
Instrumenting AUTOSAR for Dependability
Assessment: A Guidance Framework

Thorsten Piper, Stefan Winter, Paul Manns and Neeraj Suri
Technische Universität Darmstadt, Germany
{piper,sw,manns,suri}@cs.tu-darmstadt.de

Abstract—The AUTOSAR standard guides the development of
component-based automotive software. As automotive software
typically implements safety-critical functions, it needs to fulfill
high dependability requirements, and the effort put into the
quality assurance of these systems is correspondingly high.
Testing, fault injection (FI), and other techniques are employed
for the experimental dependability assessment of these increas-
ingly software-intensive systems. Having flexible and automated
support for instrumentation is key in making these assessment
techniques efficient. However, providing a usable, customizable
and performant instrumentation for AUTOSAR is non-trivial due
to the varied abstractions and high complexity of these systems.

This paper develops a dependability assessment guidance
framework tailored towards AUTOSAR that helps identify the
applicability and effectiveness of instrumentation techniques at
(a) varied levels of software abstraction and granularity, (b) at
varied software access levels - black-box, grey-box, white-box,
and (c) the application of interface wrappers for conducting FI.

Keywords-AUTOSAR; instrumentation; interface wrappers;
fault injection; run-time monitoring

I. INTRODUCTION

AUTOSAR (AUTomotive Open System ARchitecture) [9]
is an emerging open industry standard for automotive software
systems. Its development is driven by the need to address
the growing complexity of modern vehicular systems and to
reduce development costs when introducing new software-
based features. AUTOSAR is organized as a layered, mod-
ular architecture, and is based on a component/composition-
centric development process that standardizes the modeling
and naming schemes within the system, including components,
interfaces, data types and runnables. The standard promotes
the integration of white-box and black-box components into
a grey-box system, allowing for the integration and reuse of
intellectual property of different suppliers.

Automobiles are safety-critical systems with increasing soft-
ware based functionality. In order to maintain safety, often
defined as the “absence of catastrophic consequences on the
user(s) and the environment” [4], manufacturers comply to
industry-wide safety standards and functional safety specifica-
tions, such as IEC 61508 [12] and in particular the recently
released ISO 26262 ([13], [5]), in their design, develop-
ment and production processes for the underlying software.
This covers rigorous software design processes along with
analytical and test techniques at the static software levels.
Moreover, experimental methods for dependability assessment
(e.g. testing, fault injection, error propagation analysis) are

employed during development to analyze the system’s behav-
ior before its deployment and to ensure the fault tolerance
of critical components [21]. Similarly, an equally widespread
adoption of experimental security analyses is advisable. It
has repeatedly been shown that current implementations of
automotive software have severe security issues ([14], [20],
[10]), which can also be attributed to insufficient testing.

In practice, instrumentation1 is one way to enable depend-
ability assessment techniques within a system. To make the
assessment efficient, a flexible and automatic instrumentation
of the test system at different locations and varied levels
of granularity is highly desirable. To systematically address
the aforementioned requirements, we propose an automated
process for the instrumentation of AUTOSAR systems by a
framework, which provides the key features usability, cus-
tomizability and efficiency. The implementation of such a
framework for AUTOSAR is hard, mainly due to these factors:
F1) AUTOSAR systems are developed in a model based pro-

cess that introduces a high degree of abstraction between
the model and the implementation. As consequence,
instrumentation at the model level has no access to im-
plementation details (limiting customizability), while in-
strumenting the implementation, i.e., machine generated
code, is a tedious process (limiting usability). Also, due
to the degree of abstraction, elements of the model often
have no singular representation in the implementation.

F2) AUTOSAR systems are composed of white-box and
black-box software components as provided by various
suppliers. A customizable and usable instrumentation
should also be applicable to these systems, to not impact
the overall efficiency of instrumentation, for instance,
if an approach requires the re-compilation of the entire
system. To keep the effectiveness and implications on the
overall system composition and performance in mind is
key.

Paper Contributions

Facing these challenges, we aim to develop an instrumen-
tation framework for AUTOSAR systems that is usable, cus-
tomizable and efficient. At the same time, we aim to establish
a guidance framework on how to develop and implement

1Throughout this paper, we use the word instrumentation to express a
modification of a program with the intent to enable an interception of data
and control flow for analysis or alteration, aiming to implement the major
dependability-related applications fault injection and monitoring.



a systematic instrumentation schema within the AUTOSAR
environment. The key idea to address factor (F1) is to leverage
collective information from the system model, provided during
the development process in standardized AUTOSAR XML
(ARXML) format, and the system implementation, to drive
the configuration and instrumentation process.

Addressing factor (F2), we develop and advocate an inter-
face wrapper based approach for the instrumentation realiza-
tion. Wrappers are a well established concept [22], that can
be used to intercept inter-component communication. They
are applicable to white-box, grey-box, and black-box com-
ponents, all of which can be present simultaneously within an
AUTOSAR system and are, as such, also explicitly promoted
by the standard. Moreover, wrappers can implement add-on
functionality and thus enable a variety of run-time testing
and analysis methods, such as fault injection (FI), failure
propagation analysis, and control-/ data-flow monitoring.

Having said that, our approach is the first to investigate how
to systematically and automatically instrument a given system.
Our contribution is to provide a guidance framework for
the systematic and automated instrumentation of AUTOSAR
systems that enables:

Usability Instead of requiring the user to instrument code at a
low level, e.g., at the output of code generators, we enable
instrumentation via high-level models. Building models
is an essential abstraction step in the AUTOSAR devel-
opment process to specify modular and interconnected
systems. Such models are widely-used and supported by
AUTOSAR design tools.

Customizability In addition, expert users of the proposed
instrumentation framework are given a highly customiz-
able interface to specify instrumentation locations that
are not part of the model abstraction. We achieve this
by exploiting semantic information of high-level models,
e.g., the logic of generating source code from models.
Furthermore, our customizable framework allows instru-
mentation at different software access levels, e.g., binaries
(black-box) or C code (white-box).

Efficiency The proposed framework is also efficient in terms
of user effort, compilation resources, execution time, and
memory consumption. We implement efficiency through
adaption of established SW engineering techniques such
as wrappers and XML meta data. We evaluate this
efficiency by conducting fault-injection of an anti-lock
braking system, which we implemented with two differ-
ent AUTOSAR design tools to demonstrate efficiency and
applicability across multiple vendors.

We structure the paper as follows. We introduce the system
model in Section II and review related work in Section III. In
Section IV we investigate the development of a systematic, au-
tomated process for instrumentation. We evaluate our approach
in Section V and discuss its characteristics and limitations in
Section VI.

Data flow

Interface AB

A B

Example Composition

Sendport Recvport

SW-C SW-C

Fig. 1. Model of two software components (SW-Cs) communicating via a
sender-receiver interface.

II. THE AUTOSAR DEVELOPMENT PROCESS AND
SYSTEM MODEL

Many techniques for component level dependability assess-
ment (e.g. fault injection) or reliability enhancement (e.g. run-
time monitors), rely on accessing or modifying the actual data
flow between the components ([6],[18]). This section provides
the foundations to understand key aspects of the AUTOSAR
development process/architecture, which is essential to ap-
preciating the difficult challenge of instrumentation and its
effective usage.

AUTOSAR’s focus is to provide the software architecture
for distributed automotive systems. In these systems, elec-
tronic control units (ECUs) constitute nodes that implement
dedicated functionality and that communicate via bus systems
such as CAN, LIN and FlexRay. AUTOSAR systems are
created in a model driven development process, in which the
developer composes the system model typically via a graphical
user interface. This model provides an abstract view on the
system, making no assumptions on the distribution or mapping
of resources in a later development stage. Large parts of the
overall software code base are generated from this model and
only a fraction of the system development is done on the actual
implementation level. This approach provides the developer
great usability and flexibility in terms of evolving system
configuration, as the assignment of resources (i.e., mapping
components to ECUs) and low level implementation become
decoupled processes. On the other hand, this approach also
entails a high degree of abstraction between the model and
the actual implementation.

We use the example model in Figure 1 to introduce some
of the key concepts of AUTOSAR, and to show the ambiguity
of the model concepts in the implementation domain later
on. The top-level element in any AUTOSAR system is a
composition (depicted by the dashed box), which can be
thought of as a container that contains other compositions or
software components (SW-Cs). The standard defines several
types of SW-Cs, such as application SW-C or sensor-actuator
SW-C, and SW-Cs provide functionality to the system through
runnables, which are timer or event (e.g. message arrival)
triggered functions that are implemented in C or C++. SW-Cs
communicate with each other via standardized port interfaces
(or simply interfaces, in our example Interface AB), which
specify the communication method and provide a link between
components. Interfaces are accessed through ports, serving as
communication endpoints. As such, ports provide access to



Fig. 2. The AUTOSAR layered software architecture [1].

a named point-to-point connection between components that
uses standard communication patterns, such as client-server or
sender-receiver, to exchange data or invoke server operations.

Spotting and identifying points for communication intercep-
tion seems trivial in the model, but becomes non-intuitive in
the implementation mostly due to the high abstraction degree
of the model. In fact, after reviewing the AUTOSAR architec-
ture and the data flow between components within, we show
that, for example, the modeling concept port has no singular
representation within the implementation. It is important to
understand that the view on the system that the model provides
is inherently different from the implementation’s view of
the system. In the model, SW-Cs are directly connected to
each other via their respective ports and port interface. But,
unlike as the model suggests, there is no direct communication
between SW-Cs in the implementation. Instead, each SW-C in-
vokes the API of a runtime environment (RTE), which abstracts
the services/primitives for inter-component communication.
The RTE is a layer of the AUTOSAR software architecture,
as shown in Figure 2. To understand how connections (and
eventually communication) between components in the model
manifest in the implementation, we have to understand further
details of the architecture.

At the implementation level, AUTOSAR is organized as a
layered, modular software architecture in which each layer
provides an abstraction of the underlying layer and a set
of services to the overlying layer. As mentioned, the RTE
implements communication services for the SW-Cs and trans-
parently abstracts from the actual communication medium
or channel. In order to dispatch communication and route
messages, the RTE uses the services provided by the basic
software (BSW) layer, which itself is composed of several sub-
layers and modules, and provides the hardware abstraction.

Recalling the example model of Figure 1, the commu-
nication between components A and B can result in three
distinct communication paths in the implementation, as shown
in Figure 3. In the case where component A and B reside
on the same ECU (as in the left part of the picture) the
communication can either involve only the RTE or the RTE
and the BSW. In the distributed case, where component A
and B reside on different ECUs, the communication also

SW-C

A
SW-C

B

RTE

BSW

Network (e.g. CAN)

ECU 1

SW-C

B

RTE

BSW

ECU 2

Fig. 3. Possible data flow paths of two communicating SW-Cs at the
implementation level.

involves a network, such as CAN. The direct communication
between components that the model view suggests, obviously
gets split into several phases within the implementation. To
give an example, the communication process and data flow
for the most simple case of communication is as follows.
In phase one, SW-C A invokes an API call of the RTE to
send a message to SW-C B. The interface handler of the RTE
processes the call and stores the message until delivery. Phase
two starts when SW-C B invokes an API call of the RTE to
read the message. The interface handler of the RTE loads the
stored message and delivers it to SW-C B. So, the message
first passes the interface between SW-C A and the RTE, and
then the interface between the RTE and SW-C B. As each of
these interfaces has two communication endpoints, one within
the SW-C and one within the RTE, we have the choice of four
distinct locations to intercept the dataflow between component
A and B – for the simplest case.

Another factor that adds to the complexity of the scenario,
is the distributed development of AUTOSAR systems. AU-
TOSAR advocates a component-based design with standard-
ized interfaces to support the integration of application com-
ponents that are supplied by third party manufacturers, into the
overall system. Third party suppliers receive, alongside with
the SW-C’s functional requirement specification, an interface
specification that results from the code generation process.
They have the option to deliver the implemented functionality
either as source-code (white-box) or binary object-code (black-
box). Both options are explicitly supported by the AUTOSAR
standard, whereas delivering the implementation in binary
form aids in protecting the intellectual property of the external
supplier.

In addition to the different instrumentation locations (SW-C
and RTE), an instrumentation approach therefore has to factor
the different code access levels that might be present in the
system.

We address this scenario as follows. To bridge the gap
between the model and the implementation, we propose to
leverage information from the model and the implementation
to create a collective view of the system. After a review
of related work in the following section, we explain the
technical details of extracting the necessary information from



the model and the implementation in Section IV. Furthermore,
we show how to technically drive wrapper-based interface
instrumentation on the access levels of source code and binary
object, and provide suggestions on how to use this information
to develop an instrumentation framework.

III. RELATED WORK

In order to implement fault-tolerance extensions or to
conduct fault injection experiments, several publications have
dealt with the instrumentation of AUTOSAR software systems.
In [16], Lu et al. propose a fault-tolerance extension for au-
tomotive modular embedded software, which is implemented
as an error monitor in an external customizable component.
The external monitor instruments and interfaces the monitored
system via software hooks provided by the AUTOSAR OS
on certain events (e.g. task start/stop, OS errors), based on
the user’s OS configuration. The approach is capable of
monitoring the control- and data-flow at the OS level, with
granularity restricted to task invocations. Apart from the low
granularity, the approach is limited by the instrumentation at
the OS level (therefore requiring OS access) and the use of
software hooks, which necessitates white-box access to those
parts of the OS that implement the hooks.

In [17], the authors suggest a wrapping-based approach that
partly addresses above limitations. The approach is based on
the same architecture, but targets the RTE as the instrumenta-
tion location, leveraging software hooks provided by the RTE.
The granularity of monitoring is substantially improved to
tracking interactions between SW-Cs and RTE at the interface
level, and is comparable to our approach. Furthermore, the
approach only requires RTE access and no longer OS access.
On the other hand, white-box restrictions still apply, while
implicitly necessitating the time-consuming recompilation of
code, when the configuration of instrumentation changes.

Lanigan et al. [15] published a feasibility study of fault
injection in AUTOSAR using CANoe, a commercial tool
that provides a simulation and evaluation environment for
automotive applications. As with the previous approaches,
the instrumentation method of choice is software hooks.
The authors restrict themselves to the basic software (BSW)
layer and do not instrument the RTE, as “it is mostly
auto-generated by the AUTOSAR configuration tools”.
While the instrumentation at BSW service level provides a
better granularity than at the OS level, the same access and
white-box limitations as for [16] apply, due to the similarities
in instrumentation method and location. As the approach
targets a specific tool, the generic applicability is restricted.

In summary, the review of related work shows that all
current approaches rely on hooks provided by either the
BSW, the OS or the RTE, requiring at least partial source
code access, and in turn, the recompilation of parts of the
system for different configurations. Currently, none of the
existing approaches addresses the different access levels of
white-box, grey-box or black-box, which are explicitly pro-
moted by AUTOSAR. Furthermore, the question of how to

systematically and automatically instrument a given system
is not investigated. Also, none of the publications provides
an (experimental) evaluation of the overhead incurred by the
instrumentation. Our publication is the first to address these
open issues.

IV. INSTRUMENTING AUTOSAR SOFTWARE
COMPONENTS

AUTOSAR’s high-level view of inter-component commu-
nication facilitates the identification of candidate locations for
instrumentation. In order to analyze or intercept the commu-
nication on the component level, i.e. among the core building
blocks of AUTOSAR systems, communication end-points of
interest can be chosen from the set of ports that are used for
component interconnection. Unfortunately, this simplicity of
the communication model is not reflected in the tool-generated
source code structure, for which the actual instrumentation
has to be implemented. In the following we discuss how
AUTOSAR’s high-level communication model translates to
source code constructs, along with the resulting opportunities
for instrumentation.

A. Inter-Component Communication: Model vs Code

AUTOSAR models are stored as machine-readable specifi-
cation in a XML-based data format called ARXML. A code
generator translates these models into an implementation code
skeleton. To illustrate the code generation process, we have
modeled the system presented in Figure 1, which, despite its
simplicity, resulted in almost 140 lines of ARXML code. From
this code, an extract of the component specification of SW-C A
is shown in Listing 1, with the intent to provide an illustrative
example and give the reader a glimpse at the overall process.

1<APPLICATION−SOFTWARE−COMPONENT−TYPE>
2<SHORT−NAME>A</SHORT−NAME>
3<PORTS><P−PORT−PROTOTYPE>
4<SHORT−NAME>SendPor t </SHORT−NAME>
5<PROVIDED−COM−SPECS><UNQUEUED−SENDER−COM−SPEC>
6<DATA−ELEMENT−REF DEST=”DATA−ELEMENT−PROTOTYPE”>
7/ r o o t P a c k a g e / S e n d P or t / D a t a P r o t o t y p e </DATA−ELEMENT−REF>
8</UNQUEUED−SENDER−COM−SPEC></PROVIDED−COM−SPECS>
9<PROVIDED−INTERFACE−TREF DEST=”SENDER−RECEIVER−INTERFACE”>
10/ r o o t P a c k a g e / SendPor t </PROVIDED−INTERFACE−TREF>
11</P−PORT−PROTOTYPE></PORTS>
12</APPLICATION−SOFTWARE−COMPONENT−TYPE>

Listing 1. Component prototype specification (extract from the ARXML of
the model in Figure 1).

The specification’s key elements are the component name
(line 2) and the provide port definition (lines 3-11), which
contains references to the data prototype (lines 6-7) and the
interface (lines 9-10). In [3], the AUTOSAR standard defines
various interface types, which are translated to more than 20
API types during the code generation, each of which is gen-
erated with a strict naming scheme to ensure interoperability.
In our example, the interface is of type SENDER-RECEIVER-
INTERFACE (lines 9-10), and the specification results in the
generation of an Rte Write API. For this API, the naming
scheme is defined as Rte_Write_<p>_<o>, where <p>
denotes the port name and <o> the DataElementPrototype.

Line 4 of Listing 1 specifies the port name (SendPort) while
the DataElementPrototype can be obtained by de-referencing



the interface reference in lines 9-10. Listing 2 shows the
interface specification. The name of the DataElementPrototype
(DataPrototype) is located in line 4.

1 <SENDER−RECEIVER−INTERFACE>
2 <SHORT−NAME>SendPor t </SHORT−NAME>
3 <DATA−ELEMENTS><DATA−ELEMENT−PROTOTYPE>
4 <SHORT−NAME>D a t a P r o t o t y p e </SHORT−NAME>
5 <TYPE−TREF DEST=”INTEGER−TYPE”>
6 / r o o t P a c k a g e / DataType</TYPE−TREF>
7 </DATA−ELEMENT−PROTOTYPE></DATA−ELEMENTS>
8 </SENDER−RECEIVER−INTERFACE>

Listing 2. Interface specification (extract from the ARXML of the model in
Figure 1).

By applying the port name and the DataElementPrototype
to the API naming scheme, we obtain the function call sig-
nature Rte_Write_SendPort_DataPrototype which
matches that of the actual generated code, as in Listing 3.

1 Std ReturnType Rte Write SendPort DataPrototype(DataType data);

Listing 3. Communication primitive generated from the ARXML specifica-
tion in Listings 1 and 2.

This simple example illustrates some of the key concepts of
ARXML parsing. By de-referencing basic building blocks of a
component, the function call signature can be derived and lo-
cated in the implementation code base for instrumentation. The
AUTOSAR standard defines more than 20 interface types with
a multitude of options, significantly adding to the complexity
of the translation process. An exhaustive implementation of all
interface types is essential, if maximum compatibility needs to
be achieved. Else, a limited subset that resembles the interfaces
that are used throughout the concrete model suffices.

B. Opportunities for Instrumentation

The AUTOSAR standard document “Requirements on RTE
Software” [2] defines that the “RTE shall be generated in C
and that the RTE is required to support components written
using the C and C++ programming languages”. Thus, C and
C++ are the prevalent programming languages in AUTOSAR
systems, and we focus on these for instrumentation. Examining
the characteristics of the C/C++ programming languages, both
languages allow either source code, header file, or binary ob-
ject, as possible options for instrumentation, which correspond
to the software access levels white-box, grey-box and black-
box. SW-Cs and the RTE are instrumented in a technically
similar manner, hence we will refer to them collectively. A
clear distinction has to be drawn during the evaluation and
discussion of each approach though, as the instrumentation
of SW-Cs and RTE differs in semantics and requirements, as
discussed in Section VI. Thus each instrumentation location
(RTE and SW-C) has three instrumentation options at the code
access level, as:

Option 1: Instrumentation of Source Code (.c-files):
The source code of a component contains its implementa-
tion, which is located in a .c-file or .cpp-file. Source code
instrumentation demands white-box access to the instrumented
component and therefore has the highest requirements in terms
of accessibility.

In order to instrument a component’s implementation, i.e.,
its .c-file, all invocations of the interface function that is to be

instrumented, must be replaced with calls to a wrapper. This
is done by renaming all calls to Interface Name to a unique
and unused function name, e.g. Wrapper Interface Name. An
implementation of Wrapper Interface Name then has to be
provided in a separate .c-file that replicates all #include
statements of the original .c-file (e.g. for type definitions and
macros) and transparently invokes the original API function
Interface Name, by passing all parameters and the return
value.

Option 2: Instrumentation of Header File (.h-files): The
header file of a component contains its interface declaration,
which is located in a .h-file. Header file instrumentation
requires grey-box access to the instrumented component, as
the interface declaration must be accessible, but knowledge of
implementation specific details is not necessary.

The interface declaration of a component, i.e., its .h-file,
is instrumented by redeclaring the interface name of the
function that is to be instrumented (e.g. Interface Name)
to a new, unique and unused function name (e.g. Origi-
nal Interface Name), effectively hiding the original interface
from the implementation. Similar to the instrumentation of
source code, an implementation of Interface Name has to be
provided in a separate .c-file, that #includes the original
header file, and invokes the original API function Origi-
nal Interface Name transparently.

Option 3: Instrumentation of Binary Object (.o-files):
The binary object of a component contains its compiled object
code, which is located in an .o-file. The instrumentation of
binary objects only requires black-box access to the instru-
mented component and therefore has the lowest requirements
in terms of accessibility.

Binary objects contain tables with information on imported
and exported symbols that are used by the linker during the
link phase of a program. Symbol tables can be accessed and
manipulated by tools such as objdump and objcopy, both
part of GNU Binutils [8]. By modifying the import/export
table of the binary object, the linker can be instructed to
link all calls of the original interface function (e.g. Inter-
face Name) to a wrapped version of the function (e.g. Wrap-
per Interface Name). An entry in the symbol table can be
redefined, by calling objcopy with the --redefine-sym
parameter, passing the original and new symbol name as addi-
tional parameters. An implementation of the wrapped interface
function Wrapper Interface Name has to be provided in a
similar way as for above approaches in a separate .c-file.

C. Automating AUTOSAR Wrapper Generation

We have implemented aforementioned instrumentation
methods into a prototype AUTOSAR instrumentation frame-
work, which was developed in C#. The development of this
framework was motivated by our need for a flexible, config-
urable and programmatic process to drive the instrumentation
of AUTOSAR systems for our own fault injection experiments.
At the same time, we also wanted to verify that we can
indeed achieve a usable, customizable and efficient approach
to instrumentation.



ARXML

System Model

Parse Top-Level 

Composition (TLC)

Parse Each Component 

of TLC

Data 

Element 

References

Interface 

Type 

References

Component Prototypes 

(CPs)

Parsing

Parser 

Output

Iterate Component 

Prototypes (CPs)

User 

Config.

Instrumentation

Imple-

mentation

Parse Internal Behavior

of CPs

Iterate all Interfaces of

each CP

Evaluate Config. of 

Instrumentation

SW-C/ 

RTE 

.c-file

SW-C/ 

RTE 

.h-file

SW-C/ 

RTE 

.o-file

Fig. 4. Automating instrumentation: Basic workflow of the model parsing
and instrumentation phases.

The overall workflow is divided into three phases: parsing,
configuration and instrumentation, as depicted in Figure 4.
Model parsing is key in providing usability to the user, as it
enables a presentation of the system on the model abstraction
level. During model parsing (shown on the left side of Figure
4), the parser analyzes the AUTOSAR XML (ARXML) file(s)
for elements that are relevant to create this presentation and to
drive instrumentation. Beginning at the top-level composition
(TLC), which contains the component instances (CIs) of the
system, the parser de-references the component prototype
specification (CPS) of all CIs. Next, the parser extracts all
references to interface type(s) and data element type(s) that are
part of the component prototype. The information contained
within the interface type specification, the data element type
specification and the specification of the internal behavior of
the component prototype are relevant for the overall process.
Due to the complexity of the standard, it is not feasible to give
a more detailed list of elements. Instead we advise the reader
to consult the Specification of RTE [3] that lists all interface
types and their associated signatures.

After parsing the ARXML file, we provide the user with a
browsable list of the software components that compose the
system and their corresponding interface functions. During the
configuration phase, the user can select the various instrumen-
tation methods (.c-file, .h-file or .o-file) and locations (SW-C
or RTE) for each interface of an SW-C, as derived from the
component specification in the system model, and supply code
for wrapper functionality (e.g. monitor or FI). By offering the
various choices of methods and location, we provide the user
a customizable way to drive instrumentation.

Lastly, in the instrumentation phase (shown on the right
side of Figure 4), all interfaces of each CPS are iterated,
and, depending on the configuration, a method- and location-
specific procedure that generates the wrapper and instruments
the interface is called. A log file of the instrumentation is

generated, to provide feedback and report errors.
By integrating a presentation of the various instrumentation

options on the model’s abstraction layer, while preserving the
flexibility and customizability of working directly on the im-
plementation level, we were able to satisfy the requirements of
usability and customizability. The evaluation of the efficiency
of our approach is provided in the following section.

V. PROOF OF CONCEPT AND EXPERIMENTAL EVALUATION

This section provides a proof of concept for our suggested
instrumentation approach in a typical dependability assess-
ment scenario. We apply the source code and binary object
instrumentation options to the SW-C and RTE layers, in order
to conduct a series of fault injection (FI) experiments on a
simplified anti-lock braking system (ABS). The purpose and
intent of these experiments is not so much the evaluation
of a single, specific system, but rather to apply all of the
instrumentation methods in a common application scenario to
show their generic applicability. We determine the overhead of
each instrumentation technique, in order to establish a relative
comparison and raise the reader’s awareness for the different
evaluation criteria. This is a best effort approach, as, given
the multitude of platforms, systems and tool-chains in the
automotive domain, a generic analysis is infeasible.

For development, implementation and evaluation of the
system, we used the commercial AUTOSAR tools ETAS
INTECRIO V3.2.0 Hotfix 5 [7] and OptXware Embedded
Architect (EA) V1.0.0.201103031241 [19], which enabled us
to cross-validate our results. Although we have conducted all
of our experiments on both tools, it is neither our intention nor
feasible to provide a comparison of tools, due to the diverse
functionality and application area of each tool. Instead, we
intend to provide a relative comparison of instrumentation
approaches per tool, and we aim at showing that our approach
is a generic one, therefore not limited to a certain tool or
implementation. For the automated instrumentation of the
system, we employ the instrumentation framework prototype
that we have developed according to the technical details given
in Section IV.

A. The Experimentation Setup

The system on which we implement the proof of concept
is a simplified anti-lock braking system, as shown in Figure
5. It is simplified in the sense that only two wheels are
present in the model and that the internal behavior is not
used in a production system (i.e., a real car). The system is
nevertheless a complete and fully-fledged AUTOSAR system,
aligning well with the intent of our experiments. A detailed
description of the function of the system and the operating
conditions is given in Section V-B. In our setup we aimed to
cover the instrumentation locations SW-C and RTE and the
wrapper implementation options .c-file, .h-file and .o-file. By
applying each of the 3 implementation options to each of the 2
instrumentation locations, we have 6 distinct experimentation
setups possible, of which we were able to evaluate 5. We were
unable to apply, and therefore experimentally validate, the RTE



Fig. 5. Model of an anti-lock braking system (ABS), instrumented with monitors and fault injectors at selected interfaces.

.h instrumentation method, as both tools generate the RTE’s
header file without interface prototype declarations.

For each of our experiments, we compare the experiment’s
outcome to a golden run made on a reference setup without
any instrumentation. To map the 5 experimentation setups to
the actual system, we decided to instrument the system with
a fixed set of monitors and shift the fault injector location,
based on the current setup. The instrumentation methods and
fault injector locations are as follows:

• No instrumentation Reference setup.
• SW-C .c BrakePedalPosition in SW-C BrakePedalSensor.
• SW-C .h BrakeTorque FL in SW-C BrakeController.
• SW-C .o WheelSpeed in SW-C WheelSpeedSensor FL.
• RTE .c VehicleSpeed in SW-C VehicleSpeed.
• RTE .h Not evaluated.
• RTE .o RequestedBrakeTorque in SW-C ABS FL.
For each setup, we have implemented three classes of

wrapper behavior: (a) skeleton, (b) monitor, and (c) monitor
with fault injector combined. In this context skeleton means
that the wrapper implements no other behavior than pass-
through. Comparing the reference system with a system im-
plementing skeleton wrapper behavior gives information about
the overhead of the instrumentation itself, while comparing
the monitor and fault injector with the skeleton behavior,
gives information about the implementation efficiency of the
behavior. As we will see in the results later on, an inefficient
implementation of wrapper functionality has a much higher
impact on system overhead than the instrumentation itself.

B. ABS System and Simulator in a Nutshell

The ABS system we consider consists of nine SW-Cs and is
embedded in an environment simulator, which provides stimuli
to the system and receives reactions from the system. In our
case, these stimuli are the input values of the brake pedal
sensor and the two wheel speed sensors. The system reacts to
these stimuli by applying a certain brake torque to each wheel.

The test case we simulate is a full braking from 50 km/h
to 0 km/h with a deceleration of -7 m/s2 in the optimal case
of non-blocking wheels and -6 m/s2 in the blocking case.

The runnables within the system’s components are scheduled
periodically every 20 ms and implemented as follows.

BrakePedalSensor polls the BrakePedal I/O port for a brake
pedal position value, which is provided by the simulator as
input stimulus. After scaling and converting the pedal position
value to a suitable data type, it is sent to the BrakeController,
which provides per-wheel brake torque values to the front left
(ABS FL) and front right (ABS FR) ABS controllers.

Depending on the individual WheelSpeed, VehicleSpeed and
BrakeTorque, ABS FL and ABS FR calculate a per-wheel
brake torque that maximizes the brake retardation for the given
input values. The brake torque is then sent to the wheel’s
respective BrakeActuator and fed back to the simulator, which
calculates this period’s deceleration based on the current
simulation state and the applied brake torque.

C. Fault Injection Experiment

To show the application of our approach in a typical
dependability assessment scenario, we conduct a series of
fault injection (FI) experiments on the presented ABS system.
FI [11] is a widely accepted technique for experimental
robustness evaluation and is applicable at varied component
and interface levels. For our evaluation, we utilized SWIFI
(Software Implemented FI) to instrument the software compo-
nent under evaluation (CUE). During the SWIFI experiment,
the data sent to a CUE via its interface is intentionally modified
in a systematic way, i.e., a fault is introduced, with the intent to
expose the CUE to unexpected input. Subsequently, the CUE’s
behavior, in response to the injected fault, as well as the overall
effect on the system, is analyzed.

In order to verify the effectiveness of each instrumentation
method, we utilize each to instrument the system with a set
of monitors and a fault injector. We then conduct a series
of injection runs on the instrumented system, by flipping a
single bit of an intercepted data value when a certain trigger
condition is met. In our setup, the fault injection is time-
triggered at a model time of 300ms after the simulator has
initiated a full application of the brake. As all interfaces in
our example system transmit 16-bit values, each injection



TABLE I
SWIFI EXPERIMENTS: DETECTED DEVIATIONS AND EXPOSURE TIMES FOR DIFFERENT INJECTION LOCATIONS AND BIT FLIP POSITIONS.

Injection location 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BrakePedalPosition
Detected deviations 4 4 4 4 4 4 4 4 4 4 4 4 4 4 454 644

Error persistence (ms) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1840 1940
BrakeTorque FL

Detected deviations 2 2 2 2 2 2 2 2 2 2 2 2 2 2 452 452
Error persistence (ms) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1840 1840

WheelSpeed
Detected deviations 3 3 3 3 3 428 3 428 449 458 243 458 243 243 647 243

Error persistence (ms) 20 20 20 20 20 1840 20 1840 1840 1840 1940 1840 1940 1940 1940 1940
VehicleSpeed

Detected deviations 2 2 2 2 2 2 2 2 436 451 242 457 457 457 454 457
Error persistence (ms) 20 20 20 20 20 20 20 20 1840 1840 1940 1840 1840 1840 1840 1840

RequestedBrakeTorque
Detected deviations 2 2 2 2 2 2 2 2 5 5 5 425 5 647 645 645

Error persistence (ms) 40 40 40 40 40 40 40 40 40 40 40 1840 40 1940 1940 1940

campaign consists of 17 runs; one golden run that we use for
reference, and 16 fault injection runs in which we individually
flip a bit at a distinct position of a 16-bit wide data value.
For each test run, we compare the output of the interface
monitors against the golden run in order to determine whether
the monitors were able to detect the inserted fault, and to
analyze its impact on system behavior.

Before presenting our results, our choice of the single bit
flip fault model requires a short discussion on its relevance
and representativeness. AUTOSAR is a new standard that
manufacturers are just starting to adapt and use in production
systems. Therefore the knowledge on actual fault types within
those systems is severely limited, and consequently so is the
knowledge on fault models. Whether this, or other fault mod-
els, are realistic or relevant for AUTOSAR is an interesting
question that currently can not be answered due to the novelty
of the system and the lack of respective (experience) data.
To analyze the relevance of various fault types in AUTOSAR
is potentially an interesting field of future research for the
dependability community. For our instrumentation approach
this has the implication that we can currently only assume
that there are faults in AUTOSAR that can be addressed by
FI at the interface level.

Having said that, the results of our experiments are listed
in Table I. For each test run, we provide the number of
detected deviations from the golden run as a measure of the
fault’s overall impact on the system. The error persistence
indicates, for how long the fault’s effects were detectable in the
system. In summary, all the fault injections, for each test setup
and instrumentation method, manifest as detectable deviations
from the golden run thus verifying the effectiveness of each
approach. Injections into the lower 8 bits have only minor
impact on system behavior and are tolerated by the system
within one or two periods of execution time. Of all tested
interfaces, WheelSpeed and VehicleSpeed are most susceptible
to variations in the lower bit range. The peak value of detected
deviations, on the other hand, is reached by injecting into the
upper range of most significant bits of the BrakePedalPosi-
tion, RequestedBrakeTorque and WheelSpeed interfaces. The

repeatedly measured cutoff of the error persistence at 1940ms
is owed to the car being at full stop at that time.

It is noteworthy to highlight that the AUTOSAR component
robustness assessment coverage for the number of detected
deviations across all bit positions were similar for both SW-C
and RTE, and at the .c, .h and .o levels. The deviation stems
in each case from a variation of the fault injector location
and not from a conceptual weakness or strength of one or
the other approach. This result is important as the equivalent
dependability coverages result in giving the system evaluator
the desired instrumentation choices as based on the access and
implementation/execution criteria of Section V-D and Section
VI.

D. Instrumentation Overhead

The instrumentation of a system obviously entails overhead
either in space (e.g. memory consumption) or time (e.g.
execution time). In this section, we determine the overhead
of each instrumentation technique in three categories: im-
plementation, runtime and memory. Given the multitude of
platforms, systems and tool-chains in the automotive domain,
this is a best effort approach that aims to establish a relative
comparison between the instrumentation methods and raise the
reader’s awareness for the different evaluation criteria.

1) Implementation: Implementation overhead describes the
expected time and effort to implement an approach by hand.
We measure the implementation overhead of each instrumenta-
tion method using SLOCCount [23], a set of tools for counting
physical source lines of code (SLOC). Table II and Table III
list the SLOC of each component and the RTE respectively,
for various instrumentation methods.

As the numbers for SW-C reveal, SW-C .h has the highest
implementation overhead, followed by SW-C .c and SW-C .o.
Recalling from Section IV, this is not surprising as SW-C .h
requires the redeclaration of interfaces, the implementation of
interface wrappers and the declaration of the interface wrap-
pers. Implementing SW-C .c, the redeclaration of interfaces is
not part of the process, whereas SW-C .o only requires the
implementation of interface wrappers.



TABLE II
OVERHEAD IN SOURCE LINES OF CODE (SLOC) OF INSTRUMENTED SOFTWARE COMPONENTS FOR DIFFERENT INSTRUMENTATION METHODS.

Instrumentation ABS FL BrakeActuator FL BrakeController BrakePedalSensor VehicleSpeed WheelSpeedSensor FL

ETAS INTECRIO
None 144 48 62 51 98 49

SW-C .c +26 +8 +14 +8 +14 +8
SW-C .h +30 +9 +16 +9 +16 +9
SW-C .o +22 +7 +12 +7 +12 +7

OptXware EA
None 141 45 59 48 95 46

SW-C .c +26 +8 +14 +8 +14 +8
SW-C .h +30 +9 +16 +9 +16 +9
SW-C .o +22 +7 +12 +7 +12 +7

TABLE III
OVERHEAD IN SOURCE LINES OF CODE (SLOC) OF INSTRUMENTED RTE

FOR DIFFERENT INSTRUMENTATION METHODS.

Instrumentation ETAS INTECRIO OptXware EA

RTE .c +67 +67
RTE .h not evaluated
RTE .o +67 +67

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

None SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o

A
gg

re
ga

te
d 

C
P

U
 ti

ck
s 

pe
r 

in
te

rf
ac

e 
ca

ll

SKELETON MONITOR FAULT INJECTION

upper/lower quartile
median value

Fig. 6. ETAS INTECRIO: Relative comparison of the execution time of
instrumentation methods, grouped by implemented functionality.

For the RTE the figures show a different picture, due to the
way the tools generate the RTE. As a declaration of interfaces
is omitted in the generated code, RTE .c and RTE .o both
only require the implementation of interface wrappers, and
therefore share the same overhead.

As the overhead of functionality within the wrappers de-
pends on their implementation, no general statement on their
overhead can be made. To provide an example though, the
monitors we use consume 1 SLOC per wrapper, whereas the
fault injector consumes 9 SLOC.

2) Runtime: We employ ETAS INTECRIO and OptXware
EA to simulate actual system behavior on a PC platform. As
both tools do not provide an accurate emulation of the time of
the simulated target system, we use the Windows API function
QueryPerformanceCounter to measure the current CPU tick
count, eventually establishing a relative comparison of the
runtime of the different approaches. Figures 6 and 7 depict

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

None SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o

A
gg

re
ga

te
d 

C
P

U
 ti

ck
s 

pe
r 

in
te

rf
ac

e 
ca

ll

SKELETON MONITOR FAULT INJECTION

upper/lower quartile
median value

Fig. 7. OptXware EA: Relative comparison of the execution time of
instrumentation methods, grouped by implemented functionality.

boxplots of the accumulated runtime of all instrumented inter-
face calls in CPU ticks, for ETAS INTECRIO and OptXware
EA, respectively. The boxplots’ quartiles are at 25% and 75%
of measured runtimes. The median value is at 50% and marked
by a black line. The difference of magnitudes in the CPU
ticks scale is caused by the different simulation approaches
of each tool. While OptXware EA directly simulates RTE
and application layer behavior, ETAS INTECRIO executes the
target system on a virtual PC target.

The measurements show that the instrumentation method
has no significant impact on the overall runtime. Visible
minor variations can be attributed to slight deviations of
system load during the experiments, caused e.g. by background
applications. Also, the sole instrumentation with wrappers
without implemented functionality (skeletons) causes only
slight overhead below 1%.

The main contributor to runtime overhead is therefore
the runtime of the functionality that is implemented in the
wrappers. In our monitor implementation, we directly write the
monitored values to the disk in each invocation. As disk I/O
is an expensive operation, we measure an overhead of about
50% for OptXware EA and about 38% for ETAS INTECRIO.
The fault injector on the other hand, adds no measurable
overhead. As the above example shows, providing a time-
efficient implementation of wrapper functionality is crucial



in real-time systems. It should also be noted that the actual
systemwide overhead is considerably smaller, as the above
percentages are relative to individual interface calls.

3) Memory: We evaluate the overall instrumentation mem-
ory overhead, which consists of added code segment size and
data segment size, with the tool objdump, which is part of
GNU Binutils [8]. The object files of each of the system’s
components were compiled without optimizations (compiler
switch -O0), in order to have a worst case estimation and to
disregard compiler specific optimizations.

Our analysis shows that the instrumentation with wrappers
causes no data segment size overhead and that the text segment
size overhead is independent of the instrumentation method.
A detailed breakdown of components’ text segment size and
the introduced relative overhead is provided in Table IV.

The figures show that the relative overhead in text segment
size ranges between 1.5% and 15.0% per wrapper, and is
therefore largely dependent on the implementation complexity
of each component. In absolute values, each wrapper consumes
approximately 33 bytes for ETAS INTECRIO and 30 bytes for
OptXware EA. This difference is caused by the different com-
pilers used by each tool, with INTECRIO relying on MinGW
GCC 3.4.2 (mingw-special) and EA relying on Cygwin GCC
3.4.4 (cygming special).

VI. DISCUSSION

The experimental results of the previous section have shown
that all instrumentation methods are comparably effective
to enable the implementation of dependability assessment
techniques at the component level, and therefore have to
be considered equally viable. Consequently, we draw the
conclusion that qualitative aspects can become the determining
factor in choosing the right instrumentation option and loca-
tion. To this end, we discuss the qualitative characteristics of
each instrumentation method, with the intention to guide the
evaluator in his decision of how and where to instrument a
system and which tradeoffs to consider. In the second part
of the discussion, we cover the current limitations of our
approach, specifically for multiple component instantiations
and shared memory communication.

A. Qualitative aspects of SW-C instrumentation methods

In the following, we introduce a set of quality attributes,
which we use to establish a qualitative comparison between
the different instrumentation methods. A summary of the
comparisons is provided in Table V.

Intrusiveness describes to which degree the instrumenta-
tion penetrates the system. Thereby, we consider the sys-
tem viewpoint (i.e., which layer is affected and what is the
layer’s criticality) and the implementation viewpoint (i.e.,
which parts of the implementation are changed). Although
the instrumentation with wrappers is an automatic process,
the implementation of functionality within the wrappers is a
manual or semi-automatic process and therefore error-prone.
To minimize possible negative effects of such errors, a low
intrusiveness is desirable. Due to the RTE’s vital role as

communication hub, approaches targeting the RTE are con-
sequently considered more intrusive than the ones targeting
the SW-C. Furthermore we consider changes to the actual
implementation more intrusive than changes to the interface
declaration or the link information of the object file. The least
intrusive instrumentation method is therefore SW-C .o-file and
the most intrusive one is RTE .c-file.

Implementation effort considers the amount of changes
entailed by each instrumentation method and serves as an
estimate for the effort of manually instrumenting a system,
as well as the amount of changes induced by automatic
generation. With reference to the technical implementation
details of Section IV-B, we assess that the instrumentation
of .c-files requires a higher effort than .h-files and .o-files.
Also, instrumenting the RTE generally requires less effort than
instrumenting SW-Cs, as SW-Cs reside in distributed locations,
whereas the RTE resides in a central location. Therefore, the
least implementation effort is required by RTE .o-file and the
most by SW-C .c-file. For a general estimate of implementa-
tion effort, it should be kept in mind that regardless of the
effort of wrapper instrumentation, the effort of implementing
functionality into the wrappers has to be considered as well.

Automation complexity provides an estimate of the effort
to implement the instrumentation method into a generator.
During the implementation of the wrapper generator presented
in Section IV-C, we made the experience that binary instru-
mentation is the most complex generation task to implement.
This is due to the black-box constraint put by binary objects,
which requires the deduction and generation of the complete
interface declaration from the system specification contained
in the system’s ARXML file. The implementation (.c-file)
and interface declaration (.h-file) on the other hand, both
contain the declaration, either implicitly or explicitly, making
this generation step obsolete, and only requiring a technically
similar parsing of source files. Due to the central location
of the RTE, mentioned in the previous paragraph, the least
automation complexity is required by RTE .c-file and RTE .h-
file and the most by SW-C .o-file.

The required system access characterizes each instrumen-
tation method’s requirements on the accessibility and visibility
of the system and its implementation. We distinguish white-
box, i.e., all source code is accessible to the system evaluator,
grey-box, i.e., parts of the source code (e.g. header files) are
accessible, and black-box, i.e., no source code is accessible.
Furthermore, we distinguish between SW-Cs and the RTE,
with access to the RTE usually being available to the integrator
only. Accordingly, RTE .c-file has the highest requirements on
system access and SW-C .o-file the lowest ones.

Scalability describes, how well each instrumentation
method scales to larger systems. As the scalability of an
instrumentation method has a high influence on its usability,
we consider them collectively. The main overhead in large
scale projects can be accounted to the configuration of
the instrumentation and the system build process, and not
the instrumentation itself. Therefore, all instrumentation
methods scale comparatively well, with a slight advantage for



TABLE IV
TEXT SEGMENT SIZE OF THE (INSTRUMENTED) OBJECT FILES OF VARIOUS SOFTWARE COMPONENTS IN BYTES.

ETAS INTECRIO OptXware EA
Objectfile Text segment size Overhead (%) Text segment size Overhead (%)

plain instrumented overall per wrapper plain instrumented overall per wrapper

Rte ABS FL.o 1808 1920 6.2 1.5 1808 1920 6.2 1.5
Rte BrakeActuator FL.o 336 368 9.5 9.5 328 356 8.5 8.5

Rte BrakeController.o 512 576 12.5 6.3 504 564 11.9 6.0
Rte BrakePedalSensor.o 320 368 15.0 15.0 328 364 11.0 11.0

Rte VehicleSpeed.o 896 960 7.1 3.6 892 952 6.7 3.4
Rte WheelSpeedSensor FL.o 336 384 14.3 14.3 336 372 10.7 10.7

TABLE V
RELATIVE COMPARISON OF INSTRUMENTATION METHOD AND LOCATION FOR DIFFERENT QUALITY ATTRIBUTES.

Instrumentation method Instrumentation location
Attribute .c-file .h-file .o-file RTE SW-C

Intrusiveness F F F F F F F F F F
Implementation effort F F F F F F F F F F F

Automation complexity F F F F F F F F F F F F
Required system access F F F F F F F F F F

Scalability / usability F F F F F F F F F F

Legend: F poor, F F F good

methods targeting the RTE (due to its central location), and
a notable advantage for black-box instrumentation methods.
As black-box methods do not modify any source code, a
time-consuming recompilation of code can be omitted, and
only the linkage of binary objects has to be performed.

Summarizing our observations in Table V, there is a clear
trend showing advantages in all categories for black-box
instrumentation over grey-box and white-box, except for au-
tomation complexity. The choice of instrumentation location,
i.e., whether to instrument the SW-C or RTE, is not as clear
though. As SW-C has advantages in the categories intrusive-
ness and required system access, and RTE has advantages
in the other categories, the determining factor is, how each
category is weighted by the system evaluator, also considering
his software access level and the application scenario.

B. Limitations

During experiments with different AUTOSAR example sys-
tems, we realized that there exist two classes of systematic
limitations to our proposed approach of wrapping AUTOSAR
components. The first limitation only affects a subset of
the presented instrumentation methods and is related to the
possible implementation of the communication between SW-
Cs and the RTE via shared memory. The second limitation
affects all of the presented methods, but is only relevant
in systems which make use of multiple instantiations of a
component. Both limitations are discussed in the following.

1) Shared memory communication: The communication
between SW-Cs and the RTE is not necessarily always imple-
mented via function calls (which was our intuitive assumption)
but can also be implemented via shared memory communica-
tion due to performance reasons. Whether communication is
implemented via function calls or shared memory, depends

on the implementation of the RTE generator (and is therefore
tool dependent) and the communication interface-type (e.g.,
implicit/explicit access, client/server or sender/receiver model,
etc.) and its configuration.

The implementation of the communication mechanism im-
pacts the applicability of some of our approaches. Namely,
SW-C .o-file, as well as all RTE instrumentation methods, are
unable to cover shared memory communication. In order to
cope with shared memory communication, we propose two
feasible workarounds. The first one being runnable wrappers,
which can be implemented on the SW-C and RTE side. The
second one being a task-based monitor which is implemented
by associating a monitoring task on the operating system
level, with the runnable to be monitored. Runnables are the
executable parts of a software component that implement
actual functionality. By wrapping their invocation, we are able
to access all data that the runnable has access to via shared
memory, either before (relevant for reads) or after (relevant
for writes) the runnable invocation.

As both workarounds are conceptually different from in-
terface wrappers, we did not include them in our evaluation.
Primarily the experimental results show that both approaches
are suitable for systematic and automatic instrumentation of
AUTOSAR systems using shared memory communication.

2) Multiple instantiation of components: Our approach is
also limited for models that make use of multiple instantiations
of component prototypes and therefore employ code-reuse.
The issue in such a scenario is that we are currently unable
to distinguish between different instances of a component
prototype, as the interface implementation (due to code-reuse)
is only present once, irrespective of the number of instances.
For each component instance, the RTE holds a unique data
structure (termed RTE instance) that is passed to the compo-
nent runnables as a parameter on invocation. As these data



structures contain no naming information, it is difficult to
obtain self-awareness for the active SW-C instance.

A simple workaround is to move the instrumentation loca-
tion from the receiving SW-C’s interface to the sending SW-
C’s interface, or vice versa. This workaround is only feasible
as long as the component that the instrumentation is moved to
is not a multiply instantiated component itself. Due to the fixed
memory layout of automotive systems, an alternate approach
leveraging pointer address information of the RTE instance
data structures, to distinguish between multiple instances, is
conceivable. We will address this and alternate solutions in
future work.

VII. CONCLUSION

In this paper, we have shown how to develop a usable,
customizable and efficient instrumentation framework for the
dependability assessment of AUTOSAR systems. Our ap-
proach provides usability as we enable the user to define their
instrumentation requirements on the model level instead of
the implementation, which largely consists of automatically
generated code. Our approach is customizable as we provide
expert users with the ability to further tune and refine their
instrumentation choice factoring implementation details, and
thus test certain aspects of an interface, which are represented
by the different instrumentation options and instrumentation
locations within the software stack. Our approach is efficient
as the use of interface wrappers infers low timely and spatial
overhead as shown by our experimental results.

Factoring the different software component access levels
(black-box and white-box) that are prevalent in AUTOSAR
systems, we enable the instrumentation at the source code
(implementation, interface specification) and binary object
levels. As proof of concept, we have conducted a series of
fault injection experiments on an anti-lock braking system
(ABS), which showed the generic applicability of the different
instrumentation techniques, providing the user freedom of
choice on the different techniques. The experimental evalu-
ation furthermore yielded the result that the varied techniques
were comparably efficient, and the cross-validated fault in-
jection experiments showed that a black-box instrumentation
technique was as effective as a white-box technique while
requiring less access to the system and being less intrusive.
To guide the reader in his decision of instrumentation location
and instrumentation options, we discuss the qualitative criteria
of code access, intrusiveness, automation complexity, and
implementation effort.

In addition, we have identified systematic limitations of
our approach and sketched possible solutions to resolve them.
The implementation and evaluation of such solutions is up to
future work, as is the instrumentation of other locations in
the AUTOSAR software stack, such as the basic software.
As our approach is potentially able to implement control-
flow monitoring, which will be supported by version 4 of the
AUTOSAR standard, with the advantage of finer granularity
and the added benefit of data-flow monitoring, we also plan
to pursue this option in future work.

ACKNOWLEDGMENT

We thank ETAS Group and OptxWare Research & Develop-
ment Ltd. for the provision of their tools and for their support.
This work was supported by CASED (www.cased.de).

REFERENCES

[1] AUTOSAR GbR, “Technical Overview,” Document ID 067, 2008.
[2] AUTOSAR GbR, “Requirements on RTE Software,” Document ID 083,

2009.
[3] AUTOSAR GbR, “Specifiation of RTE,” Document ID 084, 2010.
[4] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Con-

cepts and Taxonomy of Dependable and Secure Computing,” IEEE
Trans. Dependable Secur. Comput., vol. 1, pp. 11–33, January 2004.

[5] M. Born, J. Favaro, and O. Kath, “Application of ISO DIS 26262
in practice,” in Proc. of the 1st Workshop on Critical Automotive
applications: Robustness & Safety, 2010, pp. 3–6.

[6] J. Christmansson and R. Chillarege, “Generation of an error set that
emulates software faults based on field data,” in Proc. of the 26th
Symposium on Fault-Tolerant Computing (FTCS), 1996, pp. 304–313.

[7] ETAS Group GmbH, “INTECRIO,” http://www.etas.com/en/products/
intecrio.php.

[8] GNU Binutils, http://www.gnu.org/software/binutils/.
[9] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh,

J. Leflour, J.-L. Maté, K. Nishikawa, and T. Scharnhorst, “AUTo-
motive Open System ARchitecture - An Industry-Wide Initiative to
Manage the Complexity of Emerging Automotive E/E Architectures,”
in Convergence International Congress & Exposition On Transportation
Electronics, 2004, pp. 325–332.

[10] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN
networks–Practical examples and selected short-term countermeasures,”
Reliability Engineering & System Safety, vol. 96, no. 1, pp. 11–25, 2011.

[11] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault Injection Techniques
and Tools,” Computer, vol. 30, pp. 75–82, April 1997.

[12] International Electrotechnical Commission, “IEC 61508: Functional
Safety of Electrical/Electronic/Programmable Electronic Safety-related
Systems,” 2010.

[13] International Organization for Standardization, “ISO/FDIS 26262: Road
vehicles – Functional safety,” 2011.

[14] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental Security Analysis of a Modern Automobile,” in IEEE
Symposium on Security and Privacy, 2010, pp. 447–462.

[15] P. Lanigan, P. Narasimhan, and T. Fuhrman, “Experiences with a
CANoe-based fault injection framework for AUTOSAR,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2010, pp. 569–574.

[16] C. Lu, J.-C. Fabre, and M.-O. Killijian, “An approach for improving
Fault-Tolerance in Automotive Modular Embedded Software,” in Proc.
of the 17th International Conference on Real-Time and Network Systems
(RTNS), 2009.

[17] C. Lu, J.-C. Fabre, and M.-O. Killijian, “Robustness of modular multi-
layered software in the automotive domain: a wrapping-based approach,”
in Proc. of the 14th IEEE International Conference on Emerging
Technologies & Factory Automation, 2009, pp. 1102–1109.

[18] H. Madeira, D. Costa, and M. Vieira, “On the emulation of software
faults by software fault injection,” in Proc. of the International Con-
ference on Dependable Systems and Networks (DSN), 2000, pp. 417
–426.

[19] OptXware Ltd., “Embedded Architect,” http://www.optxware.com/en/
embedded/embedded-architect-platform.

[20] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,
W. Trappe, and I. Seskar, “Security and Privacy Vulnerabilities of In-Car
Wireless Networks: A Tire Pressure Monitoring System Case Study,” in
Proc. of the 19th USENIX Security Symposium, Aug. 2010.

[21] D. Skarin and J. Karlsson, “Software Implemented Detection and Re-
covery of Soft Errors in a Brake-by-Wire System,” in Seventh European
Dependable Computing Conference (EDCC), 2008, pp. 145–154.

[22] J. Voas, “Certifying off-the-shelf software components,” Computer,
vol. 31, no. 6, pp. 53–59, 1998.

[23] D. A. Wheeler, “SLOCCount,” http://www.dwheeler.com/sloccount/.

http://www.etas.com/en/products/intecrio.php
http://www.etas.com/en/products/intecrio.php
http://www.gnu.org/software/binutils/
http://www.optxware.com/en/embedded/embedded-architect-platform
http://www.optxware.com/en/embedded/embedded-architect-platform
http://www.dwheeler.com/sloccount/

