration, developer experience, changed lines)
in Section 3.4, a discussion of the threats to validity in Section 3.5, and a conclusion in
Section 3.6.

3.2 Methodology

I investigate performance bugs in real-world projects to assess how well performance bugs
targeted by detection and localization approaches are aligned with the bugs that get fixed in
practice. Due to the difficulties that performance bug reproducibility poses (see Section 2.3),
I identify performance bug fixing commits by manual inspection. To limit the corresponding
overhead I pre-filter and sample commits according to criteria discussed in Section 3.2.1.
Section 3.2.2 details how the identified performance bugs are classified and how this entails
deviations of the derived taxonomy from existing ones. I then introduce the performance
bug complexity metrics I use in this study: a measure of performance bug fix duration in
Section 3.2.3, a measure of experience for performance bug fixing developers in Section 3.2.4,
and a bug fix complexity measure in Section 3.2.5.

3.2.1 Selection of Projects and Commits

I start the choice of target projects in my study from the top 100 popular projects from the
Debian repository3 that are written in the C programming language. I base my selection
on the “vote” data of Debian’s popularity contest, which reflects the regular usage of the
projects. My focus on C is motivated by the observation that performance critical code is
commonly written in languages that are “close” to the underlying hardware platform and that

2The project name for the next Firefox version in development
3https://popcon.debian.org/by_vote

https://popcon.debian.org/by_vote

28 Empirical Study on Performance Bugs

Project Total
NetworkManager 209

pulseaudio 106

grep 123

rsyslog 136

lvm2 123

llvm 4567

git 1107

clang 860

gecko-dev2 4329

openssl 169

systemd 327

libgcrypt 145

linux 18975

Table 3.1 Total commit counts for each project

compile to native machine code. Moreover, as a language that dominates operating systems
and other important parts of virtually every software stack, C has a high practical relevance.
This is also reflected by the observation that the top 100 C projects in Debian’s popularity
contest are among the 133 top projects when no restriction is made on the programming
language. In addition to these projects, clang, llvm, and linux are also selected as survey
targets, because they are widely used large and complex projects with numerous commits
and contributors. Thus, the performance of these three projects is expected to be of relevance
for a large user base.

I identify performance bug fixing commits in the selected projects by searching for a
number of keywords in the commit messages, as listed below along with matching text
examples.

• performance “This patch improves the performance by . . . %”

• speed up “These changes speed up the processing of”

• accelerate “This patch accelerates”

• fast “After the patch it is . . . times faster”

3.2 Methodology 29

• slow “Before the patch it is slow in function”

• latenc “The latency of . . . is reduced ”

• contention “This patch reduces the contention of”

• optimiz “The optimization of the function”

• efficient “The patch makes function . . . more efficient”

I also exclude those projects from my candidate list, (1). for which I cannot easily access
commit messages because I cannot unambiguously identify or access the official development
repository (21 projects), (2). that are Debian specific and not used on other distributions in
order to avoid a corresponding bias (4 projects), and (3). that have less than 100 commits
that match my keywords (65 projects).

The last of these criteria has been added to exclude projects that do not have a particular
performance relevance. For instance, libcap2 implements operations to get and set POSIX
capability states, which are not particularly performance critical. Accordingly, the project
does not have a single commit message matching the aforementioned keywords and is, hence,
excluded from my study. The 13 projects meeting all criteria are listed in Table 3.1 along
with the total matching commit counts. The complete table with matching counts for each
keyword can be found on the my data set website provided in Section 3.1.

The keyword-based detection mechanism for performance bug fixing commits is sus-
ceptive to false positives, e.g., performance could also match a feature commit stating
“This patch does not introduce a performance regression”. Hence, all matched commits
need manual investigation. As some the projects like clang, linux, or gecko-dev have
thousands of matching commits, I limit my manual assessment to a random sample of 200
commits for those projects.

3.2.2 Taxonomy

Performance bugs can be categorized by various criteria, e.g. the work by Jin et al. [84]
studies syntactical representations of performance bugs. This study, instead, classifies
performance bug fixes by the semantics behind these code changes. For instance, the code in
Listing 2 shows the introduction of a new API from the syntactical perspective. The goal of
the taxonomy developed in this chapter, in contrast, focuses on how the newly introduced
function and its usage affect the performance of the implementation. In Listing 2, the newly
introduced try_fgrep_pattern() function introduces a more efficient matcher, which
only applies for certain scenarios. If such a scenario is encountered, this light weight matcher

30 Empirical Study on Performance Bugs

provides a faster execution path that speeds up the character pattern matching process.
Therefore, this commit is tagged “fast-path” as the code change introduces a shortcut to
speed up execution for certain scenarios (a detailed discussion is provided in Section 3.3.1).

I give preference to a manual semantic classification of performance bug fixing commits
over a purely syntactical taxonomy to obtain comparability of bug fixes that transcend
project or developer specific preferences, such as coding styles, to which purely syntactical
taxonomies are sensitive.

3.2.3 Bug Fix Time

To determine the need for better tool support, I extract a number of metrics in my analysis
of the identified commits. The first metric captures the latency to fix performance bugs.
Intuitively, the more time developers spend on fixing a performance bug, the more difficult the
performance bug is. However, this metric may be misleading in a cross-project comparison,
as projects evolve at different speeds. For example, if project A has hundreds of commits
every day while project B has only a handful of commits every week, the performance bugs
in project B are likely to take longer than in project A, although the performance bugs in
project B may not be any easier to detect and fix than those in project A. Consequently, I also
take the number of commits between the introduction and the fixing of performance bugs in
a project into consideration, to determine whether the project is actively maintained. I define
the metric fix time commit frequency (FTCF) to present the accordingly normalized fix time
as:

FTCF = ncmt((tintro, t f ix]) (3.1)

where t f ix is the time stamp of the fix commit, tintro is the time stamp of the commit which
introduces the fixed performance bug, and ncmt denotes the number of commits in the
specified interval. The larger the FTCF value is, the longer is the fix time if projects have the
same level of activity in terms of commit rates. If a project has a commit rate that is twice
as high as that of another project, then its FTCF is also twice as high for an identical time
interval, indicating that the corresponding bug fixing time is actually slower. The reasoning
behind this is that in intensively maintained projects, bugs should also be detected and fixed
faster. To obtain the FTCF, I need to identify the bug introducing commit that corresponds to
an identified fix. I basically follow the widely used approach to infer bug inducing commits
outlined in [141], but assume that each modification in the bug fixing commit is a necessary
modification to fix the bug. Consequently, I search for each modified line in the bug fixing
commit the commit that last changed that line before. To be conservative and rather under-
than over-estimate the actual fix time interval, I select the commit that is temporally closest

3.2 Methodology 31

to the fixing commit from this set as the bug introducing commit, because that is the last
commit that made a change that then required a fix.

3.2.4 Seniority of Fixers

I also consider the expertise of the developers, who are fixing performance bugs, as an indica-
tor of the fixing effort. If performance bugs are mostly fixed by more experienced developers,
this indicates that better tool support for the detection and localization of performance bugs
may be required or that the existing tools require a high expertise to be used effectively. To
quantify the developer expertise, I measure the time ∆dev between the bug fix at time t f ix and
the first commit of the fixing developer dev at time tdev(1).

∆dev = t f ix− tdev(1) (3.2)

By comparing the experience ∆dev among the developers in the project, it is clear whether
the fixer of performance bugs are relatively more experienced in the project or not. The
comparison should only cover those developers who are actively contributing to the project
at the time of the fix. Thus, the set of developers, who are candidates for contributing the fix,
is:

Cdev = {dev|tdev(1) ≤ t f ix ≤ tdev(n)} (3.3)

where tdev(n) is the time stamp of the last commit contributed to the project by developer
dev. Using the expertise measured as ∆dev across all developer candidates dev ∈Cdev, I can
judge the relative expertise of a developer contributing a bug fix within a project. However,
using such project wise ranks may not be accurate in reflecting the skill of bug fixers in a
cross project comparison, because the difference in the total number of developers varies
significantly among the projects. For instance, assuming fixer A is ranked 10 out of 20
developers in a project, while fixer B is ranked 500 out of 1000 developers in another
project, fixer A may not be more skilled than fixer B despite the higher absolute rank
number. Moreover, the absolute value of the time difference is obviously misleading as
projects are started at different times and, thus, have different lifetimes, which can introduce
significant offsets in the ∆dev values that are more strongly affected by the project than the
actual developer experience. To quantify the skill of bug fixing developers and make them
comparable across projects, I introduce a project seniority metric to evaluate the skill. The
first concern of the seniority is the time when the performance bug is fixed and when is the
project started. The time difference between the project initialization and the bug fix is noted

32 Empirical Study on Performance Bugs

as ∆base and defined as:
∆base = t f ix− tinit (3.4)

where tinit is the time stamp of the first commit in the project. The seniority of dev at t f ix is
defined as:

Sdev =
∆dev

∆base
=

t f ix− tdev(1)

t f ix− tinit
(3.5)

Given a bug fix commit, the skill of the fixer can be represented as the seniority. To have a
relative comparison across the project, the seniority of the fixer denoted as S f ix is compared
to a mean value of the seniority of all developers, given a performance bug fixing commit. In
my study I select the median to aggregate the seniority vector of a project and the seniority
difference is defined as:

∆S = S f ix−median({Sdev|dev ∈Cdev}) (3.6)

This seniority measure reflects the experience of the bug fixing developer relative to the first
commit of the project and relative to other active developers in the project and is suitable for
a cross-project comparison.

3.2.5 Number of Changed Lines

The number of changed lines directly indicates how complicated a bug fixing commit is.
Usually simple changes with a small number of lines modified are more likely to be diagnosed
by tools. If a pattern of performance bugs involves a lot of small sized commits, the current
tool support probably has not covered this form of performance bugs yet and new tools
on such problems are needed. The number of changed lines is also relevant for my longer
term goal to create performance mutants to test performance bug detection and localization
approaches against, because they indicate to which degree traditional mutation operators (and
their implementation in mutation tools) that are commonly applied to individual statements
of a program are sufficient to simulate realistic performance bugs. Similarly, the type of
change is giving an indication about the nature of performance mutation operators. If
performance bug fixes tend to add rather than remove lines, the corresponding mutation
operators would need to remove parts of the source code in order to introduce performance
bugs. Otherwise, mutation operators would have to insert buggy code to create performance
mutants. Therefore, I provide detailed data for the studied bug fixing commits, i.e., the total
number of affected lines along with ratios of added, removed, and modified lines.

3.3 The Shape and Variety of Fixed Performance Bugs 33

3.2.6 Bug Collections

I expect my data set of fixed performance bugs to serve as a basis for the evaluation of
future performance bug detection and localization approaches, similar to existing data sets
for correctness bugs. CoREBench [13] is a collection of 70 regression errors from four open
source projects that have been extracted with the goal to serve as a more realistic alternative
to mainly hand-seeded bugs in the Siemens test suite [56] and the SIR [75]. BugSwarm [55]
is a collection of Python and Java correctness bug fixes mined from Travis-CI logs of GitHub
projects and reproduced in isolated environments. Defects4j [86] is a dataset of 357 real world
Java functional bugs. Contrary to my data set, none of the three projects ensure that each of
their bugs are reproducible. The reason why I cannot guarantee reproducibility is that the
magnitude of latencies induced by performance bugs heavily depends on (a). configuration
parameters of the software project [66] and (b). the complexity of inputs used to trigger the
bugs [92]. It is likely for the same reasons that performance bugs are reported to be more
commonly detected and fixed via code reasoning than dynamic tests and that they sometimes
“magically” disappear [114]. I have, therefore, decided to focus on bug fixing commits
rather than bug reports in my study. None of CoREBench, BugSwarm and Defects4j cover
performance bugs.

3.3 The Shape and Variety of Fixed Performance Bugs

During the manual investigation of the commits identified in my keyword-based search, I
found that many performance bug fixing commits follow certain patterns. Based on this
observation, 7 common patterns have been identified. Among these patterns, two (asm and
async) are project specific and require detailed knowledge of the respective subsystems in
the project. These patterns are not likely to be found in other projects and introduce a certain
project-based bias to the presented results. Therefore, the discussion of these two categories
is kept brief and combined with the discussion of the generic misc class of bug fixing commits
that do not match any of the larger pattern classes in Section 3.3.6.

3.3.1 Fast-path

A fast-path is a construct to avoid repeated or slow computation when possible. I limit the
fast-path notion in this study to control flow based fast-paths and classify other avoidance
techniques as other patterns. The control flow based fast-path pattern can have different
syntactic representations. A simple form of skipping heavy computation is demonstrated in
Listing 5. The if statement is a typical fast-path avoiding heavy computations when they are

34 Empirical Study on Performance Bugs

not needed. Real-world occurrences of this pattern are usually much more complicated and

int foo(int bar) {
if (some_cond(bar))
return fast_path();

return very_heavy_computation(bar);
}

Listing 1 Simple fast-path example

obfuscated. For instance, fast paths may be needed in loops, where programs tend to spend
most of their time [2, p. 655]. If heavy computations are encapsulated in functions that are
called within a loop body, existing profilers cannot identify the inefficient code inside loops,
as profilers rank functions with aggregated execution time. Hence, tools to analyze loops are
helpful to identify such cases. Nistor et al. studied memory access patterns and proposed
Toddler to detect inefficient loops [115] while Song et al. detect inefficient loops more
effectively by combining both static and dynamic analysis on root causes [144]. Tsakiltsidis
et al.[157] listed a string of python anti-patterns, which include a couple of examples that I
classify as fast-path, e.g. using if branches to circumvent heavy computations imposed by
logging. To avoid slow-path execution, developers usually have to manually implement the
fast-path and ensure that both paths are functionally identical. A fast-path implementation
may, for instance, apply a different algorithm to achieve the same result as the slow-path. An
example is commit 290ca116c9174 in the grep project. Listing 2 shows a simplified diff of
this commit. The commit fixes a performance regression when multiple regular expression
patterns are provided to the program. The generic matcher instance matches slowly, which
is why the function try_fgrep_pattern() is implemented to “peek” if provided regular
expressions can be matched by a light-weight matcher. If they can, the code simply uses the
light-weight matcher and else falls back to the generic one.

3.3.2 Arguments

Some commits change the values of arguments passed to a function so that the control
flow can take an existing fast-path in that function. In a more generic sense, this pattern
represents those optimization that bypass heavy or redundant computations by controlling
the input value. For instance, when the input value for bar in Listing 5 is chosen so that

4http://git.savannah.gnu.org/cgit/grep.git/commit/?id=290ca116c9172d97b2b026951fac722d3bd3ced9

http://git.savannah.gnu.org/cgit/grep.git/commit/?id=290ca116c9172d97b2b026951fac722d3bd3ced9

3.3 The Shape and Variety of Fixed Performance Bugs 35

+ static int
+ try_fgrep_pattern(int matcher,
+ char *keys,
+ size_t *len_p) {
+ /* Implementation */
+ }
int main(int argc, char **argv) {
...

+ else if ((matcher == G_MATCHER_INDEX ||
+ matcher == E_MATCHER_INDEX)
+ && 1 < n_patterns)
+ matcher =
+ try_fgrep_pattern(matcher,
+ keys, &keycc);

execute = matchers[matcher].execute;
...

}

Listing 2 Example in grep

some_cond(bar) is more likely to return a non-zero value, the performance of function
foo() would improve.

As we will see in Section 3.4, this pattern occurs in all targeted projects. I observed that
many operations are controlled by flag arguments, i.e., bit fields passed to the processing
function to control its behavior. The flag passed to the do_fork() function in the Linux
kernel, for example, specifies whether the processing fork should copy the page table or
file descriptors etc. By setting or clearing bits in the flag, the function execution may
behave differently, including the execution of a fast-path instead of a slow-path. In a broader
sense, any global state of the program can also be regarded as arguments passed to every
function in the program. Thus, like fast-path pattern in Section 3.3.1, arguments related
performance bugs also have a wide range of syntactical representations and often require
complex reasoning to set arguments or global variables in a way that improves performance,
but does not entail functional deviations.

3.3.3 Cache memoization

The result of a computation should be stored if it is needed onward to avoid redundant
re-computations of the same result. A trivial loop iterating over a string like in the following
example is unnecessarily slow when the code is compiled without compiler optimizations.

36 Empirical Study on Performance Bugs

for (char *c = str;

c - str < strlen(str);

c++) { /*...*/ }

The loop keeps calculating the (unchanged) length of the dynamically allocated str to test
whether the iterator has reached the end of the string. Although most modern compilers can
move the call to strlen() outside the loop body by performing a loop invariant analysis
[2, p. 641], the optimization does not cover all cases. If the duplicated calls to strlen()
are hidden in a wrapper function, the success of the compiler optimization depends on the
wrapper returning an invariant value and the ability of the optimization to infer that. I refer
to performance bug fixes that “cache” the result of such computations for future usages as
cache memoization. Intuitively, cache memoization effectively solves the redundancy in
the previous duplicated string length computation example. The pattern name is coined in
the work by Toffola et al. [51], which lists opportunities to cache computation results in
JavaScript.

In C/C++ projects, cache memoization optimizations are also frequently observed. The
commit 3548068c22f85 in clang exemplifies a typical cache memoization situation. All
modifications are applied to the Sema class (semantics) of the Objective C frontend. The patch
adds a selector variable named RespondsToSelectorSel in Sema to cache a selector (not
shown in Listing 3) and modifies a callback function (Sema::ActOnInstanceMessage())
in Listing 3. The callback tests if the event related selector Sel equals the contextual unary
selector and removes the selector from the warning pool in the case of equality. Instead of
fetching the contextual unary selector every time the relevant event is fired, the optimized
version tests the equality of Sel and the cached contextual selector, and fetches the contextual
selector only when it is not yet cached.

3.3.4 Data Access

Different data structures yield different data access overheads, e.g., retrieving unsorted data
without an index in a vector or list requires a linear search, while accessing data from hashed
maps only introduces the overhead of hash functions. To speed up data accesses, many
projects provide developers with a set of predefined data structures optimized for project
specific usages. However, depending on the complexity of the project and the variety of data
structures, it may not be easy for developers to anticipate how these data structures are best
used during development. In llvm for instance, llvm::DenseMap pre-allocates a large bulk

5git commit id: 3548068c22f809e5bc64b83d2c3622018469256c

3.3 The Shape and Variety of Fixed Performance Bugs 37

- IdentifierInfo *SelectorId =
- &Context.Idents.get("resp");
- if (Sel ==
- Context.Selectors.
- getUnarySelector(SelectorId))
+ if (RespondsToSelectorSel.isNull()) {
+ IdentifierInfo *SelectorId =
+ &Context.Idents.get("resp");
+ RespondsToSelectorSel =
+ Context.Selectors.
+ getUnarySelector(SelectorId);
+ }
+ if (Sel == RespondsToSelectorSel))})

// remove selector

Listing 3 A simplified cache memoization example in clang

of memory for faster iteration on small key value pairs6. As a substitute of std::map<KeyT,
ValT> from the standard library, DenseMap yields better performance for the case in commit
f28cb39e4ca07, as shown in Listing 4. The effect of such a change is usually difficult to
predict upfront without intimate knowledge of the data structure and the context in which it
is used. I assume that it is for the same reasons that this category of performance bug fixes is
less covered in existing work.

class GlobalsModRef : public ModulePass,
public AliasAnalysis {
// ...

- std::map<const Value *,
- const GlobalValue *>
- AllocsForIndirectGlobals;
+ DenseMap<const Value *,
+ const GlobalValue *>
+ AllocsForIndirectGlobals;

Listing 4 A simplified DenseMap example in llvm

6http://llvm.org/docs/ProgrammersManual.html#llvm-adt-densemap-h
7git commit: f28cb39e4ca07c387dd270ce123753f898a75d5c

http://llvm.org/docs/ProgrammersManual.html#llvm-adt-densemap-h

38 Empirical Study on Performance Bugs

3.3.5 Synchronization

Multicore processors have brought significant performance boosts for parallel and paralleliz-
able programs. Despite the processing speedup, multiple processors accessing the shared
memory simultaneously have raised the problem of possible race conditions. To surmount the
problem, memory accesses are synchronized by synchronization primitives to guard critical
sections, in which accesses to shared memory are serialized. As serialization diminishes the
performance gains from parallel processing, improperly serialized program parts can become
performance bottlenecks, e.g., when a critical section protects thread private data (e.g., stack
objects) or the critical section is protected by inefficient synchronization primitives, as these
primitives themselves yield differing overheads.

In C/C++ projects, mutex-like locks are the most commonly used synchronization prim-
itives, while spinlocks are widely used in operating system kernels. Since a mutex may
block the execution of the program, low CPU utilization could be regarded as a rudimentary
indicator of possible performance problems [168]. Besides CPU utilization, developers
nowadays also profile the waiting time of each thread on a lock [4, 148] to localize where
locks are mostly contended.

In the projects I assess in this study (as we will see in Section 3.4.1), synchronization
related performance problems are relatively infrequent compared to other performance bug
fixes (but also take more effort to fix). My investigation in related projects shows that
developers nowadays tend to minimize the amount of shared data to avoid race conditions.
Linux kernel developers also tend to use the lockless RCU (Read-Copy-Update) mechanism
[106] to prevent heavy weight synchronization.

3.3.6 Miscellaneous

Some of the targeted projects introduce low level assembly implementation of algorithms. I
refer to such optimization as the asm pattern. In particular, cryptographic libraries rely on
the fine tuned inline assembly implementations to utilize CPU specific hardware features for
speeding up en- and decryption operations. In the two cryptographic libraries I investigate in
this chapter (textttlibgcrypt and openssl) there are profound optimization patches using new
CPU features in these two projects8 as demonstrated in Figure 3.2. Apart from cryptographic
libraries, the Linux kernel also features optimizations of inlined assembly in the sampled
commits.

8openssl uses perl for inlined assembly, so 139 commits involving inlined assembly are not counted in my
statistics

3.4 Performance Bugs Characteristics 39

Another less common pattern is the optimization for I/O heavy scenarios. To avoid
the time spent on blocking I/O, the optimization uses non-blocking counterparts of the I/O
operations and waits for the operation in an asynchronous handler. This pattern is thus
labeled async and is observed in systemd and NetworkManager.

Some commits apply fundamental changes to a project to improve performance. Such
commits involve changes of the software architecture and highly rely on specific contextual
knowledge of the project. Therefore, this category is of limited relevance for the goal of my
study and I do not discuss this category in further detail.

3.4 Performance Bugs Characteristics

In the following I discuss the results of my empirical study of 733 manually investigated per-
formance bug fixing commits from 13 open source projects. The distribution of performance
bug patterns is discussed in Section 3.4.1, followed by a discussion of the effort for fixing
performance bugs in Section 3.4.2, Section 3.4.3 and Section 3.4.4.

3.4.1 Bug Pattern Distribution

To assess the relative frequency of different performance bug fixes, I categorize all fixes
according to the patterns described in Section 3.3. Figure 3.1 shows the result of the
classification across all investigated performance bug fixing commits and Figure 3.2 shows
the pattern distribution for each project. The number on each bar is the number of performance
bug fixing commits for the respective project.

From Figure 3.1, I observe that the most dominant form of fixed performance bugs is the
“fast-path”, which accounts for 43 % of all sampled commits in my survey. As discussed in
Section 3.3.1, this pattern corresponds to a wide range of syntactical representations and,
intuitively, fast-path is a straightforward way to circumvent slow operations. The second
most frequent category is composed of the idiosyncratic performance bugs that do not match
any common pattern. The argument pattern is the third most frequent pattern contributing
14 % of all performance bug fixes. As discussed in Section 3.3.2, C and C++ developers often
use flags to control dynamic behavior and, thus, tweaking flag arguments passed functions
can also optimize the performance.

Surprisingly, performance bug fixes involving inline assembly language account for 10 %
of all investigated bug fixing commits. However, as Figure 3.2 shows, the assembly pattern
fixes only occur in three projects, with a strong majority in a single project, i.e., libgcrypt.
In libgcrypt the most frequent performance optimizations are gained by utilizing new

40 Empirical Study on Performance Bugs

data access
6%

arguments

14%fast-path

43%

async

1%

misc

16%

synchronization

2%

memoization

8%
asm

10%

Fig. 3.1 Distribution of performance bug patterns across all investigated commits

cla
ng

ge
ck

o-
de

v gi
t

gr
ep

lib
gc

ry
pt

lin
ux

llv
m

lv
m

2

Ne
tw

or
kM

an
ag

er

op
en

ss
l

pu
lse

au
di

o

rs
ys

lo
g

sy
st

em
d

0%

20%

40%

60%

80%

100% 59 55 75 62 108 77 34 30 63 35 13 41 81

arguments
async
memoization
data access
synchronization
misc
fast-path
asm

Fig. 3.2 Distribution of the identified performance bug patterns relative to the number of
investigated commits (stated on top of the bars) for each project.

3.4 Performance Bugs Characteristics 41

CPU features to boost various cryptographic algorithms. The few assembly optimizations
in linux involve subtle fixes of the crucial procedures written in assembly. From these
observations I conclude that assembly based performance bug fixes are strictly limited to
very specific application scenarios.

The cache memoization and data access take the most of the remaining code pattern shares,
accounting for 8 % and 6 % of the patterns. Although these numbers are not particularly high,
it is important to note that the patterns occur across almost all projects in my investigation.

Synchronization problems are the least common performance bug pattern fixed in the
investigated commits. Synchronization related performance bugs, in particular those related to
lock contention, have been addressed by previous research [168, 4, 148]. This work, however,
is relatively new and I do not expect the developed techniques to be already part of the
standard tool set of open source developers. From the commits I investigated, my impression
is that synchronization related performance bugs either are a relatively rare occurrence or
that they just do not get detected and fixed. Firefox, for instance, was once a project suffering
synchronization related performance bugs [168] while in my investigation no synchronization
problems have been sampled. Another example is linux, where the synchronization fixes in
the sampled commits are not related to lock contentions, but substitute locks with lockless
RCUs [106].

The least frequent performance bug fix pattern I observed is to make tasks asynchronous.
Such optimizations only apply for very specific scenarios, where either some procedures are
I/O heavy or the result of the procedure is not needed for some time.

3.4.2 Performance Bug Fix Duration

The effort devoted to fixing performance bugs is a significant indicator to prioritize perfor-
mance problems to be addressed in future research. As discussed in Section 3.2.3, I use
the number of commits between the bug introducing and fixing commits to indicate the
performance bug fix duration. Figure 3.3 shows this number (FTCF) across various patterns,
where the y-axis is scaled logarithmically due to some outliers with high values.

The boxes in Figure 3.3 show that the median fix time of most patterns lies between
10 and 100 commits, with the exception of asm and cache memoization. As discussed
in Section 3.3.6, asm basically utilizes new CPU features. Based on my observation that
most commits in the asm category replace less efficient assembly instructions by more
efficient ones, this indicates that applying new CPU instructions to improve assembly code
performance needs less time than optimizing inefficient code written in a higher order
language. Another quickly fixed bug pattern is cache memoization. Therefore, redundant
computations of invariant results seem to be easy to identify and straight-forward to repair.

42 Empirical Study on Performance Bugs

arg
um

en
ts asm asy

nc

da
ta

acc
ess

fas
t-p

ath

mem
oiz

ati
on misc

syn
chr

on
iza

tio
n

Patterns

100

101

102

103

104

105

Co
m

m
its

Fig. 3.3 Performance bug fix duration for different bug patterns measured by FTCF (see
Section 3.2.3)

3.4 Performance Bugs Characteristics 43

Synchronization related bugs have largest discrepancy in FTCF and a 75 % quartile that
is two orders of magnitude higher than the median. In Section 3.3.5 I observed that modern
synchronization optimizations often either adapt the RCU mechanism or alter the synchro-
nization across concurrent threads. Substituting existing reader-writer locks with RCU is
likely to require little effort, while reasoning about and fixing an inefficient synchronization
without introducing a race is likely to require more time.

Another observation is that both the fast-path and arguments patterns have a high number
of outliers. On the one hand this shows that the majority of performance bugs can be fixed
very fast, on the other hand a small amount of such bugs need significantly more time to fix.
This observation indicates that my data set comprises few difficult cases of these classes that
appear to be challenging in addition to the larger group of simpler cases.

3.4.3 Performance Bug Fixing Developer Experience

The second metric indicating performance bug difficulty (seniority in Section 3.2.4) reflects
the experience of developers who fix performance bugs. The baseline of the seniority metric
is 0, when time between the first commit of the bug fixing developer and the bug fixing
commit is the median across the respective time differences for all candidate developers
who could have fixed the bug at that time. Figure 3.4 shows the seniority of fixers for
each of the patterns. All boxes in Figure 3.4 have the median greater than 0, which means
that performance bug fixing developers usually fall into the group of more experienced
developers. Few boxes cross the 0 mark, indicating that for most projects less than 25 %
of the performance bug fixes are contributed by the 50 % of the developers who have most
recently joined the project. This indicates that fixing performance bugs is likely to require a
certain degree of familiarity with the project code and that existing performance diagnosis
tools may be difficult to use for less experienced developers.

3.4.4 Performance Bug Fix Size

The number of lines that a bug fixing commit consists of is another measure how complex the
performance bug fix is. Figure 3.5 shows the number of modified lines across the patterns9.
Although different patterns yield different complexity in terms of the code changed, the most
frequent patterns have relatively low numbers of changed code lines. Complex code changes
comprising hundreds of lines, such as for asm and async, are either project specific or less
common. This essentially means that performance bugs can be generally fixed by touching a
relatively small amount of source code.

9Estimated by diffstat -m

44 Empirical Study on Performance Bugs

arg
um

en
ts asm asy

nc

da
ta

acc
ess

fas
t-p

ath

mem
oiz

ati
on misc

syn
chr

on
iza

tio
n

Patterns

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Se
ni

or
ity

Fig. 3.4 Seniority of bug fixing developers across performance bug patterns. The metric
captures the distance of a project-local seniority metric from the median seniority of all
candidate developers for the fix on the same project. A seniority of 0 indicates experience
matching the median, positive seniority higher experience, and negative seniority lower
experience.

3.5 Threats to Validity 45

arg
um

en
ts asm asy

nc

da
ta

acc
ess

fas
t-p

ath

mem
oiz

ati
on misc

syn
chr

on
iza

tio
n

Patterns

100

101

102

103

104

Nu
m

be
r o

f M
od

ifi
ed

 L
in

es

Fig. 3.5 Modified source lines of code per bug fixing commit across performance bug patterns

Since I envision performance mutations to support future work on performance bug
detection, localization, and repair, it is also meaningful to study in which form performance
bugs are fixed to guide the creation of corresponding mutation operators. Figure 3.6 shows
the type of changes across performance bug fixes. The most dominant code change type to fix
performance bugs is the addition of source code lines. Consequently, mutation operators re-
sembling the identified performance bugs should mostly focus on code removal. This finding
is not surprising, as fast-path implementations usually entail the addition of logic to identify
the condition under which the fast-path can be executed and the actual implementation of the
faster operation. Unfortunately, generating and adding semantic-preserving code must be
expected to be simpler than ensuring that code removals are semantic-preserving, which I
consider the main challenge for the realization of realistic performance mutations given the
presented observations.

3.5 Threats to Validity

There are a number of threats to the validity of the conclusions presented in this chapter.

46 Empirical Study on Performance Bugs

arg
um

en
ts asm asy

nc

da
ta

acc
ess

fas
t-p

ath

mem
oiz

ati
on misc

syn
chr

on
iza

tio
n

Patterns

0%

20%

40%

60%

80%

100%

Nu
m

be
r o

f L
in

es

add
del
mod

Fig. 3.6 Relative distribution of source line of code change types (addition, deletion, modifi-
cation) in performance bug fixes by bug pattern

3.5 Threats to Validity 47

First, I apply a number of heuristics to infer various performance bug characteristics. My
FTCF metric to approximate fix duration in a project-agnostic way requires knowledge of
the bug introducing commit and this is based on the unverified assumption that in general
each line of a bug fixing commit is necessary for the fix. This is a conservative assumption
and, as a consequence, the exact fix times underlying Section 3.4.2 could in fact be longer
and performance bugs more difficult to fix.Similarly, I approximate developer experience
by the duration a developer has been active on the project before contributing the bug fixing
commit. This may not accurately reflect developer experience if the developer has been
actively developing other projects before. However, my manual investigation of the bug
fixing commits show that fixing performance bugs often requires detailed project knowledge,
which is less likely to be transferable from other prior projects.

Another threat lies in the criteria of the presented taxonomy, as the borders among
semantic categories are fuzzy. In order to limit the impact of this threat I make my entire
data set publicly available10 for reuse and cross-validation.

The third threat comes from the fact that this study focuses on C projects with the
exception of llvm and clang, because I assume that C is mostly used for “low level”
programming for which performance is of a higher concern. In industry, C++ is also used
for low latency applications where performance matters. While it is possible that different
language features result in different syntactic manifestations of performance bugs, I do not
expect this to significantly affect the presented results, as the presented taxonomy explicitly
abstracts from syntactic details. Accordingly, the performance bug distribution of llvm and
clang is similar to the C projects according to Figure 3.2. Therefore, the project coverage
bias is unlikely to defy the results in Section 3.4.

The fourth threat is the incompleteness of the keywords list used to search for performance
bugs. It is impossible to manually enumerate all relevant keywords with the guarantee of
completeness. Sometimes certain functional bug fixing commits may lead to performance
degradation, e.g. the commits to mitigate spectre introduced over 10% performance overheads
[128].

The last threat is attributed to the selection of popular Debian packages ranked by
votes, because there is no guarantee that the votes really reflect the popularity of these
packages. Nevertheless, the number of projects investigated is large enough to compensate
the drawbacks of possibly selecting less popular projects.

10https://yqchen.gitlab.io/perf-bugs/

https://yqchen.gitlab.io/perf-bugs/

48 Empirical Study on Performance Bugs

3.6 Conclusion

In this study, I assess the alignment of current research and tool development in the area of
performance bug detection and localization with actual performance bugs derived from 733
performance bug fixing commits across 13 open source projects written in C and C++. I
manually investigated these commits to confirm they actually constitute performance bug
fixes and to group them in semantic categories according to how they intend to achieve
a speed-up of the modified code. In summary, I found that more than half of the studied
performance bug fixes introduce fast-paths in the control flow or tweak arguments to trigger
the execution of existing fast-paths.I define a set of three complexity metrics suited for
cross-project comparison, which are related to bug fix duration, developer experience of bug
fixing developers, and the amount of code changed by the fix. The empirical assessment of
these metrics shows that usually 10 to 100 commits lie between the introduction and removal
of performance bugs, that performance bugs tend to be fixed by more experienced developers,
and that the lines of code that performance bug fixes comprise greatly vary across different
bug categories. From these observations I conclude that performance bugs are fixed in a
relatively short time for active projects, but that existing tool support does not effectively
target less experienced developers, which is a strong motivation to develop more effective
and intuitively usable tools. I also found that performance bug fixes usually entail 10 to
100 changed lines of code, most of which are code additions. Finally, my results provide
important insights about the distribution of performance bugs in software projects and about
the complexity of these bugs. Besides guiding work on performance bug detection and
localization approaches, this data is valuable for the generation of realistic performance
mutants to support a fault-based assessment of these approaches.

Chapter 4

Performance Mutation Testing

Performance bugs are unnecessarily inefficient code chunks in software codebases that cause
prolonged execution times and degraded computational resource utilization. For performance
bug diagnostics, tools that aid in the identification of said bugs, such as benchmarks and
profilers, are commonly employed. However, due to factors such as insufficient workloads or
ineffective benchmarks, software defects related to code inefficiencies are inherently difficult
to diagnose. Hence, the capabilities of performance bug diagnostic tools are limited and
performance bug instances may be missed. Traditional mutation testing (MT) is a technique
for quantifying a test suite’s ability to find functional bugs by mutating the code of the test
subject. Similarly, I adopt performance mutation testing (PMT) to evaluate performance bug
diagnostic tools and identify where improvements need to be made to a performance testing
methodology. I carefully investigate the different performance bug fault models and how
synthesized performance bugs based on these models can evaluate benchmarks and workload
selection to help improve performance diagnostics. In this chapter, I present the design of a
PMT framework, SLOWCOACH, and evaluate it with over 1600 mutants from 4 real-world
software projects.

4.1 Introduction

A program’s performance is a software attribute that describes how quickly it can complete
tasks or process inputs [84]. Performance is important when input sizes increase but program
throughput does not scale accordingly. One of the causes of scalability issues is the presence
of unnecessarily inefficient code within a program’s codebase, which wastes computational
resources when executed. For example, some function may not save the frequently needed
result of an expensive computation, but instead recomputes it each time when needed,
thereby wasting CPU cycles. Or, in a lock contention scenario, inefficient synchronization

50 Performance Mutation Testing

code may causes a program to wait unnecessarily for off-CPU events. Inefficient code
chunks that could be optimized to increase program performance are often referred to as
performance bugs [116, 144, 9]. The slowdowns caused by such unoptimized code parts can
be measured subjectively, e.g., users report some programs to be slower than their expectation,
or objectively, i.e., measuring and comparing performance metrics, usually wallclock time.

An essential part of code optimization is to identify the inefficient code. The identification
is usually carried out in two steps: 1) detection, i.e., determining whether performance
issues exist in the first place, and 2) localization, i.e., pinpointing the code chunks causing
the issues. Several approaches and diagnostic tools exist that assist in the detection or
localization of performance bugs to guide performance diagnostics and optimization [145,
148, 144, 124, 152]. Some syntax checkers [84], for example, find simple performance
anti-patterns in code statically and thus help to avoid them. However, most performance bugs
are too complicated for simple syntax rules to detect and must be analyzed with runtime
information [132, 144, 168]. Given suitable workloads, benchmarks provide performance
metrics that can be used as a comparison basis, while profilers provide runtime information
that helps developers localize performance bugs. Still, neither benchmarks nor profilers can
ascertain whether there are performance bugs without a proper specification or performance
measurements from previous versions for comparison [25].

More sophisticated approaches [145, 20] aim to detect performance bugs by symptomatic
analysis, e.g., tracing hardware/software events or memory accesses. Such approaches,
however, lack a ground truth to be evaluated against. The symptoms on which they depend
are not guaranteed to have observable performance degradation. This observability problems
can be caused by many factors, such as insufficient workloads. For example, a vector in
C++ reallocates memory when new elements are added and no memory is available to hold
them. Such reallocation has a very small performance overhead, making it challenging to
measure with profilers. But reallocation would cause significant performance degradation
if it occurs often [132]. Thus, it is not always clear that the symptoms identified by such
approaches are actually performance bugs, as the given workload may not be able to exercise
the problematic code frequently enough.

Moreover, there is no simple way to evaluate performance diagnostic approaches beyond
the small set of a priori known and reproducible performance bugs [20, 164, 168]. The
lack of a standardized corpus of performance bugs and the lack of rules for synthetically
creating performance bug instances to evaluate performance bug detection and localization
approaches, motivate my interests in the synthesis of performance bugs. Moreover, syn-
thesized performance bug instances help reproduce many historical performance bugs that
cannot be reproduced due to dependency on outdated system configurations.

4.2 Background 51

Inspired by the idea of software fault injection, I adopt techniques from mutation testing
(MT) [123, 78] to inject performance bugs to evaluate the quality of existing performance
bug detection and localization approaches. MT intentionally injects synthetic faults, using
code mutation, into the test subject’s code to check if its test suite can find them. The ultimate
goal is to quantify and improve the quality of test suites. The rules controlling how and where
the source code is mutated are known as fault models. After mutation, the source code is
expected to produce functional deviations compared to the original code. A high-quality test
suite is supposed to capture these deviations. In this chapter, I employ performance mutation
testing (PMT) to synthetically create performance bugs as an assessment for the performance
testing. In stark contrast to MT, PMT requires that code mutations do not introduce functional
deviations since performance bugs should be considered separately from functional bugs.
Therefore, PMT requires the preservation of functional equivalence (FE). This makes PMT
different from traditional MT techniques, which have the exact opposite requirement.

In this chapter, I introduce SLOWCOACH, a novel PMT framework. I demonstrate
its practical utility and show how PMT can help to improve performance bug diagnosis
approaches. Particularly, I address the following research questions in this chapter:

1. How does PMT relate to MT?

2. What are the different dimensions to consider for PMT fault models?

3. Can PMT produce enough useful mutants in practice?

4. How useful are synthetic performance bugs in practice?

4.2 Background

4.2.1 Performance Mutation Testing

Mutation testing (MT) is a technique to evaluate test suite quality [78, 123]. In MT, faults are
injected through code mutations, commonly at the source code level. The code transformation
rules that govern how to mutate the original source code are called mutation operators. The
resulting copies of mutated code are termed mutants. A fault model describes what, where,
when, and how to inject the buggy code. An example MT fault model could match all
binary and operators (&&) in if statements and change them to binary or operators (||).
If a software’s test suite is not able to distinguish the generated mutants from the original
software, then the test suite needs improvement as it fails to detect the injected faults. I
compare MT and PMT in Table 4.1 and provide further definitions of MT concepts.

52 Performance Mutation Testing

In the context of performance evaluation, a test suite is typically represented by bench-
marks and workloads, which exercise the software under test with input data to reveal
performance regressions and to diagnose bottlenecks. Similar to MT evaluating test suites, I
adopt PMT as technique to evaluate performance benchmarks and performance diagnostics
approaches. However, MT fault models aim to change the functional behavior of the original
code, since these are the faults that test suites should detect. In practice, mutants that do not
change functional behavior (equivalent mutants) are avoided or filtered out if possible. In con-
trast, PMT filters out mutants that do change functional behavior as it is only meaningful to
compare the performance of functionally identical programs. Thus, an important requirement
for PMT fault models is to retain the functional behavior for all mutants while introducing
performance overheads. These concepts are detailed in Table 4.1. As such, P-mutants are
different from traditional mutants in terms of key MT concepts. To better distinguish these
mutant types, I refer to such performance mutants as P-mutants.

The FE of P-mutants is defined as: given a set of inputs, all P-mutants should produce
the same set of outputs as the unmutated code, i.e., all P-mutants should adhere to the same
functional specification as the original code. Despite much proposed work addressing the
program equivalence problem in the research community (e.g., [65, 96]), the preservation of
FE in PMT cannot be trivially solved. The proposed formal equivalence checkers verify if
two programs execute the same steps, while performance optimization in general involves
two versions of a program that produce the same output by executing correspondingly fewer
steps. Conversely, PMT fault models would lead to more steps being executed in a program.
So, formal FE checkers cannot be used to effectively verify FE for PMT. An alternative
approach proposed by Devroey et al. [53] detects equivalent P-mutants by the simulation of
non-deterministic automata. However, none of these approaches can generally solve the FE
problem in acceptable time for potentially thousands of mutants. As a practical compromise,
I carefully select PMT mutation operators that are unlikely to affect functional behavior and
check FE using classical functional tests.

4.2.2 PMT Fault Models

Performance bugs are often believed to be fixed by “relatively simple source code changes” [84].
However, they usually involve more complicated semantic changes in the real world [27, 134].

Jin et al. [84] identified performance bugs via detectors which relied on the contextual
information of the code. For example, given function A invoked before function B would
cause performance degradation, a detector finds all invocation pairs of function A before
function B. The contextual information in this example is the relative invocation ordering of
functions A and B. Some PMT fault models inject performance antipatterns derived from

4.2 Background 53

Table 4.1 Performance Mutation Testing vs. Mutation Testing [112]

Concept Performance Mutation Testing Mutation Testing

Test Suite A fixed set of benchmarks and workloads yield-
ing various performance metrics (e.g., execution
time, memory usage, and execution paths) to be
compared against. The workload carried out by
the benchmark aims to identify those tests that
have worse performance metrics than the unmu-
tated baseline.

A test suite (test programs and in-
puts) to determine whether a pro-
gram complies with its (functional)
specification. Tests should kill (i.e.,
detect) mutants to demonstrate their
fault detection capability.

Equivalent
Mutants

All performance mutants must be functionally
equivalent to the original version. Performance
equivalent mutants are those whose performance
results are statistically close to the original.

If a mutant is functionally equivalent
to the original software, this mutant
will never be killed by the test suite.

Hard-
to-kill
Mutants

Functionally equivalent mutants that can be
killed only if mutated code is executed suffi-
ciently frequently. I hypothesize that all code
changes introduce performance overheads if not
optimized out, while the overheads need repeti-
tive execution to be observable.

Some mutants can only be killed by
few, very specific test cases. These
mutants help identify possible im-
provements of test suites.

Mutation
Score

Identical to the mutation score by mutation test-
ing. But since there are multiple performance
metrics, there are correspondingly multiple mu-
tation scores for the different perspectives of the
metrics.

The mutation score grades the qual-
ity of a test suite. It is the percentage
of nonequivalent mutants that can be
killed by the test suite.

the detection strategies, which also requires domain knowledge. As an example, the code
shown in Listing 5 demonstrates a performance optimization scenario in the real world [27].
The code snippet matches a string against a pattern1, this algorithm uses Deterministic Finite
Automata (DFA) or keywords searching to perform the matching. DFA usually matches
patterns with wildcards faster than the keywords searching algorithm, if the inputs are
unibyte and do not contain any back references. Hence in Listing 5 I search by the DFA if
the condition dfafast is satisfied (line 9 and 19). This example will be the first case study
discussed in Section 4.4.4.

The fault models derived from this example could be either to remove the else if
block or to change the value of dfafast. Unfortunately, neither model can be described by
simple syntactic rules without contextual knowledge about what the affected code blocks or
variables are used for. Such fault models suffer from several drawbacks. Firstly, large human-
in-the-loop efforts are required to understand the entire software project and to implement

1The code is simplified for the discussion.

54 Performance Mutation Testing

1 +bool dfaisfast (struct dfa *d) {
2 + return !d->multibyte &&
3 + d->has_no_backref();
4 +}
5

6 size_t EGexecute (char const *buf,
7 size_t size, size_t *match_size,
8 char const *start_ptr) {
9 + bool dfafast = dfaisfast (dfa);

10 /* ... */
11 for (beg = end = buf; end < buflim; beg = end){
12 if (!start_ptr) {
13 if (kwset) { /* Slow path */
14 do_kwset_search();
15 /* ... */
16 if (matched) return;
17 }
18 - else
19 + if (!kwset || dfafast) {
20 /* Fast path */
21 do_dfa();

Listing 5 Fast Path

these mutation operators. Secondly, these fault models generate only a limited number of
P-mutants. In my experiments on grep (discussed in Section 4.4.4), each mutation operator
instance2 generates about 1 to 2 P-mutants. PMT fault models that do not rely on domain
knowledge are more generic than their counterparts that use contextual information. I classify
the space of possible PMT fault models along two dimensions: how representative and how
context dependent fault models are. Representativeness can be categorized as the fault models
simulating performance bug effects and developers’ errors. The other dimension specifies if
a fault model is context dependent or independent. This is visualized in Figure 4.1. Since the
Listing 5 simulates developer errors, the described fault models fall into quadrant 2, or Q2
in short, as they depend on contextual information. The context-independent fault models
fall into Q4 as they do not rely on contextual information when injecting faults. These two
families of fault models inject performance bugs by simulating developer errors, but differ in
their generality as indicated on the x-axis in Figure 4.1.

2SLOWCOACH embeds the contextual information into mutation operators. Each operator with the contex-
tual information is an instance. (c.f. Section 4.3.1)

4.2 Background 55

An alternative to the simulation of developer errors is to simulate the effects of perfor-
mance bugs. All performance bugs have a performance impact either on-CPU or off-CPU.
For example, an on-CPU performance issue can be caused by inefficient algorithms that waste
CPU cycles, and an off-CPU issue can be related to unnecessary file IO operations that cause
wait times. The on-CPU overheads can be simulated by inserting useless operations into the
code, while off-CPU overheads can be emulated by inserting useless sleep() operations.
Although these simulations do not hamper the FE and potentially generate more P-mutants,
the introduced code mutations do not resemble performance bugs found in real world soft-
ware. The resemblance of synthesized bugs to those that occur in the real world is called the
representativeness of software faults [111]. The simulation of performance bug impacts is
less representative when compared to the simulation of developer errors as indicated on the
y-axis in Figure 4.1. The representativeness of MT fault models is a significant indicator
for the efficacy of MT. Performance bug detection and localization approaches, however,
are only concerned with the symptoms of performance bugs. In other words, a performance
bug may itself be trivial, but it is not trivial to evaluate whether a particular benchmark or
workload is capable of showing observable performance degradation.

Like other PMT fault models, the effect simulation may also be dependent on domain
knowledge. For example, as there are no consistent interfaces among C/C++ software
projects for low-level system operations, the function names of these operations are required
for fault models. In the case of heap memory, allocations are performed with malloc() in
standard C and with new/new[] in C++, but many projects adopt custom allocators, e.g.,
kmalloc() in the Linux kernel, and ALLOC() or xmalloc() in gnulib. I label the simulation
of performance bug effects as Q1 and Q3 in Figure 4.1 with and without context dependency
correspondingly. In spite of the context dependency, the difference between Q1 and Q3 is
often negligible in terms of simulating performance bug causalities, which is why I usually
discuss Q1 and Q3 fault models together. As SLOWCOACH allows developers to encode
contextual information in the fault models, this means there are limited differences between
Q1 and Q3. Therefore, I use Q3 to represent Q1/3 mutants in the following discussions.

As discussed in Section 1.3, the coupling effect [52, 117] is one of the two basic assump-
tions by mutation testing, which states that by addressing a bug, similar bugs in the same
category can be addressed easily as well. In the context of PMT fault models, quadrants
in Figure 4.1 show a large discrepancy between categories in terms of the applicability of
coupling effects. The coupling effects by Q2 and Q4 remain similar to those by tradional
mutation operators, as each operator of Q2 and Q4 assimilates a type of performance bugs
in the real-world. For Q3 operators, coupling effects see limited application, as the causal-

56 Performance Mutation Testing

cxt-dep cxt-indep

ef
fe

ct
de

v-
er

r
Q1

Q2

Q3

Q4

More generic

M
or

e
re

pr
es

en
ta

tiv
e

Fig. 4.1 PMT Fault Models

ity of performance bugs may differ from the injected faults, e.g., we could use inefficient
loops [144] to simulate the performance impact of spinlock contentions [102, 15].

4.3 SLOWCOACH: A PMT Framework

4.3.1 Overview and Workflow

A general overview of SLOWCOACH’s workflow is provided in Figure 4.2. SLOWCOACH’s
primary inputs are the source code of the target software project and project specific con-
figuration which must be provided by the user. The configuration allows customizing the
PMT process for a specific project, such as function ignore or include lists, required for
some mutations operators to work correctly. Section 4.3.1 shows a configuration example to
replace all local variables in the main function named dfafast (in Listing 5) with a value of
false. One or more optional caller elements can be provided to limit the scope of replace
operations to a specific set of functions. The tool mutates the original source code to generate
different mutants (as modified source code files), which are then applied to unique copies of
the project. Both the original project and the mutated versions are then compiled to generate
the executable programs. The programs are then executed with benchmarks using various
workloads, or other performance diagnostic approaches are applied to the executables. The
performance metrics the user is interested in are measured and recorded for the original and
all mutated versions. Based on these metrics or their comparison across versions, the user
can assess the quality of the used benchmarks, workloads, or performance diagnostic tools.

4.3 SLOWCOACH: A PMT Framework 57

Source CodeSource CodeSource Code

Configuration

Original
Project

Executable

Mutation Tool

Clang
Library

Source
Mutant

Mutated
Project

Mutated
Project
Mutated
Project
Mutated
Project

Mutant
Executable

BenchmarkBenchmarkBenchmark

Original
Performance

Metrics

Mutant
Performance

Metrics
Mutant

Performance
Metrics
Mutant

Performance
Metrics

Compare
Kill mutants
Etc.

Fig. 4.2 SLOWCOACH Workflow

1 <local-var>
2 <var-name>dfafast</var-name>
3 <value>false</value>
4 <caller>main</caller>
5 </local-var>

Listing 6 Configuration Example

4.3.2 Mutation Operators

In this section, I take the operators from Table 4.3 in Section 4.2 to illustrate how PMT
mutates the code.

Q4 Operators (developer errors, context-independent)

Q4-A – Loop Unbreaker As discussed in Section 4.2, the fault models simulate developer
errors without contextual information. For SLOWCOACH, I select 2 representative mutation
operators to demonstrate the concepts of Q4 fault models and discuss two of them in this
section. The first operator is called loop unbreaker and derives from a common performance
optimization pattern found in many real-world projects [144, 27] that I call loop breaker.
This pattern is similar to the fast path pattern in Listing 5. I consider that early termination
(break) of a loop is a fast path, stopping the loop early when possible. Section 4.3.2 shows
an example for the loop breaker pattern. The if statement containing the break on line 2
in Section 4.3.2 is the fast path that terminates the loop early. The loop unbreaker mutation
operator removes these if statements. Though Q4-A shares some similarity with the goto
label operator in classic mutation testing [174], this operator concerns more on functionality
preservation and performance degradation within the strucutred programming scheme [54].

The main drawback of loop unbreaker is that semantics cannot be asserted from the
syntactic if statement. It is possible that the if break is necessary for functional behavior,
e.g., a loop returning the first occurrence of an item in a list. Moreover, loops may rely

58 Performance Mutation Testing

1 for (int i = 0; i < 1024; i++) {
2 if (some_cond(i)) break;
3 do_something();
4 }

Listing 7 Loop Breaker optimization pattern (Q4-A in Table 4.3)

on such an if break to terminate, so the removal of it may cause the program to hang.
Although loop hangs can be detected by runtime monitoring [39, 175], it is hard or even
impossible to predict statically during code mutation. To minimize the probability that the
loop unbreaker operator causes program hangs, I adopt a naive heuristic to exclude loops
without a terminating condition, e.g., for(;;) or while(1), because these loops rely on a
break statement to terminate.

Q4-B – Oblivion The second mutation operator is called oblivion. It is derived from
another performance optimization pattern called cache memoization [51].In this pattern the
code records the result of some heavy computation and reuses it later without re-doing the
computation again. A simple example is shown in Section 4.3.2 at line 1 to 2 in Section 4.3.2,
where the results of foo() are cached in variable a and re-used in bar(a). To simulate
performance bugs where cache memoization was omitted, the oblivion operator substitutes
all variable references with their initializers, so that the result of the initializing function
is redundantly computed. In Section 4.3.2, the oblivion operator matches all occurrences
of variable a and substitutes them with a function call to its initializing function foo() as
shown on Section 4.3.2 line 3.

Fig. 4.3 Cache Memoization optimization pattern (Q4-B in Table 4.3)

1 int a = foo();
2 bar(a);
3 bar(foo());
4 bar((a == foo()) ? foo() : a);

The oblivion operator, however, may alter the functional behavior if the relevant function
updates or depends on the global state of the program, which is similar to the statement
deletion operator in traditional mutation testing [174]. A notorious example is memory
allocation, whose results depend on the global state and repeated calls to memory allocation
functions lead to different results. To mitigate this, I adopt a straightforward function

4.3 SLOWCOACH: A PMT Framework 59

blacklisting approach, i.e., the code is mutated only if a local variable is declared with an
initializer and the initializing function is not blacklisted. As a result, given a presumably
side-effect free initializer, the oblivion operator adds a ternary operator as shown line 4 in
Section 4.3.2, where the local variable a is replaced with an expression of the form: (a ==
foo()) ? foo() : a. If the initializer function (foo()) returns a different value, variable
a was changed since its initialization and I fall back to using variable a directly to not affect
the original program semantics. While this approach amplifies the performance impact by
calling foo() twice in the ternary operator, it increases the probability that the original
functional behavior is retained if foo() is side-effect free. Despite these efforts, it is still
possible that the functional behavior is changed, for example, if the initializer function is not
side-effect free or takes arguments that change over time.

Q2 Operators (developer errors, context-dependent)

The performance bug dataset provided by Chen et al. [27] shows that almost all real-world
performance bugs and optimizations depend on project specific context, which has been
confirmed by other works on real-world performance bugs [144, 134].Therefore, additional
contextual information is usually needed to synthesize representative performance bugs
since semantic fault injection is not possible with purely syntactic rules in most MT ap-
proaches [123, 78, 21]. SLOWCOACH encodes the contextual information in the configuration
as described in Section 4.3.1 and shown in Figure 4.2. Considering the fast path example in
Listing 5, occurrences of the dfafast variable can be replaced with a false so that the fast
path will never be taken. A mutation operator that removes fast paths can then match the
variable reference with this name, its parent if statement, and its enclosing function foo(),
and safely remove this particular fast path as defined by the user.

To demonstrate how context dependency is encoded into PMT operators, I take three
examples of code optimizations from the GNU grep project (one of the most popular text
search utilities) and show how they can be reversed to produce performance bugs. The Git
commit ID in the official GNU grep repository [151] is provided for each example. Detailed
code changes and performance bug reproduction can be found at Appendix A.

In the first case3, developers introduce a new function dfaisfast() (described in
Listing 5) as the switch between the fast path and the slow path. In grep, both a DFA (deter-
ministic finite automaton) and a keyword trie are implemented to match regular expressions
(regex) [2, 32]. Using the DFA is usually faster than keyword trie matching if keywords
(patterns) are unibyte and there is no back reference in the regex. So the grep developers
added a new function dfaisfast() to check these two conditions. If both conditions are

3GNU grep repository [151] Git commit ID 3255bc

http://git.savannah.gnu.org/cgit/grep.git/commit/?id=3255bc58e8fb2d98145dbb2dd17bae0a5e47a85e

60 Performance Mutation Testing

met, DFA matching is used, and trie matching otherwise. The check is performed early
and its result is cached in a variable called dfafast. This is similar to the example in
Listing 5 in that dfafast corresponds to some_cond and the trie algorithm corresponds to
heavy_computation(). SLOWCOACH provides a mutation operator that replaces a call to
a given function with some other function, a variable, or a concrete value. This operator can
replace the call to dfaisfast() with a fixed value of 0 to change the fast path condition,
thereby permanently preventing the fast path from being executed. For both cases, Q2-A and
Q2-B operators Table 4.3 are instantiated to replace occurrences of all calls to dfaisfast()
and fgrep_icase_available() with a value of 0. This case is detailed in Section A.1.

In the second case4, fgrep_icase_available() is added to the code, which func-
tions like some_cond as well. The fgrep variant of grep has a dedicated fgrep engine
for fixed string searches, but it still relies on the efficient grep engine as the backend in
certain cases. Although the fgrep engine is faster than the grep engine if only unibyte
characters are involved in a case insensitive search in multibyte locales, the grep engines
was originally used for such searches. As in the first case, developers introduced a new
function fgrep_icase_available() that can identify these cases. The same mutation
operator as before can be used to replace the calls to fgrep_icase_available() with a
value of false to prevent the fast path from ever being taken. Section A.2 contains the code
changes of this case.

The third case5 is called “argument” by Chen et al. [27], which is to avoid heavy compu-
tation by controlling the arguments passed into this computation. Here, code is re-arranged
in grep’s PCRE matching engine to speed up the skipping of encoding errors. Here, the
PCRE engine is slow to process input texts containing multibyte locale encoding errors. The
variable subject represents the input text (index of the input text) to be passed to the PCRE
engine. So, developers update subject to skip encoding errors. A variable p is used as
iterator over the input text and variable subject points to the next valid input text to be
passed into the matching engine. If there are encoding errors in the text, p will skip over
them but leave subject pointing to the error containing text. Hence, the matching engine
must handle these errors, which is relatively slow. As optimization, developers re-arranged
the code to update subject with p to avoid the slower error skipping in the matching engine.
The code change by this case is in Section A.3.

Q1 & Q3 Operators (performance effects, context-dependent and -independent)

4GNU grep repository [151] Git commit ID 960ad3
5GNU grep repository [151] Git commit ID 5cb49d

http://git.savannah.gnu.org/cgit/grep.git/commit/?id=960ad317db21e781b04010f4128bb149273a3327
http://git.savannah.gnu.org/cgit/grep.git/commit/?id=5cb49d2f375f0606ac9d916af6024d4b92ba0786

4.3 SLOWCOACH: A PMT Framework 61

1 volatile int sum = 0, foo[ARR_LEN];
2 for(int i = 0; i < foo_len; i++) {
3 sum += foo[i];
4 }

Listing 8 1* Loop (Q3). Produces useless results in each iteration.

As discussed earlier, mutating for performance while retaining the functional behavior
of programs is generally a hard problem. Q4 operators require expensive static or dynamic
analysis if unchanged functional behavior must be guaranteed. Q2 operators compromise on
generality for a more accurate reincarnation of previously known performance bugs. Since
most real-world performance bug fixes involve specific inputs, the lack of generality limits
the usefulness of Q2 operators for evaluating larger sets of workloads. An alternative to
Q4 and Q2 operators is to simulate the observable effects of performance bugs rather than
the bugs themselves. A naive mutation operator could insert sleep() operations into the
code, to extend the wall clock time of the execution. But inserting sleep() does not aid in
improving performance benchmark design workload selection, because sleeping does not
affect the CPU time, hence can be easily detected by checking the CPU utilization.

Loops are often considered as one of the main sources of performance bottlenecks [144,
116, 92, 126], but reversing loop-related performance optimizations may introduce functional
behavior deviation. To simulate the effects of loop-related performance bugs, I develop
mutation operators to synthesize inefficient loops. I derive the Q3 fault models from the
inefficient loops classified by Song and Lu [144]. There are many types of inefficient loops,
e.g. 1*, 0*1? or 0*1?. Since I are simulating the effects of performance bugs by Q3 operators,
I do not discuss all types of loops in detail. I pick a typical inefficient loop known as the
1* loop for the PMT study and evaluation. 1* loops produce results (side effects) in each
iteration, where these results are useless. A simplified example is the loop in Listing 8 which
computes the sum of an integer array. Since the variable sum is written by the incremented
value of foo[i], there is a result in every loop iteration. However, these results (accumulated
as sum) are not used after the loop, i.e., they are unnecessarily computed. Although most 1*
loops are semantically related to the loop context and much more complicated, Q3 mutation
operators could use a simple form (e.g., summing integer) to simulate the performance
bug effects. Other loops like 0*1? and [0|1]* with different memory access patterns can
be easily implemented and encoded in SLOWCOACH. Due to high similarity in terms of
introducing performance impacts for PMT, I only evaluate the mutation operators derived
from 1* loops in this chapter, and apply various array lengths (ARR_LEN) to simulate different

62 Performance Mutation Testing

performance impacts. The foo array is allocated on stack to avoid randomness caused by
dynamic allocators (line 1 in Listing 8). Since static arrays will be optimized by compilers,
volatile was used on foo to prevent the compiler removing injected loops.

4.3.3 Implementation

In this chapter, we developed a PMT framework prototype named SLOWCOACH with the
general workflow in Figure 4.2. The dashed lines in the figure represent the dependency
of classes, where the arrow means the source depends on the target. The line with arrow
indicates the inheritance. We take source codes in a project and a configuration file in xml
format and specific to this project as the input of my PMT framework. The configuration
file comprises a list of operators to be instantiated. Each operator derives from clang
syntactic matchers to locate point of interests (POIs) and implements a set of heuristics
supported by contextual information to mutate the code. As an example in Listing 5, we
want to remove the occurrence of if statement, but only in the function bodies of foo().
This operator in SLOWCOACH is hence encoded as a configuration entry that matches if
statements, along with the whitelist function foo() as its subnode. The singleton object
OperatorManager [58] functions as a driver that initiates Operators by the configuration
and starts the matching process. The clang matcher is a “visitor” [58] binding POI and user
defined operations by run() function in Operator, whose handler is implemented by its
subtypes like FooOperator. The handlers generate Mutants which contain the mutated
source code, and is responsible to write the buffered code into files. These mutated source
code files are the generated faults that can be injected into project copies.

4.3.4 Prototype Limitations

The SLOWCOACH prototype implementation is for research purposes and as such has
limitations. It is built upon the clang compiler frontend and, therefore, only supports the
languages supported by clang, namely C, C++, and potentially Object-C (as Object-C shares
the frontend with C/C++ in clang). However, this is not a general limitation of the approach
as other compiler frontends or parsers can be used to port the SLOWCOACH mutation engine
to other programming languages such as Python [157]. The current prototype is limited to
generating first order mutants only, i.e., one mutation operator can be applied one time to
produce a mutant that contains exactly one mutation. This limitation will be lifted in the
future with further engineering efforts invested into the prototype. We currently generate all
mutants sequentially. With further engineering efforts, the mutant generation process can be
expedited by employing parallelization. Also, as already discussed in previous operators, pure

4.4 Evaluation 63

Table 4.2 Evaluation Software Projects

Project Application Area PL LoC Mutants Tm* OH†

astar Path-finding Algorithms C++ 3959 514 0.77 36.41
bzip2 Compression C 7292 892 0.40 17.58
mcf Combinatorial Optim. C 2044 239 0.40 19.36
grep ‡ GNU Text Utility C 357 520 1532

* Time in seconds to generate all source code P-mutants.
† Total time in seconds to generate, sample, compile sampled P-mutants.
‡ grep has 1532 Q3 and Q4 operators and 3 extra case study P-mutants.

Since grep only has a default functional test suite, which does not apply
to performance testing as those by SPEC, the Q3 and Q3 P-mutants in
grep are not evaluated and their overheads are hence not presented.

syntactic rules are not powerful enough to simulate developer errors regarding performance
bugs. In particular for Q2 and Q4 operators, the syntactic representation of performance
bugs could be uneunmerable regardless how semantically simple the performance bugs are.
Moreover, these semantics must be inferred manually by developers, which introduces extra
human efforts and potential false positives or negatives for PMT.

4.4 Evaluation

In this section we evaluate SLOWCOACH by applying it to 4 real-word software projects.
The evaluation is driven by the following research questions.

RQ 1 What is SLOWCOACH’s runtime overhead and how many P-mutants does it generate?

RQ 2 Which fraction of the generated P-mutants preserve the functional equivalence to the
original version?

RQ 3 Does PMT assist in identifying issues with performance testing tools and the testing
environment?

4.4.1 Experimental Setup

Implementation & Mutation Operators

We use the SLOWCOACH prototype implementation to conduct the experiments for this
evaluation. The prototype targets C and C++ software as performance critical software is
often implemented with these languages. The prototype itself is realized using C++ and
Python. For its code mutation functionality, it builds upon the Clang C/C++ frontend in

64 Performance Mutation Testing

Table 4.3 Mutation Operators.

Operator Description MPOO0* MPOO3

Q2-A Replace dfaisfast() calls with 0
Q2-B Replace fgrep_icase_avail()

calls with 0

Q3-A Prepend sleep(1) statement to
loop bodies

1000000 1000000

Q3-B Prepend 1* loop (10 000 iterations)
to loop bodies

51.47 4.82

Q3-C Prepend 1* loop (100 000 itera-
tions) to loop bodies

514.55 48.25

Q3-D Prepend 1* loop (1 000 000 itera-
tions) to loop bodies

5137.72 479.16

Q4-A Apply loop unbreaker, remove
early break from loops

Q4-B Apply Oblivion, remove cache
memoization

* Time measured by Google microbenchmark, in microseconds.

version 10.0.1. The currently supported mutation operators (cf. Section 4.3.2) that we apply
in the experiments are described in Table 4.3. Note that the Q2 operators are only used in
the grep case study in Section 4.4.4 due to their program specificity and the manual effort
involved.

Evaluation Targets

Since the prototype targets C and C++ software, we select evaluation targets implemented
in these languages. Additionally, the selected targets should be sensitive to performance
issues, i.e., good performance should matter to their users. For example, the performance of
a compression program such as bzip2 is important to its users as excessive processing time
wastes resources. Targets should also be selected from diverse application domains to avoid
domain specific bias. Considering these aspects, we choose the SPEC CPU 2006 benchmark
suites [70] as the primary source of evaluation targets. Table 4.2 provides an overview of the
selected target programs along with a size estimation as number of lines of code (LoC). The
target programs for the case study are astar, bzip2, and mcf from SPECint 2006, as well
as grep, which is a well known real-world utility.

https://github.com/google/benchmark

4.4 Evaluation 65

Workloads

To exercise the evaluation targets, we use workloads of different sizes. For the programs
from SPEC, we use the standard workloads (inputs) that come with SPEC. For grep, we use
the developer test suite.

Experiment Execution

We generate and build the mutants and run all SPEC experiments inside Docker containers
on 3 identical machines, which are equipped with Intel® Core™ i7-4790 CPUs (3.60 GHz),
12 GiB RAM, and 256 GiB SSDs. The host runs Ubuntu 21.10 with Linux 5.13.0. Inside the
Docker containers, we run an Ubuntu 20.04.3 LTS user-space. The experiments of grep are
carried out on a commputer equipped with an AMD Ryzen Threadripper 2970WX 24-Core
CPU, 64 GiB RAM, and a 1 TB NVMe SSD, which amplies the small performance effects
of the P-mutants in case studies.

The workflow consists of the following steps: (1) we generate and store all P-mutants
for all evaluation targets as source code, (2) we compile both the original programs (for the
baseline) and the P-mutants using Clang with O0 and O3 optimization and store the resulting
binaries, (3) we repeatedly execute both the original (baseline) and mutated binaries with
their workloads and collect time measurements using GNU time. As shown in Table 4.2
and discussed in Section 4.4.2, SLOWCOACH generates hundreds of P-mutants for the
evaluation targets. To reduce these numbers to a manageable level for experiment execution,
we randomly sample 50 Q4 P-mutants6, and 30 random locations on which four Q3 operators
(Q3-A to Q3-D in Table 4.3) inject performance bugs. For each project in Table 4.2, there
are a total of 170 P-mutants being sampled. Since performance measurements are affected by
external factors [70], we repeat each execution 30 times and report median values if not stated
otherwise. The median values are used because they are robust against outliers. To mitigate
potential experiment stalls, we assign a time budget of 30 minutes for each execution, which
is twice as long as the longest baseline execution needs.

4.4.2 RQ 1: Mutant Generation and Overheads

We analyze the amount of P-mutants SLOWCOACH generates for the evaluation targets when
we apply four different Q3 (effect simulation) and Q4 (dev errors, no context) mutation
operators (cf. Table 4.3). We omit Q2 operators as they are reserved for the grep case study
in Section 4.4.4. For Q3 operators, Table 4.3 provides the minimal performance overhead

6If Q4 operators produce less than 50 P-mutants, all generated P-mutants will be used.

66 Performance Mutation Testing

astar_q3 astar_q4 bzip2_q3 bzip2_q4 mcf_q3 mcf_q4
0%

20%

40%

60%

80%

100%

Pe
rc
en

ta
ge

 o
f P

-m
ut
an

ts

fne tmout normal

Fig. 4.4 Functional Equivalence by Operators and Programs

(MPO), which is the performance effect introduced in an individual execution of the mutated
code, as measured with a microbenchmark on the mutated code chunks. The MPOs are given
for both unoptimized (MPOO0) and optimized (MPOO3) compilation.

In total, SLOWCOACH produces 1645 Q3 and Q4 P-mutants for the three programs
(astar, bzip2 and mcf), as shown the Mutants column in Table 4.2. The Tm column shows
the time SLOWCOACH takes to produce all source code P-mutants. The OH column is the
total time SLOWCOACH takes to generate all source code files for P-mutants, inject sampled
P-mutant source code files into the original project copies (cf. Section 4.4.1) and build
sampled P-mutants. The time to produce P-mutants is measured with the debug version of
SLOWCOACH without compiler optimization. SLOWCOACH produces source code P-mutants
in less than a second and builds all sampled P-mutants within one minute. This shows the
scalability of SLOWCOACH, where it generates 1645 P-mutants in 1.57 seconds and builds
491 P-mutants in 73.35 seconds. In summary, SLOWCOACH produces large amounts of
P-mutants, where the exact number and distribution depends on the target program’s code
structure and the presence of performance optimization patterns in the code.

4.4 Evaluation 67

4.4.3 RQ 2: Functional Equivalence

In this section, we analyze the proportion of P-mutants which preserve FE compared to the
original program as only those preserving FE are suitable for PMT. Since FE is undecidable
for arbitrary programs, we resort to comparing the standard output (stdout) and the standard
error (stderr) streams of baseline (original program) and P-mutant executions. If the
outputs from both stdout and stderr of a P-mutant are identical to those of the baseline,
this P-mutant is considered functionally equivalent. Otherwise the P-mutant is not considered
to preserve FE and will not be used further as part of the mutation score computation in
Section 4.4.4. Also, if a P-mutant terminates abnormally (exit with signals), this P-mutant is
removed from further experiments. If a P-mutant does not finish within the assigned time
budget, we consider it a timeout.

Figure 4.4 summarizes the results of my FE analysis based on O0 binaries. Among all 483
sampled P-mutants, we observe a total of 12 functional deviations (fne), 101 timeouts (tmout),
and 370 P-mutants without functional deviation (normal). All 12 functional deviations are
captured by signal 11 (segmentation fault), while none of them have caused output deviation.
4 instances of the segmentation faults are caused by the Q3-C and Q3-D operators that
perform 1 × 105 and 1 × 106 iterations. They are all located at pbeampp in mcf, where large
numbers of stack allocations (1 × 105 and 1 × 106 integers) lead to memory errors. Another
3 FE cases are caused by Q4-A operators, and Q4-B triggers the last 5 cases.

Timeouts can be seen as the fuzzy part between functional and performance bugs [8].
Timeouts can be caused either by a program hang, e.g., infinite loops from removing break
statements (cf. Section 4.3.2), or by an excessively slow program. Without dedicated
monitoring [39, 175], these cases are hard or impossible to distinguish.

In the experiments, about 20.9% of P-mutants yield timeouts, most notably by Q3 opera-
tors. 94 out of 101 timeouts are fully optimized Q3 P-mutants (O3), which do not timeout
when unoptimized. From an example P-mutant in bzip2, we found that the unoptimized
P-mutant finishes processing inputs in 144.65(12) s, while the fully optimized P-mutant
binary takes 40 hours to finish. Further investigation with Linux perf shows that 27.15% of
the CPU time of the unoptimized (O0) P-mutant is spent on the function where the redundant
loop is injected, which is already the second slowest function according to perf reports.
The fully optimized P-mutant, on the other hand, has spent 83.78% CPU time on the same
function in the first hour of execution. By analyzing the assembly code of the affected O3
binary, we see that the injected redundant loop is causing 76.91% of all CPU time. This
finding demonstrates the potential of PMT techniques to be extended to identify compiler op-
timization anomalies because we observed optimized binaries to run longer than unoptimized

68 Performance Mutation Testing

binaries. The mutation operators in SLOWCOACH could be applied as mutation approaches
of compiler fuzzers [47], to facilitate the detection of compiler bugs or undefined behaviors.

We discard both P-mutants that functionally deviated or timed out for mutation score
analysis, but keep the O0 P-mutants whose O3 counterparts timed out due to the anomaly
where unoptimized binaries finish execution earlier than optimized binaries. In summary,
SLOWCOACH is capable of generating 76.6% valid mutants for mutation score analysis.

4.4.4 RQ 3: Mutation Score and Discussion

In this section, we evaluate SLOWCOACH by grading the performance testing setup (cf.
Section 4.4.1) to help improve the quality of performance testing environments. The grade is
defined to be the mutation score (as in classic MT) which is the number of P-mutants that can
be killed. The wall clock time is used as metric to determine the performance of a mutant.
As the wall clock time is susceptible to external noise, we repeat the execution 30 times and
apply one-sided statistical testing to determine if a P-mutant can be killed.

There are many statistical approaches to compare the performance metric (wall clock
time) results for a P-mutant Pm and for the baseline Pb, e.g., by arithmetic means or medians.
For any workload whose Pm > Pb or median(Pm) > median(Pb), we can kill the P-mutant.
But both means and medians are not robust enough to tolerate external noises. Besides using
a single value to represent the performance, we can also use a two-sample KS-test [1] to
kill P-mutants. Delgado-Pérez et al. [50] used Mann-Whitney U tests to compare Pm and
Pb, by rejecting the null hypothesis that Pm and Pb are drawn from the same distribution.
More specifically, the null hypothesis H0 states that the cumulative distribution function
(CDF) F(x) of Pm is the same as the CDF G(x) of Pb (F(x) = G(x)). If we can reject H0

that Pm is drawn from the same distribution as the baseline Pb, a P-mutant is killed when its
Mann-Whitney U test p-value is lower than the significance level α . We adopt 0.01, 0.05 and
0.1 as α values. As we are interested in results when the mutants perform slower than the
baseline, this null-hypothesis could potentially be incorrectly rejected if we observe Pm which
execute faster than Pb. Therefore, we adopt the one-sided KS-test [1] with the null hypothesis
H ′0, which states F(x)≤ G(x). By rejecting H ′0, we can assert that Pm is stochastically larger
than Pb. If the Pm by any workload of a P-mutant is larger than Pb by the corresponding
workload, then the P-mutant is killed. In summary, the previously discussed criteria are:

Cr1 Pm > Pb to kill P-mutants

Cr2 median(Pm)> median(Pb) to kill P-mutants

Cr3 H0: F = G. Rejecting H0 to kill P-mutants (p < α).

4.4 Evaluation 69

astar_ 3_O0

astar_ 3_O3

astar_ 4_O0

astar_ 4_O3

bzip2_ 3_O0

bzip2_ 3_O3

bzip2_ 4_O0

bzip2_ 4_O3

mcf_
3_O0

mcf_
3_O3

mcf_
4_O0

mcf_
4_O3

0%

20%

40%

60%

80%

100%

M
ut

at
io

n
Sc

or
e

mean
median

(a) Mutation Scores by mean and median

astar_ 3_O0

astar_ 3_O3

astar_ 4_O0

astar_ 4_O3

bzip2_ 3_O0

bzip2_ 3_O3

bzip2_ 4_O0

bzip2_ 4_O3

mcf_
3_O0

mcf_
3_O3

mcf_
4_O0

mcf_
4_O3

0%

20%

40%

60%

80%

100%
H0(0.01)
H0(0.05)
H0(0.1)

(b) Mutation Scores by H0

Cr4 H ′0: F ≤ G. Rejecting H ′0 to kill P-mutants (p < α).

Figure 4.5 shows the mutation scores of the three programs by Q3 and Q4 operators and
different optimization levels. The mutation score is computed as the percentage of killed
P-mutants among all normal FE P-mutants without timeouts, defined as

scoremut =
number of killed P-mutants

number of normal P-mutants
. (4.1)

70 Performance Mutation Testing

astar_ 3_O0

astar_ 3_O3

astar_ 4_O0

astar_ 4_O3

bzip2_ 3_O0

bzip2_ 3_O3

bzip2_ 4_O0

bzip2_ 4_O3

mcf_
3_O0

mcf_
3_O3

mcf_
4_O0

mcf_
4_O3

0.0

0.2

0.4

0.6

0.8

1.0

M
ut

at
io

n
Sc

or
e

(s
ec

on
ds

)

H0(0.01)
H0(0.05)
H0(0.1)

(c) Mutation Scores by H0′

Fig. 4.5 Mutation Scores of P-mutants by Operator Types and Programs

Figure 4.5a shows the mutation scores by arithmetic means (Cr1) and medians (Cr2), while
Figures 4.5b and 4.5c show the mutation scores by H0 (Cr3) and H0

′ (Cr4). The mutation
score is measured in the interval of [0,1], where 1 means all P-mutants are killed and 0
means no P-mutants are killed. We compute the overall mutations score for each criterion by
applying the number of all killed P-mutants and that of all P-mutants across all 3 projects
to Equation (4.1). The overall mutation scores by Cr1 to Cr4 are 0.81, 0.7, 0.76 and 0.42
respectively. Cr1 (mean) has the highest mutation score and Cr4 (H0

′) has the lowest,
and the scores computed by Cr1 to Cr3 are relatively close to each other (about 0.75±6).
The overall mutation scores by Cr3 (Figure 4.5b) are 0.56, 0.69, and 0.76 with respect to
significance levels 0.01, 0.05, and 0.1. These mutation scores are comparably close to those
by Delgado-Pérez et al. [50] (0.51, 0.65, and 0.7).

The mutation scores by Cr4 (Figure 4.5c) are very different from those by Cr1 to Cr3
(Figures 4.5a and 4.5b). In Figure 4.5b, except for some cases, the mutation scores by O3
are mostly larger than those by O0. But for H0

′, the mutation score is the other way around
except for mcf, where only 5% optimized P-mutants are killed while 37% unoptimized ones
are killed. The largest difference in these experiments is shown by Q3 P-mutants in astar,
where unoptimized P-mutants have a score of 0.75 and optimized ones have 0.03 (the first
two bars in Figure 4.5c). It is expected as the MPO values of unoptimized Q3 operators are
10x slower than unoptimized ones (Table 4.3). Optimized P-mutants usually cannot expose
the performance overheads which are quite obvious when unoptimized due to the small MPO.

4.4 Evaluation 71

The generic performance tool we use (time) to compute the mutation score suffers from too
much noise and is not precise enough to measure millisecond performance impacts.

Among all unoptimized cases, 65% P-mutants are killed, while 11% optimized P-mutants
are killed (α = 0.1). Q3 P-mutants, those in astar for example, show a large discrepancy
of mutation scores by different optimization levels, where unoptimized P-mutants have a
score of 0.9 and optimized ones have 0.05 (the first two bars in Figure 4.5c). It is expected as
the MPO values of unoptimized Q3 operators are 10 times slower than unoptimized ones
(Table 4.3). Q4 P-mutants are less likely to be killed and are more likely to be killed when
unoptimized as well, except those by mcf.

We argue that PMT differs from classic MT in that PMT assesses the performance
testing as a whole, rather than a particular workload or a profiler. Performance testing has
many facets, including compiler optimizations, workload selection, selected performance
diagnostic tools, or the repetition of the profiling, etc. The performance impacts by Q3 and Q4
P-mutants are believed to be small, unless repeated enough. The relatively higher mutation
scores by unoptimized P-mutants (0.42) show that the P-mutants produced by SLOWCOACH

do introduce performance overheads. Since software development is usually carried out
with compiler optimization disabled, this also demontrates the capability of SLOWCOACH to
assess the quality of the performance testing during the software’s evolution.

The low mutation scores (overall 0.05%) by fully optimized P-mutants convey potential
limitations of the performance testing enviornment. Firstly, the default workloads do not
exercise the injected code frequently enough. This may be a scalability issue for production
software as the release version of software is usually fully optimized, as the existing work-
loads cannot exhibit the performance bugs injected. Secondly, broader range of profilers with
finer granularity need to be used in performance testing. The generic performance tool we use
(time) to compute the mutation score suffers from too much noise and is not precise enough
to measure millisecond performance impacts. As the MPO values in Table 4.3 illustrate, a
single run of the injected code yields merely several milliseconds (sometimes even hundreds
of microseconds) of performance overheads. Given external noises, small overheads are
challenging to detect and profilers like Linux perf could be used to detect such overheads
by sampling CPU [124].

Case Study on Context-dependent Q2 Operators

SLOWCOACH also supports Q2 operators to simulate real-world performance bugs given
contextual information. We investigate the performance impact of such operators (cf. Sec-
tion 4.3.2) in a case study on grep. They each produces a P-mutant which reproduces the
scenarios involving performance bugs [27] and preserves FE. The performance impacts of the

72 Performance Mutation Testing

P-mutants are shown in Figure 4.6a. The y-axis is the execution wall clock time of the testing
program reported in seconds. Experiments are repeated 50 times, and Figure 4.6b are the box
plots of the performance values and their corresponding setup. Due to the small performance
deviation, some boxes are overlapped with the median bar, and outliers are depicted as circles.
Original program executions are labeled with orig and P-mutant executions with mut.

Since most real-world performance bugs involve performance bottlenecks for certain
workloads, we use dedicated workloads for each mutant. In the first case (Q2-A), we search a
50 MiB file with repeated “abcdabc” for the pattern ’abcd.bd’. The performance impact of
that mutant in the O0 case is with 9.8 s median difference easy to detect. With O3 optimization,
the absolute impact is about 3.8 times smaller with 2.6 s, but still easily detectable. For
the Q2-B case, a file with 600 capitalized strings is matched with its uncapitalized strings
in a multibyte locale. The developer who originally fixed the bug that Q2-B re-introduces
claims an overhead as large as 104 s. However, we observe median runtimes of only 0.41 s
for O0 and 0.23 s for O3. For the third case (Q2-C), we apply the mutation to two different
versions of grep: v3.4 (mut in Figure 4.6c) and v2.22 (mut2), and search a 10 MiB multibyte
text file that contains encoding errors. According to developers, the mutant should yield a
performance overhead of about 4.7 times. However, we can hardly observe a performance
impact for v3.4, neither with O0 nor O3. For the older v2.22, however, we observe a notable
impact for O0 with a relative overhead between medians of factor 3, which diminishes to
factor 1.3 for O3.

In summary, although Q2 operators produce representative mutants derived from real-
world bugs, their specificity leads to limited applicability and the required domain knowledge
entails manual effort.

4.4.5 Internal and External Validity

The validity of the conclusions I draw in this work may be affected by several factors.
The PMT operator selection could be biased as I focus my approach and evaluation on
PMT operators derived from performance bugs that are widely discussed in the research
community [156, 144], but there could be further classes of performance bugs that should be
considered. The random sample of P-mutants and mutation score based on statistical testing
could be statistically biased. My assessment of functional equivalence is based on program
outputs, which assumes that the FE P-mutants yield identical outputs, which could be less
robust. Bugs and mistakes in the implementation and data processing could also affect my
conclusions. This is why I carefully tested and debugged the prototype implementation and
all involved scripts and performed sanity checks on the collected data.

4.5 Conclusion 73

orig_O0 mut_O0 orig_O3 mut_O3

2

4

6

8

10

12

14

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

(a) Case Study Q2-A

orig_O0 mut_O0 orig_O3 mut_O3
0.0

0.1

0.2

0.3

0.4

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

(b) Case Study Q2-B

4.5 Conclusion

In this chapter, I presented and evaluated SLOWCOACH, a PMT framework. I subdivided
the design space of PMT operators into four quadrants depending on whether they simulate
effects of performance bugs or actual developer errors and identify functional equivalence as
an key issue. I discuss concrete PMT operators from these quadrants and demonstrate how
they can be derived from real-world performance optimizations and bugs. I demonstrate the
applicability of my approach using 4 real-world software projects and show that the PMT
operators can produce P-mutants that preserve functional equivalence and assess performance
testing. I find that the mutation score based on one-sided statistical testing can provide reliable

74 Performance Mutation Testing

orig_O0
mut1_O0

mut2_O0
orig_O3

mut1_O3
mut2_O3

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

(c) Case Study Q2-C

Fig. 4.6 Mutation Scores of P-mutants by Operator Types and Programs

assessments of the quality of the performance testing, which could help provide suggestions
on improving performance testing.

Chapter 5

Performance Fuzzing

Feedback based fuzzing is a technique to automatically generate testing cases that cause
unexpected software behaviors, e.g. program crashes. Recent researches aim to explore
pathological inputs correlated with performance related issues, e.g., worst algorithmic cases
that can be exploited to deploy denial of service (DoS) attacks. However, the performance
fuzzing has fundamentally different characteristics in comparison with traditional fuzzing
techniques and hence existing evaluation with default parameters by PERFFUZZ and SLOW-
FUZZ are insufficient. In this chapter, an empirical study on the efficacy of performance
fuzzing is carried out, to identify conditions that improve the effectiveness of performance
fuzzing. Besides, 2 PERFFUZZ variants are implemented to discuss the efficacy of perfor-
mance fuzzing with different performance related pathological causalities. It turns out that
the PERFFUZZ framework is limited due to the scope of the performance fuzzing guidance
on internal factors of a program. Based on the performance impact analysis of generated
inputs by 3 fuzzers on 4 popular projects, it shows that performance fuzzing should be
executed with carefully selected parameters, preferably custom seed inputs and aligned
compiler optimization levels. It is also found that the real timeout used by the fuzzer is
usually lower than the one specified by users, and performance fuzzing would be limited by
current internal information based guidance in terms of generating more interesting inputs.
These conclusions are helpful to guide further development of more effective performance
fuzzing tools in the future.

5.1 Introduction

Unexpected performance degradation of software leads to poor user experience, waste of
computational resources and even Denial-of-Service attacks. For example, if a key-value data
structure (like dict in python) is implemented as a bucket, and the hash algorithm is buggy

76 Performance Fuzzing

(XOR based), an attacker can deploy inputs with flipped bits to cause massive hash collisions,
hence leaving the victim program hanging [46]. The common performance diagnostic
procedure to fix such problems starts with performance bug detection [115, 84], causality
localization [152, 124] and code optmization (c.f. Figure 1.4). Developers need to determine
if there are performance bugs in the code as the first step, by one or more performance
metrics of interests (PMoI), e.g., The wall clock time for a program to finish is too slow
according to a specification. To simplify the discussion, the execution time or wall clock time
is adopted as the PMoI throughout this chapter if not otherwise stated. Then developers run
profilers to catpture details of the performance topology of the SUT for performance issue
localization, for example, to show a prioritized list of functions by their percentage of CPU
time [124]. The longer the CPU time a function takes, the more likely the causality code
of the performance bottleneck dwells in this function. Developers can thereafter optimize
the code around slow functions. Most state-of-the-art performance diagnose approaches
proposed in research communities [148, 9, 163] only focus on the localization and profiling of
predetermined performance issues. However, in the aforementioned key-value data structure
example, developers may not be able to trivially identify the pathological input that triggers
the worst algorithmic case. As performance bugs are known to be difficult to detect [84, 27]
and reproduce [69], finding proper inputs for performance testing is one of the challenges to
effectively find performance bugs.

In security testing, fuzzing is a popular technique adopted in recent years to generate
pathological inputs1 that crash the SUT [92, 126]. The fuzzing process starts with a set of
initial seeds inputs, or seeds for short, and executes the SUT with each and every seeds while
tracking the coverage of each input. Then the fuzzer randomly mutates the inputs and execute
the SUT again. If the SUT crashes the fuzzer will record the causal input as an interesting
input. Otherwise, the fuzzer will select those inputs that yield larger SUT code coverage,
which is known as the fuzzing guidance, and repeat the inputs mutation and SUT execution
until a preallocated time budget runs out. Performance fuzzing, PERFFUZZ in particular,
extended the fuzzing guidance by counting the number of traversal over the SUT control
flow graph (CFG) nodes [92], so that the fuzzer could explore the inputs that exploit worst
algorithmic cases.

Both Lemieux et al. [92] and Petsios et al. [126] demonstrate that general performance
fuzzing techniques are able to automatically generate effective inputs exploring very long
execution paths. Nevertheless, both work failed to explain how generated inputs could be
useful for software developers to identify and localize the performance issue causality in code.

1Though some researchers, e.g., Chen et al. [23], consider fuzzing as test case generation, test cases are
considered as a SUT along with its inputs and many fuzzing tools like AFL fuzz around a fixated SUT.

5.1 Introduction 77

Traditional fuzzing techniques search for vulnerabilities and record crashing inputs, which
are usually small in numbers, and thus straightforward for developers to patch vulnerabilities
by investigating each input. Performance fuzzing however, produces a set of inputs with
increasing path length, and it remains unknown which one should devlopers investigate
further for causality localization. A fuzzing process would usually produce thousands of
inputs and it and it is unwise to manually numerate thousands of performance profiling traces.
A naive approach to select an interesting input would be to investigate only the input with
the highest fuzzing guidance value, e.g., the input with longest path length by PERFFUZZ.
Despite the path length is correlated with the performance metrics like execution time or
throughputs, CFG edges do not have the same execution cost. Figure 5.1 shows the execution
time (y-axis) in seconds and the path length (x-axis)2, where the slowest input yields 4 s,
much more than the linear expectation (the green line) by the path length. As execution
time or other PMoI are controlled by the fuzzing environment or configuration, previous
researches [126, 92] have not discussed how fuzzing configuration could affect the fuzzer to
generate interesting inputs for further performance analysis, which should a) be slow enough
to be considered as a performance issue, and b) have large performance impacts and small
file sizes.

As the measurement of PMoIs is susceptive to external noises, the first aim of this chapter
is to reevaluate PERFFUZZ to demonstrate how to apply performance fuzzing techniques
effectively. As Figure 5.1 suggests, the PMoI needed by performance bug localization may
not be fully correlated to the approximation. The performance metrics that developers
concern (e.g. execution time, throughputs, cache misses or I/O events etc), are measured
externally to the SUT and hence recognized as external factors, but the fuzzing guidance is
usually deployed to capture internal factors of the SUT, e.g. path length in PERFFUZZ [92]
and SLOWFUZZ [126]. Lemieux et al. [92] also admitted that the execution path length may
not be a good fuzzing guidance. Besides, more causalities such as worst algorithmic cases,
bad cache coherence or inefficient I/O could lead to prolonged execution time as well. As
PERFFUZZ [92] is designed to adopt various performance bottleneck causalities, the second
aim of this study is to explore the limitation of the existing performance fuzzing framework
that prevents the performance fuzzer to identify more interesting inputs.

In traditional fuzzing, fuzzers aim to iterate through inputs as fast as possible, so that
fuzzers limit the file size and have a timeout to avoid getting stuck at a certain input. For
example, the default parameters for AFL [169] are 1 MB for the input size and 1 s for the
timeout. Such limits are deployed so that the fuzzing process could mutate and run as
many inputs as possible given a time budget. On the other hand, the default limits on the

2Fuzzing and measuring the inputs by libjpeg.

78 Performance Fuzzing

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Path Length ×109

0

1

2

3

4

E
xe

cu
ti

on
T

im
e

(s
ec

on
d

)

Normal Inputs

Linear Prediction

Fig. 5.1 Execution Time and Path Length

input size and timeout in performance fuzzing prevents the fuzzer to explore potentially
interesting inputs. The default fuzzing parameters of PERFFUZZ are denoted as S1, which
has 1 s timeout and 1 MiB input size limit. The fuzzing timeout could lead to limited search
space for performance fuzzing, as the execution time would increase with the path length
in PERFFUZZ. The fuzzer would then consider a potentially interesting input as a hanging
input, and stops searching further along its covered path.

To evaluate the impact of the fuzzing parameter, the timeout and the input size limit
are increased by 100 times, to 100 s and 100 MiB, and this setup is denoted as S23. As it
turns out in Section 5.4, that the fuzzing parameters by S1 drastically limit the efficacy of
performance fuzzing in finding slow inputs, the parameters by S2 are adopted for the rest
setups.

Furthermore, the selection of seed inputs usually affects the efficacy of fuzzing. To
explore the impacts of the seed selection, several inputs are selected from the Internet for

3As AFL recommends a maximal input size value of 100 MiB, this value is considered as an input size
bound for a larger search space to compare with. Since this value is 100 times of the default input size value,
timeout is also scaled by 100 times.

5.1 Introduction 79

each target project as customized seeds. The fuzzing setup with customized seeds are marked
as S3 and compared with S2.

Another interesting scenario is the impact of the compiler optimization, which is never
discussed in relevant communities. Build systems like cmake for example, will build
the program without optimization at the debug mode, while build the program with full
optimization at the release mode. Since compiler optimization would probably change the
control flow structure, and hence the fuzzing guidance by CFG edges could be different on
different unaligned optimization levels. Hence, the performance analysis on generated inputs
could be impacted. In this chapter, an experiment setup in which the fuzzing is carried out on
the unoptimized SUT and the performance measurement on the optimized SUT, is denoted
as S4 to be compared with S2.

In addition to setups, this chapter also investigates two performance fuzzers with differ-
ent fuzzing guidances, in order to identify the limits of the existing performance fuzzing
framework. Both assign each CFG edge with a weight, given existing fuzzing guidances are
based on CFG edges. One marks CFG edges with the number of instructions in its outbound
basic block, while the other assigns the weight by the number of memory access instructions.
These two variants are denoted as V1 and V2 respectively.

Summing up the previous discussion, this chapter aims to comparing different configu-
rations of performance fuzzing, to provide suggestions on effective usage of performance
fuzzing, and to advise challenges to be addressed in future researches on performance fuzzing.
To simplify discussions, PERFFUZZ [92] is used as the target implementation, and execution
time (as a common PMoI) is used to quantify the performance impact. More specifically,
following reseach questions are discussed in this work:

RQ. 1 What is the impact of the default fuzzing parameters on performance fuzzing? (S1 and
S2)

RQ. 2 What is the impact of seeds selection? (S3 and S2)

RQ. 3 What is the impact of compiler optimization? (S4 and S2)

RQ. 4 Could prioritizing the execution path (changing the fuzzing guidance) improve perfor-
mance fuzzing? (V1 and V2 and S2)

This chapter has the following contribution:

• A large scale evaluation on the PERFFUZZ framework.

• A set of suggestions to use and extend performance fuzzing effectively.

80 Performance Fuzzing

• Two PERFFUZZ variants exploring different aspects of performance bugs.

The key findings are:

• The timeout value would be the largest limit on the performance fuzzing.

• Custom seeds are considered relatively more effective than default ones regarding
steering performance fuzzers to find more performance relevant inputs.

• The efficacy of performance fuzzing with unaligned optimization levels is relatively
worse. So, it would always helpful to use a unified compiler optimization levels for
performance fuzzing and performance localization/analysis.

• PERFFUZZ is limited in terms of guidance extension. Weighting execution paths yield
relatively equivalently interesting inputs as default PERFFUZZ, but in some projects
such weighted paths could misguide the fuzzer.

5.2 Background

The formal definition of the PERFFUZZ algorithm is detailed in Algorithm 1, which is a
slightly simplified version by Lemieux et al. [92]. The general approach of performance
fuzzing is to maximize the performance value (PV) associated with some program compo-
nents. PERFFUZZ aims to collect the execution counts (as the PV) of control flow graph
(CFG) edges (as the program component).

The PERFFUZZ algorithm starts by initializing P with the first set of inputs known as
the seed inputs to (Line 3). Then the fuzzer will keep running until the time budget runs
out (Line 3 - 11). During each iteration, the fuzzer computes the probability of each input
from P (Line 4 and 5), and selects potentially favored inputs (Line 6). Upon each selected
input, PERFFUZZ mutates the it (Line 7). Mutants are thereafter streamlined to the SUT for
execution and the fuzzer aquires the feedback (Line 8). If the feedback has new coverage or
a new maximal value (Line 9), the mutants will be appended into the input set P (Line 10)
for next iterations.

Line 9 shows the largest difference between the performance fuzzing and traditional
fuzzing techniques. The code coverage of the generated inputs is more concerned by
traditional grey-box fuzzing, while performance fuzzing also need to take the PV into
account. In the case of PERFFUZZ, a mutant is favored if the cumulative sum of the execution
count on CFG edges is larger than that by its direct parent input. And the probability if an
input or a mutant is selected is defined in Equation (5.1) (Used at Line 5). In plain words, if

5.2 Background 81

Algorithm 1 Fuzzing Algorithm [92]
1: procedure PERFFUZZ

2: P ← Seeds
3: repeat
4: for input in P do
5: p← FUZZPROB(input)
6: for i in SELECTINPUT(p, input) do
7: mutants← MUTATE(i)
8: f eedback← EXECUTE(p,children)
9: if NEWCOV(f eedback)∨NEWMAX(f eedback) then

10: P ←P ∪mutants
11: until timeout or signal received

an input has explored new paths or has found new PV (Line 9 in Algorithm 1), this input will
be selected. Otherwise, there is a probability of α that the input will be selected, which is set
to 0.01 by PERFFUZZ:

FUZZPROB(i) =

1 if i is favored

α otherwise
(5.1)

The procedure in Algorithm 1 and Equation (5.1) is briefly summarized in Figure 5.2.
Performance fuzzing frameworks such as PERFFUZZ [92] can be extended with different
fuzzing guidances (PVs) else than the path length. The flexibilty to look for new fuzzing
guidances however, is limited by multiple factors. In addition, programming language
features could also limit the extension of new fuzzing guidances. For example, memory
allocation function invocations can be used to explore the inputs that trigger inefficient
memory allocation, such as short-lived on-heap objects in C or C++. But many C or C++
projects customize project specific memory allocator else than malloc() in the standard
library. Hence, a performance fuzzer needs contextual information of a project to guide the
fuzzing process by some performance relevant factors like memory allocation or I/O events,
which can hardly be tracked given merely the internal structure of a program.

In this chapter, two PERFFUZZ variants are proposed to explore the potential of PERF-
FUZZ as a framework. The PV, i.e., the path length used by PERFFUZZ, is an approximation
of the real performance, because the classic fuzzing tools acquire the feedback information
by instrumenting probes into the SUT (c.f. Section 5.1). Such approximation could deviate
from the PMoI that developers are interested in, which are usually measured externally, e.g.
execution time or throughputs etc. The deviation of path length from the real performance is
caused by the fact that each CFG edge has different performance costs. A CFG edge could

82 Performance Fuzzing

SeedsSeedsSeeds
InputsInputsInputs

ExecuteDrop Mutation

Record

Larger Coverage
Longer Path Length

Crash

Fig. 5.2 A simplified common procedure of the fuzz testing

be traversed as quickly as in hundreds of cycles, and could be as slowly as in millions of
cycles as well.

Two variants of PERFFUZZ are proposed to guide performance fuzzing concerning the
performance cost of CFG edges. The two variant are denoted as V1 and V2 (c.f. Section 5.1).
The hypothesis behind V1 is that the performance of each CFG edge is correlated with
the number of instructions execercised by its precedent basic block (CFG node). In plain
words, the more instructions are executed, the slower the traversal of the CFG edge is. So,
V1 assigns each CFG edge with its number of instructions. Similarly, V2 is based on the
hypothesis that the accesses of memory play a key role in the performance of SUT. For
example, summing a vector is usually faster than summing a list due to cache effects. When
more memory accesses are triggered by an input, it is more likely that memory inefficiencies
can be exposed. Hence, V2 assigns each CFG edge with the number of underlying memory
accesses. Both variants can be found at the github repository4, where V1 is the yapf-inst
branch and V2 is the yapf-mem-inst branch.

4https://github.com/61OlkVq8/perffuzz

https://github.com/61OlkVq8/perffuzz
https://github.com/61OlkVq8/perffuzz

5.3 Study Design 83

Table 5.1 Evaluation Targets

Projects SUT LoC seed size (default) seed size (S3)

libpng readpng 94 750 1.22 KiB 35.17 KiB
zlib minigzip -d 33 088 0.16 KiB 275.27 KiB
libjpeg djpeg 66 521 0.40 KiB 381.11 KiB
libxml xmllint 318 465 0.01 KiB 55.24 KiB

5.3 Study Design

PERFFUZZ is used for this study as a representative performance fuzzing framework. To
compare the different configurations, The following evaluation targets are selected:

• libpng-1.6.34: reads a png file

• zlib-1.2.11: decompresses a file

• libjpeg-turbo-1.5.3: decompresses a jpeg file

• libxml2-2.9.7: parses an xml file

Table 5.1 provides the basic information of the target projects. These projects are selected
thanks to their wide usage by many real world projects, and all evaluation target projects,
experimental tasks as well as project versions are identical to those exercised by Lemieux
et al. [92] for comparability. The execution time is chosen as the PMoI throughout this
section and chapter5.

The experimental process for each setup (c.f. Section 5.1) is described as: a) PERFFUZZ

fuzzes the test program (SUT) of each project for 18 hours, with 8 instances running in
parallel, and b) the SUT is executed with each generated input for 100 times and the
execution time related to every input is recorded.

To compare different performance fuzzing configurations, the Performance-Size Ratio
(PSR) of the slowest generated input and the percentage of Performance Relevant Input
(PRI)s are discussed in this section, which are computed based on the execution time of
generated inputs.

5In the rest of this chapter, PMoI can be considered as an equivalent of the execution time.

84 Performance Fuzzing

5.3.1 The Input with Worst Performance and Performance-Size Ratio
(PSR)

A basic assumption to compare fuzzing configurations is that developers usually choose the
input with the largest PMoI value (the slowest input) for further performance bottleneck iden-
tification and analysis. Hence, the slowest input is used as an indicator for the performance
fuzzing efficacy:

PMoImax = max(median(t̄1),median(t̄1) . . .median(t̄n)) where tm ∈ T,m ∈ [1,n] (5.2)

But, when the fuzzer incrementally mutate input payloads, the execution time increases
linearly and a high execution time would be less interesting in this case. On contrast, if it
takes a long time for the SUT to finish processing a small input, such input would demonstrate
a certain case where the SUT could be optimized (or a DoS vulnerability to be exploited).
Therefore, the gradient of the PMoI and the input size is considered as the indicator showing
how interesting an underlying input is. Since PMoI is a set of values6, the PMoI of an input is
denoted as t̄, and the set of PMoI of all inputs is denoted as T , where t̄ ∈ T . PSR is computed
as the median of all PMoI values divided by the input size s:

PSR =
median(t̄)

size(t)
(5.3)

Similarly, the PSR of this input is computed as in Equation (5.3) and denoted as PSRmax.
If a setup has a higher PSRmax than another, this setup can be considered to be better in terms
of finding a more interesting input.

5.3.2 Performance Relevant Input (PRI)

Another metric used to compare fuzzing configurations is to compute the percentage of PRI
among all generated inputs. In fuzzing, all inputs except seeds are generated based on the
mutation of their parental inputs. Given the performance of the ith input ti, the performance
of its selected descendants tt+1 should yield worse performance, or larger PMoI in other
words. Such input is denoted as the performance relevant input (PRI). This dependency can
be generalized as:

∀P(t̄i)< P(¯ti+1) where {t1, t2, . . . , tn} ∈ T, i ∈ {1, . . . ,n−1}, ti ≺ ti+1 (5.4)

6By 100 repetitions, as mentioned earlier in this section.

5.4 Evaluation 85

T is the sequence of inputs t1, . . . , tn, which are sorted by the order of the input creation,
and t̄i is the set of collected PMoI values. P(t) is the cumulative probability function of the
PMoI values, as the PMoI measurement is susceptive to external noises and usually PMoI
values of an input would need repeated measures to avoid statistical bias. We adopt the
two-sample K-S one-sided test to test if the set of PMoI denoted as t̄i is stochastically less
than ¯ti+1 [1]7. The null hypothesis H0 is that t̄i ≥ ¯ti+1. If H0 is rejected, t̄i is stochastically
less than ¯ti+1. 0.01 is used as the confidence interval threshold α for the p value.

The percentage of PRIs indicates how effective the fuzzer searches for the inputs that
increase PV, instead of looking for new coverage.

5.4 Evaluation

5.4.1 Evaluation Setup

The experiments are carried out on separate virtual machines with 8 Intel® Xeon® Gold
6248R CPUs (3.00 GHz) with 8 GiB memory, running Ubuntu Linux 20.04.3 LTS with the
Linux kernel 5.4.0. All virtual machines are of the same configuration and running on SSDs
with various spaces for each project to contain different sizes of generated inputs.

5.4.2 Overview

The results of aforementioned experiments are presented in Figure 5.3, Figure 5.4 and
Figure 5.5. Figure 5.3 and Figure 5.4 show the PMoImax and PSRmax (computed by Equa-
tion (5.3)) of each project by every setup. The y-axis is the median of the execution time and
PSR by the slowest input of a fuzzing process and is log scaled. The error bars demonstrate
the results by repeated fuzzing process. The execution time median of all projects and
setups can be found at Appendix B. Figure 5.5 shows the percentage of PRIs discussed in
Section 5.3.2. The y-axis is the percentage of PRIs and is linearly scaled.

A general observation of the fuzzing results is that the fuzzing efficacy differ greatly
among projects. The libpng project for example, can hardly execute for longer than 0.1 s,
while the slowest input for libxml would need more than 30 s for the SUT to finish. Though
libpng has 94k lines of code, its underlying SUT readpng is too trivial to have performance

7Delgado-Pérez et al. [50] use Mann-Whitney U Test [100] to compare stochastic performance data, which
does not fit the performance comparison in this chapter as Mann-Whitney U test only checks the null hypothesis
of the inequivalence of two samples. KS-test on the other hand is capable of rejecting the null hypothesis that
one sample is stochastically larger or smaller than the other.

86 Performance Fuzzing

libpng zlib libjpeg libxml
10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

M
ed

ia
n

in
 S

ec
on

ds

S1
S2
S3
S4
V1
V2

Fig. 5.3 Execution Time (Median) of the Slowest Input by Projects and Setups

impacts. The slowest input of libpng found by the fuzzer has a latency of merely 0.3 s by
S3.

5.4.3 Discussion

RQ. 1: What is the impact of the default fuzzing parameters on performance fuzzing?
(S1 and S2)

Though the slowest input generated with default fuzzing parameters (S1) yield compa-
rable PSR values and PRI percentage with those by S2, the absolute execution time is too
small to be useful for performance analysis. For performance profilers such as perf [124],
which aggregate the performance information by periodic sampling, such short execution
time would not yield sufficient samples to exhibit the performance bottleneck location. In the
case of libjpeg, S2 shows the advantage of the larger search space, as PERFFUZZ found a
slow input with a high PSR value.

In other projects, S2 can find slow inputs but not potentially more interesting given PSR
values and PRI percentages. This indicates that the performance impact of the slowest input
found by S2 is linearly correlated with the slowest input by S1. It is likely that PERFFUZZ

5.4 Evaluation 87

libpng zlib libjpeg libxml

10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

PS
R

S1
S2
S3
S4
V1
V2

Fig. 5.4 PSR of the Slowest Input by Projects and Setups

would keep exploring linear paths until the input size or timeout limit is hit. As the main goal
of performance fuzzing is to find the input that maximizes the performance impact while
keeps its size reasonable, the input size limit by S2 and other setups (100 MiB) is too large
so that the fuzzer searched a lot of linear paths (c.f. Appendix B). To determine proper input
size limits for different SUTs is intrinsically difficult to be generalized, as a too small limit
would confine the fuzzing search space, while a too large limit would allow the performance
fuzzer to explore less interesting linear cases.

The timeout value of the fuzzer provided by users (1 s for S1 and 100 s otherwise) is
an upper bound of real timeout values for every input, which are computed by the fuzzer
dynamically [169]. Therefore, user specified fuzzing parameters allow the fuzzer to explore
larger space, but the timeout value cannot be fully utilized to search for slower inputs.

RQ. 2: What is the impact of seeds selection? (S3 and S2)

Though custom seeds do not yield more interesting inputs in terms of PMoImax and PSR,
custom seeds do have a very high percentage of PRIs. 60% to 80% of the inputs generated
by S3 are slower than their precedent inputs, while other setups yield merely 30% to 60%
inputs to be PRIs. Hence, using larger custom seeds is preferred.

88 Performance Fuzzing

libpng zlib libjpeg libxml
0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f P
RI

S1
S2
S3
S4
V1
V2

Fig. 5.5 PRI across Projects and Setups

RQ. 3: What is the impact of compiler optimization? (S4 and S2)

Though the compiler optimization changes CFG structures on which performance fuzzing
is guided, the unaligned optimization levels between performance fuzzing and performance
analysis do not affect the efficacy of performance fuzzing. The only exception is by libjpeg
that the PSR value of the slowest input is moderately lower than that by S2. Therefore, it is
always recommended to retain the optimization level applied by performance fuzzing when
analyzing performance bottlenecks.

RQ. 4: Could prioritizing the execution path (changing the fuzzing guidance) improve
performance fuzzing? (V1 and V2 and S2)

PERFFUZZ variants are able to generate inputs that are as slow as those by S2, and the
PSR values of these inputs are mostly close to the ones by S2, except in the case of libjpeg
where the PSRmax by V1 and V2 are lower than those by S2. In other words, the proposed
variants do not outperform the vanilla PERFFUZZ. The main reason is that, PERFFUZZ is
guided by the number of traversals over CFG edges regardless how such edges are weighted.
The variants like V1 and V1 may be able to find some CFG edges with performance impacts

5.4 Evaluation 89

earlier, but such CFG edges would also be found by PERFFUZZ given sufficient time. There
are also technical concerns that V1 and V2 do not demonstrate more effectiveness over the
vanilla PERFFUZZ. The technical limitation by V1 is that the performance costs of LLVM
instructions are different, just as the performance of CFG edges. The performance of memory
access instructions by V2 is volatile due to different cache effects. As the fuzzing guidance
by PERFFUZZ is generalized to cover many cases, computing the PV for fuzzing guidance
based on CFG edges may not yield significant improvements to search for interesting inputs.

5.4.4 Future Work

Summing up the previous discussions, two challenges for more effective performance fuzzing
are identified:

1. The timeout is a major limit to be mitigated.

2. Performance fuzzing guidance by internal factors is limited and future research should
target guiding performance fuzzing by external factors.

A natural solution woule be, to guide the fuzzing process by the execution time and
increase the timeout value gradually, as suggested by Liščinský, Matúš [95]. However, the
measurement of external factors like execution time is usually susceptive to noises. For
example, the execution time would be drastically different if multiple instances of SUT are
running in parallel, when CPU caches are saturated and contended. In the earlier experiments,
the variance among repeated measures of the execution time can be 2 to 3 times larger than
the normal exeuction time itself.

Since external noises cannot be completely nullified due to cache effects, OS scheduler
etc, the fuzzing environment should be well controlled. More precisely, we cannot run
multiple fuzzer instances in parallel. Moreover, because each measure of a performance
metric would probably be different, it is unknown how many repetitions are needed to avoid
statistic bias when determining NEWMAX at Line 9, Algorithm 1. Mytkowicz et al. [110]
aim to determine the number of repetitions needed for performance comparison. But, a
high repetition number would be too slow for a fuzzing process in terms of searching for
new inputs. Hence, a balanced number of repetions should be considered while developing
external factors guided performance fuzzing tools.

The aforementioned complication suggests significant changes of current performance
fuzzing frameworks in the future work. Firstly, the new fuzzer needs the rework on timeout
and hanging inputs decision logics so that the fuzzer could adaptively explore more potentially
interesting inputs. Secondly, the new fuzzer needs a different fuzzer runtime. AFL [169]

90 Performance Fuzzing

based fuzzers inject the runtime code into the SUT to collect the coverage information, which
is a large source of such noises for external factor measurements due to the massive memory
accesses across the coverage map, and eventually affects the efficacy of performance fuzzing.
The new fuzzer should avoid extra code instrumentation that collects internal states of the
SUT, but rely more on performance counters by profilers such as perf [124] to guide the
fuzzing8.

5.5 Conclusion

In this chapter, an investigation on a performance fuzzing framework PERFFUZZ is carried
out. Given different setups, performance fuzzing users are recommended to fine tune
fuzzing parameters, use custom seed inputs and align the compiler optimization level for
better fuzzing results. In addition, the limits of the PERFFUZZ framework are identified
and suggestions to overcome these limits to develop better performance fuzzing tools are
discussed.

8Despite most performance profilers also instrument runtime code into the SUT, such code is designed with
minimal performance impacts [124, 152]

Chapter 6

Future Work

This thesis investigated performance bugs, PMT and performance fuzzing techniques. There
are several related researches on performance bugs to reveil more insights into performance
bug identification techniques as well as diagnostic tools.

As Chapter 3 has investigated over 700 performance bugs in the wild, a systematic
reproduction of these bugs would support further researches. Firstly, the reproduction
provides more corporus of real-world performance to be evaluated against, which provides
more solid proof on the efficacy of the approaches under evaluation. Secondly, researchers
could benefit from the performance bug reproduction to find more patterns, which help
develop more sophisticated performance diagnostic tools, such as [144, 173]. A major
challenge to this research would be the versatility of the scenarios that yield observable
performance degradation. Like functional bug reproduction [86, 55, 13], performance bug
reproduction suffers not only from limited information from bug reports, but also software
and hardware impacts, and many performance bugs cannot be reproduced [69]

One of the major concern of the PMT framework in Chapter 4 is the FE checking. As
previous work [78] already claimed, the FE for mutants is a problem that cannot be fully
addressed. Hence, in Section 4.3.1 and Section 4.4.3, However, recent researches [65, 96]
that involve more sophisticated equivalent mutant detection are worth of investigating.

As performance fuzzing tools show their efficacy in finding the algorithmic worst case, it
would be an interesting topic to investigate how a fuzzing tool, such as PERFFUZZ, could find
performance mutants generated by the PMT tool in Chapter 4. Since existing performance
fuzzing tools, for example PERFFUZZ and SLOWFUZZ, are guided by the path length, the
hypothesis is that these tools should be able to effectively exploit injected performance bugs
by Q3 P-mutants.

Performance fuzzing is a technique that can be further explored as suggested in Sec-
tion 5.4.4. On one hand, the timeout value computed by the fuzzer should be revised to

92 Future Work

adopt the increasing execution time of a newly generated input. On the other hand, it would
be more effective to use external factors from performance profilers to guide the fuzzing.
For example, we can use the hardware counter such as cache misses to guide the fuzzing
that exploits the bad data organization of a program. Given the versatility of performance
profilers like perf, more performance bug related symptoms can be identified and exploited
by the future fuzzer.

Though this thesis focuses more on traditional logical approaches, future research should
also be steered towards statistical based artificial intelligence (AI for short in the following
text). Initial efforts to apply traditional machine learning algorithms [12] have explored per-
formance bugs in the python language [157]. Deep learning algorithms [12, 59] demonstrate
powerful functionality in improving fuzzing guidance [47]. The neural network, on which
deep learning algorithms are based on, can also be used to train AI agents to behave smartly,
which is known as reinforcement learning. Multi-agent reinforcement learning [5] combines
the efforts of multiple AI agents, so that the AI system could find patterns that are previously
ignored by human researchers. Performance bug researches could benefit from multi-agent
reinforcement learning regarding performance bug patterns identification in the code.

Since early 2023, large language models (LLM) draw the attention from all over the
world. LLMs based on transformers [165], such as ChatGPT [17, 158], is capable of talking
to human beings as well as generating source codes upon human instructions. The powerful
tool could also be helpful to investigate and identify performance bugs, even to help fix
performance bugs.

Chapter 7

Conclusion

Software performance is an important attribute of software products. Performance bugs
are software defects that degrade performance. Performance testing is able to pinpoint
performance bugs in the code before the software is released and deployed. The performance
testing procedure is composed of performance bug detection, localization, causality analysis
and code optimization. Performance bug detection tells whether there is performance bug,
while the performance bug localization involves the visualization of where the performance
bottleneck dwells. Causality analysis and code optimization aim to reason the performance
bug and to fix it. Performance bug detection and causality analysis are correlated and are of
great significance towards the efficacy of performance testing.

There exists many tool supports for performance bug localization [61, 9, 152, 124].
However, these tools would only help developers when there is a performance bug being
reported. A major challenge with performance bug detection is the lack of proper specification.
This thesis aims to improve the quality of performance testing, by modeling and simulating
performance specifications.

This thesis carried out an empirical study on real-world performance bugs with deep
understanding of performance bugs semantics, in order to model a performance specification.
In addition, a performance mutation testing (PMT) framework was developed in this thesis
to grade a performance testing suite by injecting performance bugs into a program. An
injected program is known as a mutant. If a performance testing suite is able to identify
an injected bug, this mutant is considered as killed. The more mutants are killed, the more
effective the underlying performance testing suites is expected. PMT hence helps developers
to understand the capability of the performance testing suite in finding performance bugs.

Fuzzing is a popular approach that searches for program inputs, which could be used to
generate test cases automatically. Recent researches also aim to apply the fuzzing technique
on performance bugs [92]. However, different configurations could impact the efficacy of

94 Conclusion

performance fuzzing. This thesis investigated configurations as well as the potential extension
of an existing performance fuzzing framework PERFFUZZ. The results show the limit of
existing framework and provide suggestions on effective usage of performance fuzzing and
future extension for more effective performance fuzzing.

Reseach Question 1: What are the characteristics of performance bugs?

Performance testing tools are designed to detect performance bugs, caused by inefficient
code. The first challenge of the performance tesing is the lack of testing oracles as in
functional testing, which tell whether the underlying program runs correctly or incorrectly.
To improve performance testing and model a reasonable performance specification, it is
helpful to udnerstand the characteristics of performance bugs. Unfortunately, there is no
dataset of known performance bugs available.

Contribution 1: A dataset and semantic taxonomy of known performance bugs.

Chapter 3 presents a dataset of performance bugs in the real-world. The dataset classifies
performance bugs into 8 categories by the semantics of bugs. This classification helps model
performance bugs, and sees its usage in the performance mutation testing (PMT), detailed in
Chapter 4. This dataset can be used as an assessment of the alignment of performance bug
models and existing performance diagnostic tools. In addition, it can also provide a large body
of instances for future research evaluation, thanks to its large number of performance bugs
studied (over 700 bugs). Moreover, this dataset also studied characteristics of performance
bugs in terms of performance bug complexity, which are used to prioritize certain types of
performance bugs in the future research.

Research Question 2: How to determine if the performance testing is well calibrated to
identify potential performance problems?

In performance testing, testing setups could impact the performance bug detection. There
is a need to determine whether factors including the selection of workload, the measurement
of performance metrics are well established to detect possible performance bugs.

Contribution 2: A performance mutation testing (PMT) framework and a set of useful
mutation operators.

95

Mutation testing is used to test if a test suite is capable of finding functional bugs.
Chapter 4 extends the idea of mutation testing to performance mutation testing. The mutation
testing technique is based on fault injection, which aims to test the robustness of SUT. In
mutation testing, if injected artificial errors can be detected by a test suite, this test suite
should be robust enough to identify more complicated bugs.

Similarly, PMT injects performance bugs to verify the capability of a performance testing
suite (benchmark and its workloads) to identify mismatch of the SUT performance and
performance requirements. Chapter 4 also discusses performance bug fault models by
context dependencies, on which mutation operators are implemented. The PMT framework
in Chapter 4 adopts configurations to embed contextual information into mutation operators
and is evaluated in 4 real-world projects.

Research Question 3: How to effectively use and adopt performance fuzzing?

One of the conclusions by Chapter 4 is that the workload selection is important for the
effectiveness of performance testing, as well as performance bug detection. So, performance
fuzzing is investigated in Chapter 5, which is an automatic approach to properly generate
inputs and test cases for performance analysis. The procedure of PERFFUZZ is a loop
randomly mutating inputs and selecting inputs for the next iteration of random mutation,
until the time budget runs out. In classic fuzzing, the inputs to be selected are those either
yield larger code coverage, and any inputs crash the SUT are recorded. PERFFUZZ selects
inputs by both code coverage and the number of traversals on CFG edges.

Although PERFFUZZ shows its capability in finding longer path length, it remains uncer-
tain how generated inputs can be considered useful. In spite of reasonable approximation
of the worst algorithmic case to the “bad” performance of a program, as performance bug
localization and performance analysis relies on the performance metrics measured externally
instead of the path length. Performance impacts can be measured from different aspects,
such as execution time, throughput, etc. The execution time is used in this thesis, which is
the most direct performance metrics related to the denial of service (DoS) attacks [46]. Since
the efficacy of performance fuzzing is susceptible to many factors, it remains unclear how to
use performance fuzzing effectively.

as admitted by Lemieux et al. [92], the path length may not be an ideal fuzzing guidance.
It is therefore worth exploring, which fuzzing guidances could fit into existing performance
frameworks (particularly PERFFUZZ), and what is the efficacy of these fuzzing guidances.

96 Conclusion

Contribution 3: An empirical study on the efficacy of PERFFUZZ with various fuzzing
configurations and variants based on PERFFUZZ

PERFFUZZ [92] is used as the performance fuzzing target for the empirical study in
Chapter 5. A total of 4 fuzzing configurations are compared, to investigate the effective
usage of performance fuzzing. In addition, 2 PERFFUZZ based variants are implemented to
explore if the performance fuzzing framework is flexible to adopt different performance bug
symptoms.

The general recommendation to apply performance fuzzing is to customize fuzzing
parameters, notably the timeout value as well as the file size limit. The result of this study
also advises to use custom seed inputs and to align compiler optimization levels.

The result of PERFFUZZ variants shows that the PERFFUZZ framework is limited in
terms of the fuzzing guidance, the PERFFUZZ is designed to be guided by internal factors
of the SUT. The first problem is that the timeout value is dynamically computed and the
user specified timeout is merely an upper bound. The second problem is that performance
relevant information is internal factors that is not necessarily correlated with relevant external
performance metrics. What’s more, many performance related metrics require contextual
information as those discussed in Chapter 4, such as the names of memory allocation
functions to guide the fuzzing by memory allocation, as most C/C++ programs implement
their own allocators for performance.

References

[1] Kolmogorov–Smirnov Test, pages 283–287. Springer New York, New York, NY, 2008.
ISBN 978-0-387-32833-1. doi: 10.1007/978-0-387-32833-1_214.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., USA, 2006. ISBN 0321486811.

[3] Mejbah Alam, Justin Gottschlich, and Abdullah Muzahid. AutoPerf: A General-
ized Zero-Positive Learning System to Detect Software Performance Anomalies.
arXiv:1709.07536 [cs], September 2017. URL http://arxiv.org/abs/1709.07536. arXiv:
1709.07536.

[4] Mohammad Mejbah ul Alam, Tongping Liu, Guangming Zeng, and Abdullah Muzahid.
Syncperf: Categorizing, detecting, and diagnosing synchronization performance bugs.
In Proceedings of the Twelfth European Conference on Computer Systems, EuroSys
’17, pages 298–313, New York, NY, USA, 2017. ACM. ISBN 9781450349383. doi:
10.1145/3064176.3064186.

[5] Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent Rein-
forcement Learning: Foundations and Modern Approaches. MIT Press, 2023. URL
https://www.marl-book.com.

[6] Alejandro Cabrera Aldaya and Billy Bob Brumley. HyperDegrade: From GHz to
MHz effective CPU frequencies. In 31st USENIX Security Symposium (USENIX
Security 22), pages 2801–2818, Boston, MA, August 2022. USENIX Association.
ISBN 978-1-939133-31-1. URL https://www.usenix.org/conference/usenixsecurity22/
presentation/aldaya.

[7] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and Yuval
Yarom. Amplifying side channels through performance degradation. In Proceedings
of the 32nd Annual Conference on Computer Security Applications, ACSAC ’16,
page 422–435, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450347716. doi: 10.1145/2991079.2991084. URL https://doi.org/10.1145/
2991079.2991084.

[8] R. Atachiants, G. Doherty, and D. Gregg. Parallel performance problems on shared-
memory multicore systems: Taxonomy and observation. IEEE Transactions on
Software Engineering, 42(8):764–785, 2016. doi: 10.1109/TSE.2016.2519346.

http://arxiv.org/abs/1709.07536
https://www.marl-book.com
https://www.usenix.org/conference/usenixsecurity22/presentation/aldaya
https://www.usenix.org/conference/usenixsecurity22/presentation/aldaya
https://doi.org/10.1145/2991079.2991084
https://doi.org/10.1145/2991079.2991084

98 References

[9] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In Proceedings of the
10th USENIX Conference on Operating Systems Design and Implementation, OSDI’12,
pages 307–320, USA, 2012. USENIX Association. ISBN 9781931971966.

[10] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, 2004. doi: 10.1109/TDSC.2004.2.

[11] Dean Michael Berris, Alistair Veitch, Nevin Heintze, Eric Anderson, and Ning Wang.
Xray: A function call tracing system. Technical report, 2016. A white paper on XRay,
a function call tracing system developed at Google.

[12] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

[13] Marcel Böhme and Abhik Roychoudhury. CoREBench: Studying Complexity of
Regression Errors. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis, ISSTA 2014, pages 105–115, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2645-2. doi: 10.1145/2610384.2628058. URL http://doi.acm.org/
10.1145/2610384.2628058.

[14] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, page 2329–2344, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349468. doi:
10.1145/3133956.3134020. URL https://doi.org/10.1145/3133956.3134020.

[15] Daniel Pierre Bovet, Marco Cassetti, and Andy Oram. Understanding the Linux
Kernel. O’Reilly & Associates, Inc., USA, 2000. ISBN 0596000022.

[16] Frederick P. Brooks. The Mythical Man-Month (Anniversary Ed.). Addison-Wesley
Longman Publishing Co., Inc., USA, 1995. ISBN 0201835959.

[17] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners, 2020.

[18] Timothy A. Budd and Dana Angluin. Two notions of correctness and their relation
to testing. Acta Informatica, 18(1):31–45, 1982. doi: 10.1007/bf00625279. URL
https://doi.org/10.1007/bf00625279.

[19] Marco Carvalho, Jared DeMott, Richard Ford, and David A. Wheeler. Heartbleed 101.
IEEE Security & Privacy, 12(4):63–67, 2014. doi: 10.1109/MSP.2014.66.

http://doi.acm.org/10.1145/2610384.2628058
http://doi.acm.org/10.1145/2610384.2628058
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1007/bf00625279

References 99

[20] Milind Chabbi, Shasha Wen, and Xu Liu. Featherlight on-the-fly false-sharing de-
tection. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’18, pages 152–167, New York, NY, USA,
2018. ACM. ISBN 9781450349826. doi: 10.1145/3178487.3178499.

[21] Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. Mart: A mutant
generation tool for llvm. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2019, pages 1080–1084, New York, NY, USA,
2019. ACM. ISBN 9781450355728. doi: 10.1145/3338906.3341180.

[22] Thierry Titcheu Chekam, Mike Papadakis, Maxime Cordy, and Yves Le Traon. Killing
stubborn mutants with symbolic execution. ACM Trans. Softw. Eng. Methodol., 30(2),
January 2021. ISSN 1049-331X. doi: 10.1145/3425497.

[23] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqian Liu.
A systematic review of fuzzing techniques. Computers & Security, 75:118–137,
2018. ISSN 0167-4048. doi: https://doi.org/10.1016/j.cose.2018.02.002. URL
https://www.sciencedirect.com/science/article/pii/S0167404818300658.

[24] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. Hawkeye: Towards a desired directed grey-box fuzzer. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, page 2095–2108, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356930. doi: 10.1145/3243734.3243849. URL https:
//doi.org/10.1145/3243734.3243849.

[25] Jinfu Chen. Performance Regression Detection in DevOps, pages 206–209. ACM,
New York, NY, USA, 2020. ISBN 9781450371223. doi: 10.1145/3377812.3381386.

[26] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser,
and Parminder Flora. Detecting Performance Anti-patterns for Applications Developed
Using Object-relational Mapping. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 1001–1012, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568259. URL http://doi.
acm.org/10.1145/2568225.2568259. event-place: Hyderabad, India.

[27] Yiqun Chen, Stefan Winter, and Neeraj Suri. Inferring performance bug patterns
from developer commits. In 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), pages 70–81, 2019. doi: 10.1109/ISSRE.2019.00017.

[28] Yiqun Chen, Matthew Bradbury, and Neeraj Suri. Towards effective performance
fuzzing. In 2022 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 128–129, 2022. doi: 10.1109/ISSREW55968.2022.
00055.

[29] Yiqun Chen, Oliver Schwahn, Roberto Natella, Matthew Bradbury, and Neeraj Suri.
Slowcoach: Mutating code to simulate performance bugs. In 2022 IEEE 33rd Interna-
tional Symposium on Software Reliability Engineering (ISSRE), pages 274–285, 2022.
doi: 10.1109/ISSRE55969.2022.00035.

https://www.sciencedirect.com/science/article/pii/S0167404818300658
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/3243734.3243849
http://doi.acm.org/10.1145/2568225.2568259
http://doi.acm.org/10.1145/2568225.2568259

100 References

[30] Cisco Systems, Inc. Cisco Annual Internet Report (2018–2023) White Paper.
Online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html, 2022. Accessed on 2022-12-28.

[31] Brendan Cody-Kenny, Michael O’Neill, and Stephen Barrett. Performance Locali-
sation. In Proceedings of the 4th International Workshop on Genetic Improvement
Workshop, GI ’18, pages 27–34, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-
5753-1. doi: 10.1145/3194810.3194815. URL http://doi.acm.org/10.1145/3194810.
3194815.

[32] Beate Commentz-Walter. A string matching algorithm fast on the average. In Pro-
ceedings of the 6th Colloquium, on Automata, Languages and Programming, pages
118–132, Berlin, Heidelberg, 1979. Springer-Verlag. ISBN 3540095101.

[33] Clang Community. libfuzzer – a library for coverage-guided fuzz testing. Online:
https://www.llvm.org/docs/LibFuzzer.html, 2022. Accessed on 2022-11-25.

[34] The Linux Kernel Community. ftrace - function tracer — the linux kernel docu-
mentation. Online: https://www.kernel.org/doc/html/latest/trace/ftrace.html, . URL
https://www.kernel.org/doc/html/latest/trace/ftrace.html.

[35] The Linux Kernel Community. Systemtap, . URL https://sourceware.org/systemtap.

[36] Nicolas Coppik, Oliver Schwahn, and Neeraj Suri. Memfuzz: Using memory accesses
to guide fuzzing. In 2019 12th IEEE Conference on Software Testing, Validation and
Verification (ICST), pages 48–58, 2019. doi: 10.1109/ICST.2019.00015.

[37] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers,
3rd Edition. O’Reilly Media, Inc., 2005. ISBN 0596005903.

[38] Domenico Cotroneo and Roberto Natella. Fault injection for software certification.
IEEE Security & Privacy, 11(4):38–45, 2013. doi: 10.1109/MSP.2013.54.

[39] Domenico Cotroneo, Roberto Natella, and Stefano Russo. Assessment and improve-
ment of hang detection in the linux operating system. In 2009 28th IEEE Inter-
national Symposium on Reliable Distributed Systems, pages 288–294, 2009. doi:
10.1109/SRDS.2009.26.

[40] Domenico Cotroneo, Roberto Natella, and Roberto Pietrantuono. Predicting aging-
related bugs using software complexity metrics. Performance Evaluation, 70(3):
163–178, 2013. ISSN 0166-5316. doi: https://doi.org/10.1016/j.peva.2012.09.004.
URL https://www.sciencedirect.com/science/article/pii/S0166531612000946. Special
Issue on Software Aging and Rejuvenation.

[41] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano Russo. A
survey of software aging and rejuvenation studies. J. Emerg. Technol. Comput. Syst.,
10(1), jan 2014. ISSN 1550-4832. doi: 10.1145/2539117. URL https://doi.org/10.
1145/2539117.

[42] Domenico Cotroneo, Anna Lanzaro, and Roberto Natella. Faultprog: Testing the
accuracy of binary-level software fault injection. IEEE Transactions on Dependable
and Secure Computing, 15(1):40–53, 2018. doi: 10.1109/TDSC.2016.2522968.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://doi.acm.org/10.1145/3194810.3194815
http://doi.acm.org/10.1145/3194810.3194815
https://www.llvm.org/docs/LibFuzzer.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://sourceware.org/systemtap
https://www.sciencedirect.com/science/article/pii/S0166531612000946
https://doi.org/10.1145/2539117
https://doi.org/10.1145/2539117

References 101

[43] Domenico Cotroneo, Antonio Ken Iannillo, Roberto Natella, and Roberto Pietran-
tuono. A comprehensive study on software aging across android versions and vendors.
Empirical Software Engineering, 25(5):3357–3395, Sep 2020. ISSN 1573-7616. doi:
10.1007/s10664-020-09838-3. URL https://doi.org/10.1007/s10664-020-09838-3.

[44] Domenico Cotroneo, Antonio Ken Iannillo, Roberto Natella, and Stefano Rosiello.
Dependability assessment of the android os through fault injection. IEEE Transactions
on Reliability, 70(1):346–361, 2021. doi: 10.1109/TR.2019.2954384.

[45] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, and Roberto Natella. Fault
injection analytics: A novel approach to discover failure modes in cloud-computing
systems. IEEE Transactions on Dependable and Secure Computing, 19(3):1476–1491,
2022. doi: 10.1109/TDSC.2020.3025289.

[46] Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic complexity
attacks. In 12th USENIX Security Symposium (USENIX Security 03), Washington,
D.C., August 2003. USENIX Association. URL https://www.usenix.org/conference/
12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks.

[47] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. Compiler
fuzzing through deep learning. In Proceedings of the 27th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2018, pages 95–105, New
York, NY, USA, 2018. ACM. ISBN 9781450356992. doi: 10.1145/3213846.3213848.

[48] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi
Sampath. The youtube video recommendation system. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys ’10, page 293–296, New York,
NY, USA, 2010. Association for Computing Machinery. ISBN 9781605589060. doi:
10.1145/1864708.1864770. URL https://doi.org/10.1145/1864708.1864770.

[49] Franciscone Luiz de Almeida, Renata Lopes Rosa, and Demostenes Zegarra Rodriguez.
Voice quality assessment in communication services using deep learning. In 2018
15th International Symposium on Wireless Communication Systems (ISWCS), pages
1–6. IEEE, 2018.

[50] Pedro Delgado-Pérez, Ana Belén Sánchez, Sergio Segura, and Inmaculada Medina-
Bulo. Performance mutation testing. Software Testing, Verification and Reliability,
January 2020. doi: 10.1002/stvr.1728.

[51] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. Performance problems
you can fix: A dynamic analysis of memoization opportunities. SIGPLAN Not., 50
(10):607–622, October 2015. ISSN 0362-1340. doi: 10.1145/2858965.2814290.

[52] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for
the practicing programmer. Computer, 11(4):34–41, apr 1978. ISSN 0018-9162. doi:
10.1109/C-M.1978.218136. URL https://doi.org/10.1109/C-M.1978.218136.

[53] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves Schobbens,
and Patrick Heymans. Model-based mutant equivalence detection using automata
language equivalence and simulations. Journal of Systems and Software, 141:1–15,
2018. ISSN 0164-1212. doi: 10.1016/j.jss.2018.03.010.

https://doi.org/10.1007/s10664-020-09838-3
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://doi.org/10.1145/1864708.1864770
https://doi.org/10.1109/C-M.1978.218136

102 References

[54] Edsger W. Dijkstra. Chapter I: Notes on Structured Programming, page 1–82. Aca-
demic Press Ltd., GBR, 1972. ISBN 0122005503.

[55] Naji Dmeiri, David A Tomassi, Yichen Wang, Antara Bhowmick, Yen-Chuan Liu,
Premkumar Devanbu, Bogdan Vasilescu, and Cindy Rubio-González. BugSwarm:
Mining and Continuously Growing a Dataset of Reproducible Failures and Fixes. In
Proceedings of the 41st International Conference on Software Engineering (ICSE)
2019 (to appear), 2019.

[56] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its potential impact.
Empirical Softw. Engg., 10(4):405–435, October 2005. ISSN 1382-3256. doi: 10.
1007/s10664-005-3861-2. URL http://dx.doi.org/10.1007/s10664-005-3861-2.

[57] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias
Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, and J. Alex
Halderman. The matter of heartbleed. In Proceedings of the 2014 Conference on
Internet Measurement Conference, IMC ’14, page 475–488, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450332132. doi: 10.1145/
2663716.2663755. URL https://doi.org/10.1145/2663716.2663755.

[58] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing
Co., Inc., USA, 1995. ISBN 0201633612.

[59] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT
Press, 2016. ISBN 0262035618.

[60] Google Inc. syzkaller - kernel fuzzer. Online: https://github.com/google/syzkaller,
2022. Accessed on 2022-11-24.

[61] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call graph
execution profiler. SIGPLAN Not., 17(6):120–126, jun 1982. ISSN 0362-1340. doi:
10.1145/872726.806987. URL https://doi.org/10.1145/872726.806987.

[62] Brendan Gregg. Systems Performance: Enterprise and the Cloud. Prentice Hall Press,
USA, 1st edition, 2013. ISBN 0133390098.

[63] Brendan Gregg. BPF Performance Tools: Linux System and Application Observability.
Addison-Wesley Professional, 1st edition, 2019. ISBN 0136554822.

[64] Michael Grottke, Dong Seong Kim, Rajesh Mansharamani, Manoj Nambiar, Roberto
Natella, and Kishor S. Trivedi. Recovery from software failures caused by mandelbugs.
IEEE Transactions on Reliability, 65(1):70–87, 2016. doi: 10.1109/TR.2015.2452933.

[65] Shubhani Gupta, Aseem Saxena, Anmol Mahajan, and Sorav Bansal. Effective use
of smt solvers for program equivalence checking through invariant-sketching and
query-decomposition. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors,
Theory and Applications of Satisfiability Testing – SAT 2018, pages 365–382, Cham,
2018. Springer International Publishing. ISBN 978-3-319-94144-8.

http://dx.doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1145/2663716.2663755
https://github.com/google/syzkaller
https://doi.org/10.1145/872726.806987

References 103

[66] Xue Han and Tingting Yu. An empirical study on performance bugs for highly
configurable software systems. In Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM ’16, pages
23:1–23:10, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4427-2. doi:
10.1145/2961111.2962602. URL http://doi.acm.org/10.1145/2961111.2962602.

[67] Xue Han, Tingting Yu, and David Lo. Perflearner: Learning from bug reports
to understand and generate performance test frames. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE
2018, page 17–28, New York, NY, USA, 2018. Association for Computing Ma-
chinery. ISBN 9781450359375. doi: 10.1145/3238147.3238204. URL https:
//doi.org/10.1145/3238147.3238204.

[68] Xue Han, Tingting Yu, and David Lo. PerfLearner: Learning from Bug Reports
to Understand and Generate Performance Test Frames. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE 2018,
pages 17–28, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5937-5. doi:
10.1145/3238147.3238204. URL http://doi.acm.org/10.1145/3238147.3238204. event-
place: Montpellier, France.

[69] Xue Han, Daniel Carroll, and Tingting Yu. Reproducing performance bug reports in
server applications: The researchers’ experiences. Journal of Systems and Software,
156:268–282, October 2019. doi: 10.1016/j.jss.2019.06.100.

[70] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.
News, 34(4):1–17, September 2006. ISSN 0163-5964. doi: 10.1145/1186736.1186737.

[71] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanenbaum.
Construction of a highly dependable operating system. In Proceedings of the Sixth
European Dependable Computing Conference, EDCC ’06, page 3–12, USA, 2006.
IEEE Computer Society. ISBN 0769526489. doi: 10.1109/EDCC.2006.7. URL
https://doi.org/10.1109/EDCC.2006.7.

[72] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanenbaum.
Minix 3: A highly reliable, self-repairing operating system. SIGOPS Oper. Syst. Rev.,
40(3):80–89, jul 2006. ISSN 0163-5980. doi: 10.1145/1151374.1151391. URL
https://doi.org/10.1145/1151374.1151391.

[73] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanenbaum.
Failure resilience for device drivers. In Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’07, page 41–50,
USA, 2007. IEEE Computer Society. ISBN 0769528554. doi: 10.1109/DSN.2007.46.
URL https://doi.org/10.1109/DSN.2007.46.

[74] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanenbaum.
Fault isolation for device drivers. In 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks, pages 33–42, 2009. doi: 10.1109/DSN.2009.
5270357.

[75] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments
of the effectiveness of dataflow- and controlflow-based test adequacy criteria. In

http://doi.acm.org/10.1145/2961111.2962602
https://doi.org/10.1145/3238147.3238204
https://doi.org/10.1145/3238147.3238204
http://doi.acm.org/10.1145/3238147.3238204
https://doi.org/10.1109/EDCC.2006.7
https://doi.org/10.1145/1151374.1151391
https://doi.org/10.1109/DSN.2007.46

104 References

Proceedings of the 16th International Conference on Software Engineering, ICSE ’94,
page 191–200, Washington, DC, USA, 1994. IEEE Computer Society Press. ISBN
081865855X.

[76] Intel Corporation. Intel® 64 and ia-32 architectures software developer manuals. On-
line: https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.
html, 2022. Accessed on 2022-11-24.

[77] Ray A Jarvis. A perspective on range finding techniques for computer vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence, (2):122–139, 1983.

[78] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions of Software Engineering, 37(5):649–678, 2011. doi:
10.1109/TSE.2010.62.

[79] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. Shaping
program repair space with existing patches and similar code. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, page 298–309, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356992. doi: 10.1145/3213846.3213871. URL https:
//doi.org/10.1145/3213846.3213871.

[80] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. Inferring program
transformations from singular examples via big code. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 255–266,
2019. doi: 10.1109/ASE.2019.00033.

[81] Jiajun Jiang, Yingfei Xiong, and Xin Xia. A manual inspection of defects4j bugs and
its implications for automatic program repair. Science China Information Sciences, 62
(10):200102, Sep 2019. ISSN 1869-1919. doi: 10.1007/s11432-018-1465-6. URL
https://doi.org/10.1007/s11432-018-1465-6.

[82] Zu-Ming Jiang, Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. Fuzzing error handling code
in device drivers based on software fault injection. In 2019 IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE), pages 128–138, 2019. doi:
10.1109/ISSRE.2019.00022.

[83] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu. Fuzzing error handling code
using Context-Sensitive software fault injection. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 2595–2612. USENIX Association, August 2020.
ISBN 978-1-939133-17-5. URL https://www.usenix.org/conference/usenixsecurity20/
presentation/jiang.

[84] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Understanding
and detecting real-world performance bugs. SIGPLAN Not., 47(6):77–88, June 2012.
ISSN 0362-1340. doi: 10.1145/2345156.2254075.

[85] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. Catch me if you can:
performance bug detection in the wild. In Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1007/s11432-018-1465-6
https://www.usenix.org/conference/usenixsecurity20/presentation/jiang
https://www.usenix.org/conference/usenixsecurity20/presentation/jiang

References 105

Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, Octo-
ber 22 - 27, 2011, pages 155–170, 2011. doi: 10.1145/2048066.2048081. URL
https://doi.org/10.1145/2048066.2048081.

[86] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, ISSTA 2014, page
437–440, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450326452. doi: 10.1145/2610384.2628055. URL https://doi.org/10.1145/
2610384.2628055.

[87] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W. Ander-
son, and Ranjit Jhala. Finding Latent Performance Bugs in Systems Implementa-
tions. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE ’10, pages 17–26, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-791-2. doi: 10.1145/1882291.1882297. URL
http://doi.acm.org/10.1145/1882291.1882297. event-place: Santa Fe, New Mexico,
USA.

[88] Chung Hwan Kim, Junghwan Rhee, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. Perfguard: Binary-centric application performance monitoring in production envi-
ronments. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, pages 595–606, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4218-6. doi: 10.1145/2950290.2950347. URL
http://doi.acm.org/10.1145/2950290.2950347.

[89] Jinkyu Koo, Charitha Saumya, Milind Kulkarni, and Saurabh Bagchi. Pyse: Automatic
worst-case test generation by reinforcement learning. In 2019 12th IEEE Conference
on Software Testing, Validation and Verification (ICST), pages 136–147, 2019. doi:
10.1109/ICST.2019.00023.

[90] Xuan-Bach D. Le, Corina Pasareanu, Rohan Padhye, David Lo, Willem Visser, and
Koushik Sen. Saffron: Adaptive grammar-based fuzzing for worst-case analysis.
SIGSOFT Softw. Eng. Notes, 44(4):14, dec 2019. ISSN 0163-5948. doi: 10.1145/
3364452.3364455. URL https://doi.org/10.1145/3364452.3364455.

[91] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David
Majnemer, John Regehr, and Nuno P. Lopes. Taming undefined behavior in llvm.
SIGPLAN Not., 52(6):633–647, jun 2017. ISSN 0362-1340. doi: 10.1145/3140587.
3062343. URL https://doi.org/10.1145/3140587.3062343.

[92] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. Perffuzz: Auto-
matically generating pathological inputs. In Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and Analysis, ISSTA 2018,
pages 254–265, New York, NY, USA, 2018. ACM. ISBN 9781450356992. doi:
10.1145/3213846.3213874.

[93] Wei Li, Jianping Yuan, Lu Zhang, Jie Cui, Xiaodong Wang, and Hua Li. semg-based
technology for silent voice recognition. Computers in Biology and Medicine, 152:
106336, 2023. ISSN 0010-4825. doi: https://doi.org/10.1016/j.compbiomed.2022.
106336. URL https://www.sciencedirect.com/science/article/pii/S0010482522010447.

https://doi.org/10.1145/2048066.2048081
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/1882291.1882297
http://doi.acm.org/10.1145/2950290.2950347
https://doi.org/10.1145/3364452.3364455
https://doi.org/10.1145/3140587.3062343
https://www.sciencedirect.com/science/article/pii/S0010482522010447

106 References

[94] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and detecting perfor-
mance bugs for smartphone applications. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 1013–1024, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568229. URL
http://doi.acm.org/10.1145/2568225.2568229.

[95] Liščinský, Matúš. Fuzz testing of program performance [online], 2019. URL https:
//theses.cz/id/zw4694/.

[96] Nuno P. Lopes and José Monteiro. Automatic equivalence checking of pro-
grams with uninterpreted functions and integer arithmetic. International Journal
on Software Tools for Technology Transfer, 18(4):359–374, February 2015. doi:
10.1007/s10009-015-0366-1.

[97] Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd edition,
2010. ISBN 0672329468.

[98] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical
analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, page 643–653, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450330565.
doi: 10.1145/2635868.2635920. URL https://doi.org/10.1145/2635868.2635920.

[99] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. Over-
coming the equivalent mutant problem: A systematic literature review and a com-
parative experiment of second order mutation. IEEE Trans. Softw. Eng., 40(1):
23–42, jan 2014. ISSN 0098-5589. doi: 10.1109/TSE.2013.44. URL https:
//doi.org/10.1109/TSE.2013.44.

[100] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1):
50–60, March 1947. doi: 10.1214/aoms/1177730491. URL https://doi.org/10.1214/
aoms/1177730491.

[101] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall PTR, USA, 1 edition, 2008. ISBN 0132350882.

[102] Wolfgang Mauerer. Professional Linux Kernel Architecture. Wrox Press Ltd., GBR,
2008. ISBN 0470343435.

[103] Jim Mauro and Richard McDougall. Solaris Internals (2nd Edition). Prentice Hall
PTR, USA, 2006. ISBN 0131482092.

[104] Steve McConnell. Code Complete, Second Edition. Microsoft Press, USA, 2004.
ISBN 0735619670.

[105] Richard McDougall, Jim Mauro, and Brendan Gregg. Solaris(TM) Performance and
Tools: DTrace and MDB Techniques for Solaris 10 and OpenSolaris (Solaris Series).
Prentice Hall PTR, USA, 2006. ISBN 0131568191.

[106] Paul E. McKenney. Is parallel programming hard, and, if so, what can you do about it?
(v2017.01.02a). CoRR, abs/1701.00854, 2017. URL http://arxiv.org/abs/1701.00854.

http://doi.acm.org/10.1145/2568225.2568229
https://theses.cz/id/zw4694/
https://theses.cz/id/zw4694/
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
http://arxiv.org/abs/1701.00854

References 107

[107] Marshall Kirk McKusick and George V. Neville-Neil. The Design and Implementation
of the FreeBSD Operating System. Pearson Education, 2004. ISBN 0201702452.

[108] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability
of unix utilities. Commun. ACM, 33(12):32–44, dec 1990. ISSN 0001-0782. doi:
10.1145/96267.96279. URL https://doi.org/10.1145/96267.96279.

[109] Elfurjani Sassi Mresa and Leonardo Bottaci. Efficiency of mutation operators and
selective mutation strategies: an empirical study. Software Testing, 9, 1999. URL
https://api.semanticscholar.org/CorpusID:15647411.

[110] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Producing
wrong data without doing anything obviously wrong! SIGPLAN Not., 44(3):265–276,
mar 2009. ISSN 0362-1340. doi: 10.1145/1508284.1508275.

[111] Roberto Natella, Domenico Cotroneo, Joao A. Duraes, and Henrique S. Madeira. On
fault representativeness of software fault injection. IEEE Transactions on Software
Engineering, 39(1):80–96, 2013. doi: 10.1109/TSE.2011.124.

[112] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing depend-
ability with software fault injection: A survey. ACM Comput. Surv., 48(3), February
2016. ISSN 0360-0300. doi: 10.1145/2841425.

[113] Roberto Natella, Stefan Winter, Domenico Cotroneo, and Neeraj Suri. Analyzing the
effects of bugs on software interfaces. IEEE Transactions on Software Engineering,
46(3):280–301, 2020. doi: 10.1109/TSE.2018.2850755.

[114] A. Nistor, T. Jiang, and L. Tan. Discovering, reporting, and fixing performance bugs.
In 2013 10th Working Conference on Mining Software Repositories (MSR), pages
237–246, May 2013. doi: 10.1109/MSR.2013.6624035.

[115] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: Detecting
performance problems via similar memory-access patterns. In Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13, pages 562–571,
Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3. URL http:
//dl.acm.org/citation.cfm?id=2486788.2486862.

[116] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. Caramel: Detecting
and fixing performance problems that have non-intrusive fixes. In Proceedings of the
37th International Conference on Software Engineering - Volume 1, ICSE ’15, pages
902–912. IEEE Press, 2015. ISBN 9781479919345.

[117] A. Jefferson Offutt. Investigations of the software testing coupling effect. ACM Trans.
Softw. Eng. Methodol., 1(1):5–20, jan 1992. ISSN 1049-331X. doi: 10.1145/125489.
125473. URL https://doi.org/10.1145/125489.125473.

[118] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static Detection of Asymptotic Per-
formance Bugs in Collection Traversals. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’15, pages 369–378, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3468-6.
doi: 10.1145/2737924.2737966. URL http://doi.acm.org/10.1145/2737924.2737966.
event-place: Portland, OR, USA.

https://doi.org/10.1145/96267.96279
https://api.semanticscholar.org/CorpusID:15647411
http://dl.acm.org/citation.cfm?id=2486788.2486862
http://dl.acm.org/citation.cfm?id=2486788.2486862
https://doi.org/10.1145/125489.125473
http://doi.acm.org/10.1145/2737924.2737966

108 References

[119] Oracle. Oracle Linux DTrace Reference Guide. Online: https://docs.oracle.com/en/
operating-systems/oracle-linux/dtrace-guide, 2022. Accessed on 2022-11-24.

[120] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon.
Semantic fuzzing with zest. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2019, page 329–340, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362245. doi:
10.1145/3293882.3330576. URL https://doi.org/10.1145/3293882.3330576.

[121] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. Fuzzfactory: Domain-specific fuzzing with waypoints. Proc. ACM
Program. Lang., 3(OOPSLA), oct 2019. doi: 10.1145/3360600. URL https://doi.org/
10.1145/3360600.

[122] Aditya Pakki and Kangjie Lu. Exaggerated error handling hurts! an in-depth study
and context-aware detection. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’20, page 1203–1218, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370899. doi:
10.1145/3372297.3417256. URL https://doi.org/10.1145/3372297.3417256.

[123] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. Mutation testing advances: An analysis and survey. Advances in Computers,
2018.

[124] Perf Maintainers. Perf Wiki. Online: https://perf.wiki.kernel.org, 2022. Accessed on
2022-04-22.

[125] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. Does Mutation
Testing Improve Testing Practices?, pages 910–921. IEEE Press, 2021. ISBN
9781450390859. doi: 10.1109/ICSE43902.2021.00087.

[126] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. Slowfuzz:
Automated domain-independent detection of algorithmic complexity vulnerabilities. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 2155–2168, New York, NY, USA, 2017. ACM. ISBN
9781450349468. doi: 10.1145/3133956.3134073.

[127] J. Pradeep, K. Vijayakumar, and M. Harikrishnan. 2 Voice Recognition Using Natural
Language Processing, pages 15–24. 2021.

[128] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael Stumm,
and Ding Yuan. An analysis of performance evolution of linux’s core operations. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19,
page 554–569, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450368735. doi: 10.1145/3341301.3359640. URL https://doi.org/10.1145/
3341301.3359640.

[129] Paul Resnick and Hal R Varian. Recommender systems. Communications of the ACM,
40(3):56–58, 1997.

[130] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender
systems handbook. In Recommender systems handbook, pages 1–35. Springer, 2011.

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3360600
https://doi.org/10.1145/3360600
https://doi.org/10.1145/3372297.3417256
https://perf.wiki.kernel.org
https://doi.org/10.1145/3341301.3359640
https://doi.org/10.1145/3341301.3359640

References 109

[131] Marc J. Rochkind. Advanced UNIX Programming (2nd Edition). Addison Wesley
Longman Publishing Co., Inc., USA, 2004. ISBN 0131411543.

[132] Nadav Rotem, Lee Howes, and David Goldblatt. Warrior1: A performance sanitizer
for c++, 2020.

[133] Ana B. Sánchez, Pedro Delgado-Pérez, Inmaculada Medina-Bulo, and Sergio Segura.
Search-based Mutation Testing to Improve Performance Tests. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion, GECCO ’18,
pages 316–317, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5764-7. doi:
10.1145/3205651.3205670. URL http://doi.acm.org/10.1145/3205651.3205670.

[134] Ana B. Sánchez, Pedro Delgado-Pérez, Inmaculada Medina-Bulo, and Sergio Segura.
Tandem: A taxonomy and a dataset of real-world performance bugs. IEEE Access, 8:
107214–107228, 2020. doi: 10.1109/ACCESS.2020.3000928.

[135] Charitha Saumya, Jinkyu Koo, Milind Kulkarni, and Saurabh Bagchi. Xstressor :
Automatic generation of large-scale worst-case test inputs by inferring path conditions.
In 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST),
pages 1–12, 2019. doi: 10.1109/ICST.2019.00011.

[136] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. kAFL: Hardware-Assisted feedback fuzzing for OS kernels. In 26th
USENIX Security Symposium (USENIX Security 17), pages 167–182, Vancouver, BC,
August 2017. USENIX Association. ISBN 978-1-931971-40-9. URL https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo.

[137] Ali Sedaghatbaf, Mahshid Helali Moghadam, and Mehrdad Saadatmand. Automated
performance testing based on active deep learning. CoRR, abs/2104.02102, 2021.
URL https://arxiv.org/abs/2104.02102.

[138] John A. Sharp. Data oriented program design. SIGPLAN Not., 15(9):44–57, sep 1980.
ISSN 0362-1340. doi: 10.1145/947706.947713. URL https://doi.org/10.1145/947706.
947713.

[139] Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Automating performance
bottleneck detection using search-based application profiling. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis, ISSTA 2015,
page 270–281, New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450336208. doi: 10.1145/2771783.2771816. URL https://doi.org/10.1145/
2771783.2771816.

[140] Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang, Xiaohai Shi, Xun Jiao, Houbing
Song, Yu Jiang, and Jiaguang Sun. Industry practice of coverage-guided enterprise
linux kernel fuzzing. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, page 986–995, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450355728. doi: 10.1145/3338906.3340460.
URL https://doi.org/10.1145/3338906.3340460.

http://doi.acm.org/10.1145/3205651.3205670
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://arxiv.org/abs/2104.02102
https://doi.org/10.1145/947706.947713
https://doi.org/10.1145/947706.947713
https://doi.org/10.1145/2771783.2771816
https://doi.org/10.1145/2771783.2771816
https://doi.org/10.1145/3338906.3340460

110 References

[141] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When Do Changes
Induce Fixes? In Proceedings of the 2005 International Workshop on Mining Software
Repositories, MSR ’05, pages 1–5, New York, NY, USA, 2005. ACM. ISBN 1-59593-
123-6. doi: 10.1145/1082983.1083147. URL http://doi.acm.org/10.1145/1082983.
1083147.

[142] Connie U. Smith and Lloyd G. Williams. Software performance antipatterns. In
Proceedings of the 2Nd International Workshop on Software and Performance, WOSP
’00, pages 127–136, New York, NY, USA, 2000. ACM. ISBN 1-58113-195-X. doi:
10.1145/350391.350420. URL http://doi.acm.org/10.1145/350391.350420.

[143] Linhai Song and Shan Lu. Statistical Debugging for Real-world Performance
Problems. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages
561–578, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2585-1. doi:
10.1145/2660193.2660234. URL http://doi.acm.org/10.1145/2660193.2660234. event-
place: Portland, Oregon, USA.

[144] Linhai Song and Shan Lu. Performance diagnosis for inefficient loops. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages
370–380, 2017. doi: 10.1109/ICSE.2017.41.

[145] Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu Liu. Redundant
loads: A software inefficiency indicator. In Proceedings of the 41st International
Conference on Software Engineering, ICSE ’19, pages 982–993. IEEE Press, 2019.
doi: 10.1109/ICSE.2019.00103.

[146] M. Sujon, M. Shafiuzzaman, M. M. Rahman, and R. Rahman. Characterization
and localization of performance-bugs using Naive Bayes approach. In 2016 5th
International Conference on Informatics, Electronics and Vision (ICIEV), pages 791–
796, May 2016. doi: 10.1109/ICIEV.2016.7760110.

[147] Richard Szeliski. Computer vision: algorithms and applications. Springer Nature,
2022.

[148] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield. Analyzing lock
contention in multithreaded applications. SIGPLAN Not., 45(5):269–280, January
2010. ISSN 0362-1340. doi: 10.1145/1837853.1693489.

[149] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, USA, 3rd
edition, 2007. ISBN 9780136006633.

[150] Andrew S Tanenbaum and Albert S Woodhull. Operating Systems Design and Imple-
mentation (3rd Edition). Prentice-Hall, Inc., USA, 2005. ISBN 0131429388.

[151] The GNU Project. Savannah Git Hosting - grep.git. Online: https://git.savannah.gnu.
org/cgit/grep.git, 2022. Accessed on 2022-04-20.

[152] The LTTng Project. LTTng: an open source tracing framework for Linux. Online:
https://lttng.org, 2022. Accessed on 2022-04-22.

http://doi.acm.org/10.1145/1082983.1083147
http://doi.acm.org/10.1145/1082983.1083147
http://doi.acm.org/10.1145/350391.350420
http://doi.acm.org/10.1145/2660193.2660234
https://git.savannah.gnu.org/cgit/grep.git
https://git.savannah.gnu.org/cgit/grep.git
https://lttng.org

References 111

[153] Saeid Tizpaz-Niari, Pavol Černý, and Ashutosh Trivedi. Detecting and understanding
real-world differential performance bugs in machine learning libraries. In Proceed-
ings of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2020, pages 189–199, New York, NY, USA, 2020. ACM. ISBN
9781450380089. doi: 10.1145/3395363.3404540.

[154] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. Synthesizing programs that
expose performance bottlenecks. In Proceedings of the 2018 International Symposium
on Code Generation and Optimization, CGO 2018, page 314–326, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450356176. doi:
10.1145/3168830. URL https://doi.org/10.1145/3168830.

[155] Catia Trubiani, Alexander Bran, André van Hoorn, Alberto Avritzer, and Holger
Knoche. Exploiting load testing and profiling for Performance Antipattern Detection.
Information and Software Technology, 95:329–345, March 2018. ISSN 0950-5849.
doi: 10.1016/j.infsof.2017.11.016. URL http://www.sciencedirect.com/science/article/
pii/S0950584917302276.

[156] Sokratis Tsakiltsidis, Andriy Miranskyy, and Elie Mazzawi. On automatic detection
of performance bugs. In 2016 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). IEEE, oct 2016. doi: 10.1109/issrew.2016.43.
URL https://doi.org/10.1109%2Fissrew.2016.43.

[157] Sokratis Tsakiltsidis, Andriy V. Miranskyy, and Elie Mazzawi. Towards automated
performance bug identification in python. CoRR, abs/1607.08506, 2016. URL http:
//arxiv.org/abs/1607.08506.

[158] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

[159] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V. Krishnamurthy,
and Nael Abu-Ghazaleh. SyzVegas: Beating kernel fuzzing odds with reinforcement
learning. In 30th USENIX Security Symposium (USENIX Security 21), pages 2741–
2758. USENIX Association, August 2021. ISBN 978-1-939133-24-3. URL https:
//www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng.

[160] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire: Data-driven seed
generation for fuzzing. In 2017 IEEE Symposium on Security and Privacy (SP), pages
579–594, 2017. doi: 10.1109/SP.2017.23.

[161] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and M. Frans
Kaashoek. Undefined behavior: What happened to my code? In Proceedings of
the Asia-Pacific Workshop on Systems, APSYS ’12, New York, NY, USA, 2012.
Association for Computing Machinery. ISBN 9781450316699. doi: 10.1145/2349896.
2349905. URL https://doi.org/10.1145/2349896.2349905.

[162] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
Towards optimization-safe systems: Analyzing the impact of undefined behavior. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, page 260–275, New York, NY, USA, 2013. Association for Computing

https://doi.org/10.1145/3168830
http://www.sciencedirect.com/science/article/pii/S0950584917302276
http://www.sciencedirect.com/science/article/pii/S0950584917302276
https://doi.org/10.1109%2Fissrew.2016.43
http://arxiv.org/abs/1607.08506
http://arxiv.org/abs/1607.08506
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://doi.org/10.1145/2349896.2349905

112 References

Machinery. ISBN 9781450323888. doi: 10.1145/2517349.2522728. URL https:
//doi.org/10.1145/2517349.2522728.

[163] Shasha Wen, Xu Liu, and Milind Chabbi. Runtime value numbering: A profiling
technique to pinpoint redundant computations. In 2015 International Conference on
Parallel Architecture and Compilation (PACT), pages 254–265, 2015. doi: 10.1109/
PACT.2015.29.

[164] Shasha Wen, Xu Liu, John Byrne, and Milind Chabbi. Watching for software ineffi-
ciencies with witch. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’18, pages 332–347, New York, NY, USA, 2018. ACM. ISBN 9781450349116. doi:
10.1145/3173162.3177159.

[165] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander
Rush. Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online, October 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https://aclanthology.org/
2020.emnlp-demos.6.

[166] Murray Woodside, Greg Franks, and Dorina C. Petriu. The future of software per-
formance engineering. In 2007 Future of Software Engineering, FOSE ’07, pages
171–187, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2829-5.
doi: 10.1109/FOSE.2007.32. URL https://doi.org/10.1109/FOSE.2007.32.

[167] Yves Younan, Wouter Joosen, and Frank Piessens. Runtime countermeasures for
code injection attacks against c and c++ programs. ACM Comput. Surv., 44(3), jun
2012. ISSN 0360-0300. doi: 10.1145/2187671.2187679. URL https://doi.org/10.
1145/2187671.2187679.

[168] Tingting Yu and Michael Pradel. Syncprof: Detecting, localizing, and optimizing
synchronization bottlenecks. In Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, pages 389–400, New York, NY, USA,
2016. ACM. ISBN 9781450343909. doi: 10.1145/2931037.2931070.

[169] Michal Zalewski. American fuzzy lop (2.52b). Online: https://lcamtuf.coredump.cx/
afl/, 2022. Accessed on 2022-04-22.

[170] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. Security Versus Performance
Bugs: A Case Study on Firefox. In Proceedings of the 8th Working Conference
on Mining Software Repositories, MSR ’11, pages 93–102, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0574-7. doi: 10.1145/1985441.1985457. URL
http://doi.acm.org/10.1145/1985441.1985457.

[171] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. A qualitative study on perfor-
mance bugs. In Proceedings of the 9th IEEE Working Conference on Mining Software

https://doi.org/10.1145/2517349.2522728
https://doi.org/10.1145/2517349.2522728
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://doi.org/10.1109/FOSE.2007.32
https://doi.org/10.1145/2187671.2187679
https://doi.org/10.1145/2187671.2187679
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
http://doi.acm.org/10.1145/1985441.1985457

References 113

Repositories, MSR ’12, pages 199–208, Piscataway, NJ, USA, 2012. IEEE Press.
ISBN 978-1-4673-1761-0. URL http://dl.acm.org/citation.cfm?id=2664446.2664477.

[172] Shujie Zhao, Yiqun Chen, Stefan Winter, and Neeraj Suri. Analyzing and improving
customer-side cloud security certifiability. In 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pages 300–307, 2019. doi:
10.1109/ISSREW.2019.00088.

[173] Fang Zhou, Yifan Gan, Sixiang Ma, and Yang Wang. Wperf: Generic off-cpu analysis
to identify bottleneck waiting events. In Proceedings of the 13th USENIX Conference
on Operating Systems Design and Implementation, OSDI’18, pages 527–543, USA,
2018. USENIX Association. ISBN 9781931971478.

[174] Qianqian Zhu, Annibale Panichella, and Andy Zaidman. A systematic literature
review of how mutation testing supports quality assurance processes. Software Testing,
Verification and Reliability, 28(6):e1675, 2018. doi: https://doi.org/10.1002/stvr.1675.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1675. e1675 stvr.1675.

[175] Yian Zhu, Yue Li, Jingling Xue, Tian Tan, Jialong Shi, Yang Shen, and Chunyan
Ma. What is system hang and how to handle it. In 2012 IEEE 23rd International
Symposium on Software Reliability Engineering, pages 141–150, 2012. doi: 10.1109/
ISSRE.2012.12.

[176] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin, and Shi-
Min Hu. TCP-Fuzz: Detecting memory and semantic bugs in TCP stacks with
fuzzing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages
489–502. USENIX Association, July 2021. ISBN 978-1-939133-23-6. URL https:
//www.usenix.org/conference/atc21/presentation/zou.

http://dl.acm.org/citation.cfm?id=2664446.2664477
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1675
https://www.usenix.org/conference/atc21/presentation/zou
https://www.usenix.org/conference/atc21/presentation/zou

Appendix A

Case Studies in grep

This section provides more reference details of the examples inspiring the Q2 mutation
operators in Section 4.3.2.

A.1 Case 1

Full ID 3255bc58e8fb2d98145dbb2dd17bae0a5e47a85e

Reproduce yes abcdabc | head -50000000 >k; env LC_ALL=C time -p src/grep -i
’abcd.bd’ k

Code Change
1 diff --git a/src/dfa.c b/src/dfa.c

2 index 8e6c708..fc638c8 100644

3 --- a/src/dfa.c

4 +++ b/src/dfa.c

5 @@ -3411,6 +3411,28 @@ dfahint (struct dfa *d, char const *begin, char *end, size_t *count)

6 }

7 }

8

9 +bool

10 +dfaisfast (struct dfa *d)

11 +{

12 + size_t i;

13 + if (d->superset)

14 + {

15 + for (i = 0; i < d->superset->tindex; i++)

16 + if (d->superset->tokens[i] == BACKREF)

17 + return false;

18 + return true;

19 + }

20 + else if (!d->multibyte)

21 + {

116 Case Studies in grep

22 + for (i = 0; i < d->tindex; i++)

23 + if (d->tokens[i] == BACKREF)

24 + return false;

25 + return true;

26 + }

27 + else

28 + return false;

29 +}

30 +

31 static void

32 free_mbdata (struct dfa *d)

33 {

34 diff --git a/src/dfa.h b/src/dfa.h

35 index 60aff11..2dd4871 100644

36 --- a/src/dfa.h

37 +++ b/src/dfa.h

38 @@ -82,6 +82,10 @@ extern char *dfaexec (struct dfa *d, char const *begin, char *end,

39 extern size_t dfahint (struct dfa *d, char const *begin, char *end,

40 size_t *count);

41

42 +/* Return true, if `multibyte' attribute of struct dfa is false and the

43 + pattern doesn't have BACKREF. */

44 +extern bool dfaisfast (struct dfa *);

45 +

46 /* Free the storage held by the components of a struct dfa. */

47 extern void dfafree (struct dfa *);

48

49 diff --git a/src/dfasearch.c b/src/dfasearch.c

50 index dc76397..79a0cd8 100644

51 --- a/src/dfasearch.c

52 +++ b/src/dfasearch.c

53 @@ -213,6 +213,7 @@ EGexecute (char const *buf, size_t size, size_t *match_size,

54 size_t len, best_len;

55 struct kwsmatch kwsm;

56 size_t i;

57 + bool dfafast = dfaisfast (dfa);

58

59 mb_start = buf;

60 buflim = buf + size;

61 @@ -232,13 +233,13 @@ EGexecute (char const *buf, size_t size, size_t *match_size,

62 beg += offset;

63 /* Narrow down to the line containing the candidate, and

64 run it through DFA. */

65 - end = memchr (beg, eol, buflim - beg);

66 - end = end ? end + 1 : buflim;

67 match = beg;

68 beg = memrchr (buf, eol, beg - buf);

69 beg = beg ? beg + 1 : buf;

70 if (kwsm.index < kwset_exact_matches)

71 {

72 + end = memchr (beg, eol, buflim - beg);

73 + end = end ? end + 1 : buflim;

74 if (MB_CUR_MAX == 1)

75 goto success;

76 if (mb_start < beg)

A.1 Case 1 117

77 @@ -253,17 +254,21 @@ EGexecute (char const *buf, size_t size, size_t *match_size,

78 &backref))

79 continue;

80 }

81 - else

82 + else if (!dfafast)

83 {

84 + /* Narrow down to the line we've found if dfa isn't fast. */

85 + end = memchr (match, eol, buflim - beg);

86 + end = end ? end + 1 : buflim;

87 if (dfahint (dfa, beg, (char *) end, NULL) == (size_t) -1)

88 continue;

89 if (! dfaexec (dfa, beg, (char *) end, 0, NULL, &backref))

90 continue;

91 }

92 }

93 - else

94 + if (!kwset || dfafast)

95 {

96 - /* No good fixed strings; start with DFA. */

97 + /* No good fixed strings or DFA is fast; start with DFA

98 + broadly. */

99 size_t offset, count;

100 char const *next_beg;

101 count = 0;

118 Case Studies in grep

A.2 Case 2

Full ID 960ad317db21e781b04010f4128bb149273a3327

Reproduce time -p env LC_ALL=C src/grep -Fivf pat in; time -p env LC_ALL=ja_JP.eucjp src/grep -Fivf pat in

Code Change
1 diff --git a/src/dfasearch.c b/src/dfasearch.c

2 index c2e0177..548ef08 100644

3 --- a/src/dfasearch.c

4 +++ b/src/dfasearch.c

5 @@ -89,7 +89,7 @@ kwsmusts (void)

6 struct dfamust *dm = dfamust (dfa);

7 if (!dm)

8 return;

9 - kwsinit (&kwset);

10 + kwsinit (&kwset, false);

11 if (dm->exact)

12 {

13 /* Prepare a substring whose presence implies a match.

14 diff --git a/src/grep.c b/src/grep.c

15 index fc22c7b..ae3b6e7 100644

16 --- a/src/grep.c

17 +++ b/src/grep.c

18 @@ -2265,14 +2265,91 @@ contains_encoding_error (char const *pat, size_t patlen)

19 return false;

20 }

21

22 +/* The set of wchar_t values C such that there's a useful locale

23 + somewhere where C != towupper (C) && C != towlower (towupper (C)).

24 + For example, 0x00B5 (U+00B5 MICRO SIGN) is in this table, because

25 + towupper (0x00B5) == 0x039C (U+039C GREEK CAPITAL LETTER MU), and

26 + towlower (0x039C) == 0x03BC (U+03BC GREEK SMALL LETTER MU). */

27 +static short const lonesome_lower[] =

28 + {

29 + 0x00B5, 0x0131, 0x017F, 0x01C5, 0x01C8, 0x01CB, 0x01F2, 0x0345,

30 + 0x03C2, 0x03D0, 0x03D1, 0x03D5, 0x03D6, 0x03F0, 0x03F1,

31 +

32 + /* U+03F2 GREEK LUNATE SIGMA SYMBOL lacks a specific uppercase

33 + counterpart in locales predating Unicode 4.0.0 (April 2003). */

34 + 0x03F2,

35 +

36 + 0x03F5, 0x1E9B, 0x1FBE

37 + };

38 +

39 +static bool

40 +fgrep_icase_available (char const *pat, size_t patlen)

41 +{

42 + for (size_t i = 0; i < patlen; ++i)

43 + {

44 + unsigned char c = pat[i];

45 + if (localeinfo.sbclen[c] > 1)

A.2 Case 2 119

46 + return false;

47 + }

48 +

49 + for (size_t i = 0; i < patlen; ++i)

50 + {

51 + unsigned char c = pat[i];

52 +

53 + wint_t wc = localeinfo.sbctowc[c];

54 + if (wc == WEOF)

55 + return false;

56 +

57 + wint_t uwc = towupper (wc);

58 + if (uwc != wc)

59 + {

60 + char s[MB_LEN_MAX];

61 + mbstate_t mb_state = { 0 };

62 + size_t len = wcrtomb (s, uwc, &mb_state);

63 + if (len > 1 && len != (size_t) -1)

64 + return false;

65 + }

66 +

67 + wint_t lwc = towlower (uwc);

68 + if (lwc != uwc && lwc != wc && towupper (lwc) == uwc)

69 + {

70 + char s[MB_LEN_MAX];

71 + mbstate_t mb_state = { 0 };

72 + size_t len = wcrtomb (s, lwc, &mb_state);

73 + if (len > 1 && len != (size_t) -1)

74 + return false;

75 + }

76 +

77 + for (size_t j = 0; lonesome_lower[j]; j++)

78 + {

79 + wint_t li = lonesome_lower[j];

80 + if (li != lwc && li != uwc && li != wc && towupper (li) == uwc)

81 + {

82 + char s[MB_LEN_MAX];

83 + mbstate_t mb_state = { 0 };

84 + size_t len = wcrtomb (s, li, &mb_state);

85 + if (len > 1 && len != (size_t) -1)

86 + return false;

87 + }

88 + }

89 + }

90 +

91 + return true;

92 +}

93 +

94 /* Change a pattern for fgrep into grep. */

95 static void

96 -fgrep_to_grep_pattern (size_t len, char const *keys,

97 - size_t *new_len, char **new_keys)

98 +fgrep_to_grep_pattern (char **keys_p, size_t *len_p)

99 {

100 - char *p = *new_keys = xnmalloc (len + 1, 2);

120 Case Studies in grep

101 + char *keys, *new_keys, *p;

102 mbstate_t mb_state = { 0 };

103 - size_t n;

104 + size_t len, n;

105 +

106 + len = *len_p;

107 + keys = *keys_p;

108 +

109 + new_keys = xnmalloc (len + 1, 2);

110 + p = new_keys;

111

112 for (; len; keys += n, len -= n)

113 {

114 @@ -2300,7 +2377,13 @@ fgrep_to_grep_pattern (size_t len, char const *keys,

115 }

116 }

117

118 - *new_len = p - *new_keys;

119 + free (*keys_p);

120 + *keys_p = new_keys;

121 + *len_p = p - new_keys;

122 +

123 + matcher = "grep";

124 + compile = Gcompile;

125 + execute = EGexecute;

126 }

127

128 int

129 @@ -2733,20 +2816,17 @@ main (int argc, char **argv)

130 In a multibyte locale, switch from fgrep to grep if either

131 (1) case is ignored (where grep is typically faster), or

132 (2) the pattern has an encoding error (where fgrep might not work). */

133 - if (compile == Fcompile

134 - && (MB_CUR_MAX <= 1

135 - ? match_words

136 - : match_icase || contains_encoding_error (keys, keycc)))

137 + if (compile == Fcompile)

138 {

139 - size_t new_keycc;

140 - char *new_keys;

141 - fgrep_to_grep_pattern (keycc, keys, &new_keycc, &new_keys);

142 - free (keys);

143 - keys = new_keys;

144 - keycc = new_keycc;

145 - matcher = "grep";

146 - compile = Gcompile;

147 - execute = EGexecute;

148 + if (MB_CUR_MAX > 1)

149 + {

150 + if (contains_encoding_error (keys, keycc))

151 + fgrep_to_grep_pattern (&keys, &keycc);

152 + else if (match_icase && !fgrep_icase_available (keys, keycc))

153 + fgrep_to_grep_pattern (&keys, &keycc);

154 + }

155 + else if (match_words)

A.2 Case 2 121

156 + fgrep_to_grep_pattern (&keys, &keycc);

157 }

158

159 compile (keys, keycc);

160 diff --git a/src/kwsearch.c b/src/kwsearch.c

161 index 508ebc5..7fe08aa 100644

162 --- a/src/kwsearch.c

163 +++ b/src/kwsearch.c

164 @@ -38,7 +38,7 @@ Fcompile (char const *pattern, size_t size)

165 {

166 size_t total = size;

167

168 - kwsinit (&kwset);

169 + kwsinit (&kwset, true);

170

171 char const *p = pattern;

172 do

173 diff --git a/src/search.h b/src/search.h

174 index 431a67d..534a49e 100644

175 --- a/src/search.h

176 +++ b/src/search.h

177 @@ -47,7 +47,7 @@ _GL_INLINE_HEADER_BEGIN

178 typedef signed char mb_len_map_t;

179

180 /* searchutils.c */

181 -extern void kwsinit (kwset_t *);

182 +extern void kwsinit (kwset_t *, bool);

183 extern ptrdiff_t mb_goback (char const **, char const *, char const *);

184 extern wint_t mb_prev_wc (char const *, char const *, char const *);

185 extern wint_t mb_next_wc (char const *, char const *);

186 diff --git a/src/searchutils.c b/src/searchutils.c

187 index 8081d41..87f51a4 100644

188 --- a/src/searchutils.c

189 +++ b/src/searchutils.c

190 @@ -25,15 +25,33 @@

191 #define NCHAR (UCHAR_MAX + 1)

192

193 void

194 -kwsinit (kwset_t *kwset)

195 +kwsinit (kwset_t *kwset, bool mb_trans)

196 {

197 static char trans[NCHAR];

198 int i;

199

200 - if (match_icase && MB_CUR_MAX == 1)

201 + if (match_icase && (MB_CUR_MAX == 1 || mb_trans))

202 {

203 - for (i = 0; i < NCHAR; ++i)

204 - trans[i] = toupper (i);

205 + if (MB_CUR_MAX == 1)

206 + for (i = 0; i < NCHAR; ++i)

207 + trans[i] = toupper (i);

208 + else

209 + for (i = 0; i < NCHAR; ++i)

210 + {

122 Case Studies in grep

211 + wint_t wc = localeinfo.sbctowc[i];

212 + wint_t uwc = towupper (wc);

213 + if (uwc != wc)

214 + {

215 + char s[MB_LEN_MAX];

216 + mbstate_t mbs = { 0 };

217 + size_t len = wcrtomb (s, uwc, &mbs);

218 + if (len > 1)

219 + abort ();

220 + trans[i] = s[0];

221 + }

222 + else

223 + trans[i] = i;

224 + }

225

226 *kwset = kwsalloc (trans, false);

227 }

A.3 Case 3 123

A.3 Case 3

Full ID 5cb49d2f375f0606ac9d916af6024d4b92ba0786

Reproduce yes \$(printf '\200\200\200\200\200\200x\n')

head -n 1000000 >j; grep -oP y j|

Code Change
1 diff --git a/src/pcresearch.c b/src/pcresearch.c

2 index 8f3d935..c0b8678 100644

3 --- a/src/pcresearch.c

4 +++ b/src/pcresearch.c

5 @@ -229,6 +229,7 @@ Pexecute (char *buf, size_t size, size_t *match_size,

6 while (mbclen_cache[to_uchar (*p)] == (size_t) -1)

7 {

8 p++;

9 + subject = p;

10 bol = false;

11 }

12

13 @@ -269,29 +270,30 @@ Pexecute (char *buf, size_t size, size_t *match_size,

14 }

15 int valid_bytes = sub[0];

16

17 - /* Try to match the string before the encoding error. */

18 - if (valid_bytes < search_offset)

19 - e = PCRE_ERROR_NOMATCH;

20 - else if (valid_bytes == 0)

21 + if (search_offset <= valid_bytes)

22 {

23 - /* Handle the empty-match case specially, for speed.

24 - This optimization is valid if VALID_BYTES is zero,

25 - which means SEARCH_OFFSET is also zero. */

26 - sub[1] = 0;

27 - e = empty_match[bol];

28 - }

29 - else

30 - e = jit_exec (subject, valid_bytes, search_offset,

31 - options | PCRE_NO_UTF8_CHECK | PCRE_NOTEOL, sub);

32 + /* Try to match the string before the encoding error. */

33 + if (valid_bytes == 0)

34 + {

35 + /* Handle the empty-match case specially, for speed.

36 + This optimization is valid if VALID_BYTES is zero,

37 + which means SEARCH_OFFSET is also zero. */

38 + sub[1] = 0;

39 + e = empty_match[bol];

40 + }

41 + else

42 + e = jit_exec (subject, valid_bytes, search_offset,

124 Case Studies in grep

43 + options | PCRE_NO_UTF8_CHECK | PCRE_NOTEOL, sub);

44

45 - if (e != PCRE_ERROR_NOMATCH)

46 - break;

47 + if (e != PCRE_ERROR_NOMATCH)

48 + break;

49 +

50 + /* Treat the encoding error as data that cannot match. */

51 + p = subject + valid_bytes + 1;

52 + bol = false;

53 + }

54

55 - /* Treat the encoding error as data that cannot match. */

56 subject += valid_bytes + 1;

57 - if (p < subject)

58 - p = subject;

59 - bol = false;

60 }

61

62 if (e != PCRE_ERROR_NOMATCH)

Appendix B

Complete Performance Fuzzing
Experiment Data

This appendix contains all execution time medians of all generated inputs by target projects,
setups and repetitions.

126 Complete Performance Fuzzing Experiment Data

B.1 S1

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S1, Rep 1

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S1, Rep 1

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S1, Rep 1

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml S1, Rep 1

B.1 S1 127

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S1, Rep 2

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S1, Rep 2

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S1, Rep 2

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml S1, Rep 2

128 Complete Performance Fuzzing Experiment Data

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S1, Rep 3

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S1, Rep 3

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S1, Rep 3

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1
Ex

ec
ut

io
n

Ti
m

e
(S

ec
on

ds
)

median
PMoImax

1MiB limit

(d) libxml S1, Rep 3

B.2 S2 129

B.2 S2

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S2, Rep 1

0 20 40 60 80
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S2, Rep 1

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S2, Rep 1

0 5 10 15 20 25 30 35
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)
median
PMoImax

1MiB limit

(d) libxml S2, Rep 1

130 Complete Performance Fuzzing Experiment Data

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S2, Rep 2

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S2, Rep 2

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S2, Rep 2

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml S2, Rep 2

B.2 S2 131

0.00 0.05 0.10 0.15 0.20 0.25
Input Size (MiB)

10 2

4 × 10 3

6 × 10 3

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S2, Rep 3

0 20 40 60 80
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S2, Rep 3

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S2, Rep 3

0 10 20 30 40 50 60
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml S2, Rep 3

132 Complete Performance Fuzzing Experiment Data

B.3 S3

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S3, Rep 1

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S3, Rep 1

0 10 20 30 40 50 60
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S3, Rep 1

0 5 10 15 20
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)
median
PMoImax

1MiB limit

(d) libxml S3, Rep 1

B.3 S3 133

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S3, Rep 2

0 10 20 30 40 50 60 70 80
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S3, Rep 2

0 20 40 60 80
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S3, Rep 2

0 10 20 30 40 50 60
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml S3, Rep 2

134 Complete Performance Fuzzing Experiment Data

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S3, Rep 3

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S3, Rep 3

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S3, Rep 3

0 5 10 15 20 25 30 35 40
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml S3, Rep 3

B.4 S4 135

B.4 S4

0.0 0.5 1.0 1.5 2.0
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S4, Rep 1

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S4, Rep 1

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S4, Rep 1

0 20 40 60 80
Input Size (MiB)

10 2

10 1

100

101
Ex

ec
ut

io
n

Ti
m

e
(S

ec
on

ds
)

median
PMoImax

1MiB limit

(d) libxml S4, Rep 1

136 Complete Performance Fuzzing Experiment Data

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S4, Rep 2

0 20 40 60 80
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S4, Rep 2

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S4, Rep 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml S4, Rep 2

B.5 V1 137

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng S4, Rep 3

0 10 20 30 40 50 60
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib S4, Rep 3

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg S4, Rep 3

0 5 10 15 20 25 30 35
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml S4, Rep 3

B.5 V1

0.00 0.05 0.10 0.15 0.20 0.25
Input Size (MiB)

10 2

4 × 10 3

6 × 10 3

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng V1,
Rep 1

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib V1, Rep
1

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg V1,
Rep 1

0 10 20 30 40
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml V1,
Rep 1

138 Complete Performance Fuzzing Experiment Data

0.00 0.05 0.10 0.15 0.20 0.25
Input Size (MiB)

10 2

4 × 10 3

6 × 10 3

2 × 10 2

3 × 10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng V1, Rep 2

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib V1, Rep 2

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg V1, Rep 2

0 20 40 60 80
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml V1, Rep 2

B.6 V2 139

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng V1, Rep 3

0 10 20 30 40 50 60 70 80
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib V1, Rep 3

0 10 20 30 40 50 60 70 80
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg V1, Rep 3

0 5 10 15 20 25
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml V1, Rep 3

B.6 V2

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng V2,
Rep 1

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib V2, Rep
1

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg V2,
Rep 1

0 10 20 30 40 50
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml V2,
Rep 1

140 Complete Performance Fuzzing Experiment Data

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng V2, Rep 2

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib V2, Rep 2

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg V2, Rep 2

0 20 40 60 80
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml V2, Rep 2

B.6 V2 141

0.0 0.2 0.4 0.6 0.8 1.0
Input Size (MiB)

10 2

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(a) libpng V2, Rep 3

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(b) zlib V2, Rep 3

0 20 40 60 80 100
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(c) libjpeg V2, Rep 3

0 10 20 30 40 50 60 70
Input Size (MiB)

10 2

10 1

100

101

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

median
PMoImax

1MiB limit

(d) libxml V2, Rep 3

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Software Dependability and Security
	1.2 Performance Testing and Performance Bugs
	1.3 Research Questions and Contribution
	1.4 Publications
	1.5 Organization

	2 Related Work and Background
	2.1 Performance Issues and Diagnostic Approaches
	2.2 Code Instrumentation and Performance Profilers
	2.3 Empirical Study on Performance Bugs
	2.3.1 Performance Bugs for Evaluating and Training Detection and Localization Approaches
	2.3.2 Empirical Studies of Performance Bugs

	2.4 Performance Mutation Testing
	2.5 Performance Fuzzing

	3 Empirical Study on Performance Bugs
	3.1 Introduction
	3.2 Methodology
	3.2.1 Selection of Projects and Commits
	3.2.2 Taxonomy
	3.2.3 Bug Fix Time
	3.2.4 Seniority of Fixers
	3.2.5 Number of Changed Lines
	3.2.6 Bug Collections

	3.3 The Shape and Variety of Fixed Performance Bugs
	3.3.1 Fast-path
	3.3.2 Arguments
	3.3.3 Cache memoization
	3.3.4 Data Access
	3.3.5 Synchronization
	3.3.6 Miscellaneous

	3.4 Performance Bugs Characteristics
	3.4.1 Bug Pattern Distribution
	3.4.2 Performance Bug Fix Duration
	3.4.3 Performance Bug Fixing Developer Experience
	3.4.4 Performance Bug Fix Size

	3.5 Threats to Validity
	3.6 Conclusion

	4 Performance Mutation Testing
	4.1 Introduction
	4.2 Background
	4.2.1 Performance Mutation Testing
	4.2.2 PMT Fault Models

	4.3 SlowCoach: A PMT Framework
	4.3.1 Overview and Workflow
	4.3.2 Mutation Operators
	4.3.3 Implementation
	4.3.4 Prototype Limitations

	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 RQ1: Mutant Generation and Overheads
	4.4.3 RQ2: Functional Equivalence
	4.4.4 RQ3: Mutation Score and Discussion
	4.4.5 Internal and External Validity

	4.5 Conclusion

	5 Performance Fuzzing
	5.1 Introduction
	5.2 Background
	5.3 Study Design
	5.3.1 The Input with Worst Performance and Performance-Size Ratio (PSR)
	5.3.2 Performance Relevant Input (PRI)

	5.4 Evaluation
	5.4.1 Evaluation Setup
	5.4.2 Overview
	5.4.3 Discussion
	5.4.4 Future Work

	5.5 Conclusion

	6 Future Work
	7 Conclusion
	References
	Appendix A Case Studies in grep
	A.1 Case 1
	A.2 Case 2
	A.3 Case 3

	Appendix B Complete Performance Fuzzing Experiment Data
	B.1 S1
	B.2 S2
	B.3 S3
	B.4 S4
	B.5 V1
	B.6 V2

