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Abstract—The automotive safety standard ISO 26262 strongly
recommends the use of fault injection (FI) for the assessment of
safety mechanisms that typically span composite dependability
and real-time operations. However, with the standard providing
very limited guidance on the actual design, implementation and
execution of FI experiments, most AUTOSAR FI approaches
use standard fault models (e.g., bit flips and data type based
corruptions), and focus on using simulation environments. Un-
fortunately, the representation of timing faults using standard
fault models, and the representation of real-time properties in
simulation environments are hard, rendering both inadequate for
the comprehensive assessment of AUTOSAR’s safety mechanisms.
The actual development of ISO 26262 advocated FI is further
hampered by the lack of representative software fault models and
the lack of an openly accessible AUTOSAR FI framework. We
address these gaps by (a) adapting the open source FI framework
GRINDER [1] to AUTOSAR and (b) showing how to effectively
apply it for the assessment of AUTOSAR’s safety mechanisms.

Keywords—AUTOSAR; fault injection; ISO 26262; robustness
testing; instrumentation

I. INTRODUCTION

In the automotive domain, many innovative functions, such
as crash prevention, advanced driver assistance features, and
vehicular communication systems, are enabled by software.
Consequently, the software code base is growing in both com-
plexity and size, in some cases reaching 100 million lines of
code that are distributed across more than 70 electronic control
units (ECUs) and interconnected by more than 5 different
bus systems [2], [3]. In order to manage the complexity of
these systems and to reduce the development and integration
costs for new vehicle features, the automotive industry widely
adopts standardized software architectures and development
processes such as AUTOSAR (AUTomotive Open System
ARchitecture) [4].

To warrant the trust that motorists put in the safe opera-
tion of their vehicles, many functions in automotive systems
are designed and developed following stringent dependability
and safety requirements. The recommended guidelines for
the design, development and integration of such systems are
provided by the functional safety standard for road vehicles
ISO 26262 [5]. To aid automotive system developers in
meeting these safety requirements, the AUTOSAR standard
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specifies a set of functional safety mechanisms [6], such as
memory partitioning and timing monitoring. The verification
and validation of the implementation and application of these
functional safety mechanisms, which are usually supplied by
third party vendors, is essential to the dependable and safe
operation of these systems and to prevent hazards such as
Toyota’s unintended acceleration issues [7].

Among the available dependability assessment techniques,
fault injection (FI) [8] is widely adopted and ISO 26262
strongly recommends its use to validate that functional and
technical safety mechanisms are correctly and effectively im-
plemented. Despite this explicit recommendation, published
work on AUTOSAR FI (cf. Section III) is currently not ad-
dressing the comprehensive assessment of the correctness and
effectiveness of AUTOSAR’s safety mechanisms. Moreover,
the predominantly used standard fault models, such as bit
flips and data type dependent corruptions, are limited in their
representation of timing and software faults, thus hampering
their applicability to such an assessment. We argue that this
situation originates from ISO 26262 recommending FI without
providing appropriate guidance on the design, implementation
and execution of FI experiments. The actual assessment is fur-
ther hampered by the lack of an openly accessible AUTOSAR
FI framework. A similar observation was made by Silva et
al. [9], who conclude that “although many fault injection tools
exist, none is really a ready to use tool, thus a common
framework would be a major breakthrough”. As state of the art,
little documented experience exists on how to effectively apply
FI for validating the implementation of AUTOSAR safety
mechanisms.

Paper contribution

• On this background, we provide an open source, ready to
use AUTOSAR FI tool1 capable of conducting FI experi-
ments at all layers of AUTOSAR’s software architecture,
i.e., application, runtime environment and basic software.
Injections in source code and binary object files (i.e.,
white-box and black-box) are both supported.

• We report our experiences in conducting a depend-
ability assessment of a commercial implementation of
AUTOSAR’s timing monitoring safety mechanisms. The

1The URL of the repository will be provided with the camera ready version
of the paper.
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assessment uncovered a real deficiency in the implemen-
tation that was subsequently acknowledged and fixed by
the supplier of the safety mechanisms’ implementation.

• We provide guidelines for the derivation of specific fault
models, injection locations and mechanisms from the
abstract AUTOSAR and ISO 26262 fault models.

Paper structure

We give a brief introduction to AUTOSAR’s system model
and functional safety mechanisms in Section II, followed by
a review of related work on AUTOSAR FI in Section III. In
Section IV, we discuss the AUTOSAR fault models that are
currently used or provided by the standard. The adaptation
of the open source FI framework GRINDER to AUTOSAR
and the instrumentation of AUTOSAR systems is described in
Section V. We demonstrate the applicability and effectiveness
of FI for the assessment of AUTOSAR safety mechanisms in
a case study in Section VI, including a detailed specification
of the used fault models.

II. AUTOSAR: SYSTEM MODEL AND FUNCTIONAL
SAFETY MECHANISMS

To familiarize the reader with basic concepts of AU-
TOSAR, this section provides a brief introduction to its system
model and functional safety mechanisms.

A. System Model

AUTOSAR systems are designed as abstract models, in
which software components (SW-Cs) are the core building
blocks. They contain functional entities called runnables,
whose execution is triggered by recurring timers or aperiodic
events (e.g., message arrival). SW-Cs interact with their en-
vironment via port interfaces that are connected in the model
through a virtual functional bus (VFB).

During the system configuration phase, this abstract repre-
sentation of the system is subsequently mapped to one or more
electronic control units (ECUs). At an ECU, the AUTOSAR
software architecture is organized in layered form as depicted
in Figure 1. Closest to the hardware is the basic software
(BSW) layer, which provides hardware abstractions for the mi-
crocontroller and the ECU and hosts the operating system (OS)
amongst other system and communication services. The run-
time environment (RTE) provides the SW-Cs of the application
layer with an interface to BSW services. Moreover, the RTE
implements a transparent communication abstraction that maps
the virtual connections of the VFB to actual communication
channels. The application layer comprises a set of SW-Cs, each
of which contains one or more runnables. As runnables are not
directly schedulable by the OS, they are grouped as tasks by
the system integrator, usually taking the execution periods of
the runnables and the criticality of their SW-C into account.
To avoid unintentional interactions between tasks of different
criticality (e.g., by error propagation), AUTOSAR offers a set
of functional safety mechanisms to monitor and isolate tasks,
which are described in the following subsection.

Application Layer

AUTOSAR Runtime Environment (RTE)

Hardware

SW-C SW-C SW-C

Basic Software (BSW)

Complex
Drivers

OS and Services

ECU Abstraction

Microcontroller Abstraction

Fig. 1. The AUTOSAR software architecture.

B. Functional Safety Mechanisms

For the co-existence of tasks with different criticality, i.e.,
different automotive safety integrity levels (ASILs), on the
same system, ISO 26262 requires freedom from interference in
both space and time. This means that lower ASIL tasks must
not interfere with higher ASIL ones, for example through error
propagation. To realize freedom from interference, isolation
mechanisms are used to establish fault containment regions.
The Overview of Functional Safety Measures in AUTOSAR [6]
(a document which recently superseded the Technical Safety
Concept Status Report [10]) specifies the following functional
safety mechanisms to assist with the prevention, detection and
mitigation of hardware and software faults to ensure freedom
from interference between tasks.

Memory Partitioning. To prevent low ASIL tasks from
wrongfully accessing memory of higher ASIL tasks (e.g., by
corrupting their content), arbitrary tasks may be grouped to
so-called OS applications which are subsequently executed in
separate memory partitions, i.e., the code executing in one par-
tition cannot modify memory of a different partition. Memory
partitioning allows to protect read-only memory segments as
well as memory-mapped hardware.

Timing Monitoring. The safety of a system often depends
on the timely execution of actions and reactions such as
object recognition for crash avoidance or crash detection for
airbag inflation during an accident. The OS provides a set of
monitoring mechanisms to detect conformance (e.g., whether
tasks are dispatched at the specified time) or deviance (e.g.,
when tasks violate their execution time budgets or monopolize
OS resources).

Logical Supervision. To detect control flow errors, i.e., any
divergence of a program’s execution sequence from its error-
free execution sequence, checkpoints are placed throughout
a supervised entity at design time. When encountering a
checkpoint, the Watchdog Manager is notified and verifies
that the sequence of encountered checkpoints is valid. In
addition, temporal monitoring mechanisms such as aliveness
and deadline monitoring are implemented using checkpoints.

End-2-End Protection. To ensure the integrity of data
transmitted between SW-Cs, both within the same ECU as well
as across networks, the end-2-end protection library enables the
sender to protect data prior to transmission and the receiver to

2



detect and handle errors in the communication link at runtime.
Several standardized profiles offer different sets of protection
mechanisms (e.g., CRC, sequence counter, alive counter) that
are suitable for diverse requirements.

The functional safety mechanisms (except for end-2-end
protection) are implemented by the OS or as BSW services,
and aim at detecting and mitigating the erroneous behavior
of tasks. Given the broad scope of these mechanisms ranging
from the BSW to the application layer, any framework for
their comprehensive FI-based assessment naturally benefits
from access to the complete AUTOSAR stack for the flexible
placement of fault injectors and monitors of system behavior.

III. RELATED WORK

Following a standalone exposition of state of the art AU-
TOSAR FI techniques, we summarize its viability for assessing
AUTOSAR safety mechanisms and comment on the utilized
fault models.

Simulation-based FI

In 2010, Lanigan et al. [11] used the commercial off-the-
shelf (COTS) tool Vector CANoe to build a FI framework
for AUTOSAR. This early work on AUTOSAR FI primarily
comments on the feasibility and practical obstacles of building
such a framework and does not report any specific results of
dependability analyses of AUTOSAR-based (sub-)systems or
provide specific fault models. In CANoe, AUTOSAR systems
are executed in a simulation environment on a host PC. Faults
can be injected in various components of the basic software
(BSW) layer via a set of hooks that either suppress calls
to certain API functions (suppression hooks) or manipulate
specific data structures of an API (manipulation hooks). Hooks
are manually placed in the code and the actual implementation
of the fault models is provided by an external library that is
linked to the simulation environment. The authors conclude
that “CANoe is a suitable fault-injection environment for some
faults, but that other faults cannot be represented using the level
of abstraction that CANoe provides”.

Another simulation based FI framework is from Baum-
garten et al. [12] where application-level software components
(SW-Cs) of existing AUTOSAR models are annotated and
extended by so called fault ports. These extended models
are translated to C-code using dSpace TargetLink which is a
code generation tool that operates on Simulink and Stateflow
models. Faults are implemented as additional code in the
TargetLink model and triggered during simulation by signaling
the corresponding fault port(s). Consequently, faulty behavior
is added in form of functional blocks, which are then able
to disturb the normal behavior according to the provided
fault implementations. Annotating models with fault ports is
currently a manual process and the authors leave automated
annotation for future work. The actual simulation can be
performed on two different levels, either in the integrated
simulation environment of dSpace SystemDesk to simulate the
whole AUTOSAR architecture or at the software unit level
using test tools for C code. The authors evaluate their approach
in a front-lights controller setting, considering physical chip
damage, stuck-at, crash and message loss as fault models. The
effects of the faults are emulated on the application layer by

disabling the execution of SW-Cs, by forcing port interfaces
to specific values, or by omitting messages.

To identify threats to functional safety early in the system
design stage, Pintard et al. [13], [14] propose fault injection
analyses (FIA) on pre-implementation design artifacts to com-
plement fault injection experimentation (FIE) on an actual
(prototype) implementation. To conduct FIA, a functional
model is created from the system requirements using data
flow diagrams, state charts, UML or AADL, depending on
the available level of detail that the specification provides.
Using this model, failure modes of functions or components
are assumed and their effect on the system operation analyzed,
similar to failure mode and effect analysis (FMEA) and failure
mode, effect and criticality analysis (FMECA). Subsequently,
the results of FIA are used as guidance to perform FIEs, for
example by identifying critical components.

Vedder et al. [15] develop a method and tool for combining
property-based testing (PBT) and FI for testing safety-critical
systems. PBT automatically generates test cases from a spec-
ified property of a system, i.e., it generates test input values
and at the same time acts as an oracle for the expected output.
The authors use the commercially available tool QuickCheck
for generating the test cases in conjunction with their own
tool FaultCheck, a C++ library with an optional wrapper for
C, that conducts the actual injections. The tool is evaluated
on an AUTOSAR E2E library implementation in an isolated
simulation environment.

Overall, while simulation-based approaches are useful to
conduct FI analyses and experimentation in the early stages
of system development, they are inherently limited in their
representation of detailed lower-level fault models and tim-
ing conditions necessary for addressing real-time operations.
As the meaningful application of many safety mechanisms
depends on an exact representation of time and real-time
constraints, a comprehensive assessment of timing-dependent
safety mechanisms is infeasible using simulation-based ap-
proaches.

Hardware-based FI

Cunha and colleagues [16], [17] developed the fault in-
jection tool csXception R© for scan-chain implemented fault
injection (SCIFI) on an ARM Cortex-M3 microcontroller,
which is capable of injecting faults at the hardware level (i.e.,
processor and auxiliary registers, flash memory and SRAM).
The considered fault models are bit flips, reset values and
specific values, which can be activated based on various fault
trigger conditions. The tool is evaluated in an anti-lock braking
system (ABS) case study where the focus of the evaluation is
the general application of the tool rather than addressing actual
dependability properties of the ABS system.

Salkham et al. [18], [19] present a FI framework im-
plemented as AUTOSAR software components (SW-Cs) and
complex device driver (CDD). The FI controller and moni-
toring services are implemented on the application layer as
SW-Cs and isolated from the rest of the system using memory
partitioning. The CDD contains a collection of FI modules that
implement specific error types for each target component. The
approach is evaluated in two example scenarios: communica-
tion errors that are modeled by disabling the CAN bus circuit
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and NVRAM errors that are modeled by corrupting CRC bits.
While the experiment control logic is implemented as software
elements, hardware mechanisms are utilized to perform actual
injections.

Hardware-based FI commonly has the advantage of han-
dling low level implementation details. However, to cover
dependability properties that are related to the interaction of
hardware and software elements or to accelerate experiments
[20], [21], e.g., by using software states as trigger conditions
for injections, software based control as in [18], [19] is often
required. To exercise precise control over software interactions
and software timing in our study, we also chose to implement
the injection mechanisms in software.

Software-based FI

Islam et al. [22] proposed the BeSafe framework for
benchmarking the functional safety of AUTOSAR systems
on three different abstraction layers: model, software and
hardware. The benchmark framework supports FI at the soft-
ware level through a proprietary tool called B-FEAT. The
tool is capable of intercepting calls to/from SW-C interfaces,
facilitating data type and fuzzing error models to evaluate the
robustness of SW-Cs. The resilience of SW-Cs with respect to
transient bit flip hardware faults is benchmarked using the FI
tool GOOFI-2 [23]. On the model level the tool MODIFI [24]
is used to conduct dependability evaluations of Simulink
models early in the development phase, mainly to assess
error detection and recovery mechanisms. The considered fault
models are data type and fuzzing on the software level, bit-
flips on the hardware level and bit-flips and sensor faults on
the model level. Unfortunately, the preliminary evaluation of
the framework has not been conducted on an AUTOSAR sys-
tem. However, the reported assessment of a CRC mechanism
suggests that the framework potentially could be used to assess
AUTOSAR’s end-to-end (E2E) protection mechanisms.

With the aim to assess the robustness of AUTOSAR COTS
components that are available as binaries only, Islam et al. [25]
present a technique and tool prototype for binary-level fault
injection (BLFI). Contrary to the binary-level instrumentation
approach presented in [26], no AUTOSAR specific information
is used to drive the instrumentation, thereby expanding its
applicability to all AUTOSAR layers including the BSW. The
broader application scope comes at the cost of losing the
reference to the underlying system model, which impacts the
usability of the instrumentation if the system model is used
to select instrumentation locations. The tool is evaluated on
a blinking LED warning system, using data-type based and
fuzzing fault models.

Summary Comments

We observe that the fault models used in related work are
predominantly standard fault models2, such as bit flips and
data type dependent corruptions, that have been adopted from
studies for different target systems and application scenarios. It
is surprising that no AUTOSAR-specific fault models are used,
as the choice of fault models heavily impacts the effectiveness

2In Section IV we further elaborate why the “standard fault models” are
still prevalent.

of the FI experiments [27], [28] and domain-specific fault
models are expected to yield better results.

We also observe that, despite an explicit recommendation
in the ISO 26262 standard, no studies on FI-based assessments
of the mechanisms in AUTOSAR’s technical safety concept
exist, apart from the E2E library.

Finally, we observe that many FI approaches are simulation
based and as such unable to adequately represent real-time
properties and timing behavior of the system. As we demon-
strate in Section VI, assessing real-time properties is essential
to many safety-critical applications and AUTOSAR’s timing
monitoring mechanisms, which constitute a significant fraction
of the technical safety concept.

IV. AUTOSAR FAULT MODELS

A fault model is a representation of a possible internal or
external fault [29] that a system may be exposed to. In the
context of FI experiments, a fault model is characterized by
the fault location (where to inject), the fault type (what to
inject) and the fault timing (when to inject) that possibly also
includes an expected workload or system state. The selection of
representative fault model(s), i.e., faults that may and do occur
during the development and operation of the tested system,
is crucial as non-representative faults can significantly affect
the injection results [28] by hampering (a) their accuracy and
usefulness [30] and (b) the effectiveness of the experiments
to reveal robustness vulnerabilities [27]. Consequently, devel-
oping and using a realistic fault model is one of the biggest
challenges for any FI schema [9].

The use of standard fault models such as bit flips and
data type dependent corruptions is currently predominant
in related work on AUTOSAR FI (cf. Section III). While
these established fault models adequately represent specific
abstraction levels and classes of faults (and their effects), their
applicability to represent complex software and also timing
faults is limited. For the effective assessment of AUTOSAR’s
safety mechanisms, the use of standard fault models should
therefore be combined with fault models that allow a more
direct mapping of application level software and timing faults.

Before the release of the Overview of Functional Safety
Measures in AUTOSAR [6] end of 2014, no central document
provided documentation on the applicable fault models for
the evaluation of AUTOSAR’s functional safety mechanisms.
Moreover, representative fault models are invariably based
on deep domain knowledge such as known failures, iden-
tified hazards and (non-functional) safety and dependability
requirements–in summary information that is not necessarily
publicly available to the research community. We argue that
both of these factors have contributed to the slow adoption
of more representative software and timing fault models for
AUTOSAR FI. In addition, an opinion that has been prevalent
for a long time in the automotive community is that software
faults are generally covered by and detected during the ver-
ification phase of development, due to the systematic nature
of these faults. Given the growing complexity of automotive
software, it is questionable whether this view still holds, or for
how long.

Even though the release of applicable fault models for
AUTOSAR’s functional safety mechanisms in [6] is a step in
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the right direction, the models are still at a very abstract level as
they are directly adapted from ISO 26262, which is a generic
standard for road vehicles and not AUTOSAR in particular.
Concrete examples of software defects are thus omitted and
instead only the effects of faults are exemplified. To give an
example, the only information that AUTOSAR and ISO 26262
provide for fault models applicable to timing monitoring is
“blocking of execution, deadlocks, livelocks, incorrect alloca-
tion of execution time, and incorrect synchronization between
software elements”. This information serves as suggestion for
what to inject at best, while guidance on the actual application
of these fault models, i.e., where and when to inject, is still
missing.

Other documents, such as the Description of the AUTOSAR
standard errors [31], improve on this but are still work in
progress. While having the purpose of giving an overview
of dysfunctional behavior, clarifying error handling mecha-
nisms and giving the failure modes coverage of the different
mechanisms, the scope of the document is currently limited
to the CAN communication stack and the memory stack. As
the specification of AUTOSAR fault models is still an ongoing
process, one may fall back to studies on representative software
faults from other domains in the meantime [21], [28], [32].

Surprisingly, the consideration of simultaneous fault mod-
els is currently missing completely in AUTOSAR, although
ISO 26262 explicitly considers dual-point and multi-point
failures, i.e., failures resulting from the combination of two or
several independent faults that leads directly to the violation of
a safety goal [5]. Until the standard incorporates multi-point
faults, we refer to the work of Winter et al. [33], who provide a
comprehensive study and new approaches to assess the degree
to which systems are vulnerable to multiple-fault conditions.

As consequence of the ongoing development of the AU-
TOSAR standard and the reliance on deep domain knowledge
to specify fault models, any FI framework utilized for the as-
sessment of the functional safety mechanisms should be easily
and flexibly extensible to account for future standard revisions
and domain specific requirements. For the FI framework that
we present in Section V, we therefore use a fault model library
to offer this flexibility, while at the same time enabling the re-
use of fault models that have already been implemented.

V. APPLYING THE OPEN SOURCE FI FRAMEWORK
GRINDER FOR AUTOSAR FI

Following the discussions on AUTOSAR-specific FI and
fault models, we now detail the application of the open-
source FI framework GRINDER for AUTOSAR FI. After
presenting the FI workflow, we discuss GRINDER’s adaptation
to our AUTOSAR evaluation environment and comment on
the instrumentation methodology for using GRINDER with
AUTOSAR.

The workflow of an FI experiment typically comprises the
following three phases.

1) Configuration: The workload is prepared and the target
system is instrumented with injector(s) and detector(s)
according to the experiment’s specification. The workload
should match the evaluation target and also ensure that
all injection(s) are activated by meeting their respective
trigger condition(s) (i.e., when to inject).

2) Execution: The target system is executed until the injec-
tion of fault(s) and the collection of perturbation data is
successfully completed, or until a stop criterion (e.g., a
timeout) is satisfied.

3) Evaluation: The experiment outcome, for example logs
and traces that were collected during its execution, is
analyzed.

As this workflow offers much potential for automation, FI
frameworks are typically employed for the automated and effi-
cient execution of campaigns (series of experiments) with the
positive side-effect of precluding human error from adversely
affecting experiment results.

For the assessment of AUTOSAR’s functional safety mech-
anisms, we faced the challenge of which framework to use.
Specifically for AUTOSAR FI, none of the existing frame-
works is publicly available, nor do the existing frameworks
fulfill the requirements for such an assessment (cf. Section III).
While considering publicly available generalist tools such
as FAIL* [34] and LLFI [35] as potential alternatives, we
realized that the adaptation of these tools was infeasible. FAIL*
targets architecture simulators for x86 and ARM that do not
suit the PowerPC architecture of our evaluation system, and
LLFI relies on the LLVM compiler infrastructure, whose use
would require the modification of large parts of the existing
AUTOSAR development environment and tool chain. In con-
clusion, the adjustment of openly available tools to suit the
purpose of our assessment would likely have outweighed any
effort for re-implementing a custom tool from scratch. Conse-
quently, we adapted the open source FI framework GRINDER
to AUTOSAR, which entailed modest implementation and
configuration overhead [1]. In the following two subsections,
we detail the adaptation of GRINDER to an AUTOSAR
system and the instrumentation of AUTOSAR systems for FI
experiments.

A. Adapting GRINDER to an AUTOSAR System

GRINDER is an open source general-target FI tool that
is written in Java and built around an extensible architecture
with a simple interface for target abstraction, extension and
customization, and which has reusability as one of its pri-
mary design goals. With the intent of making a ready-to-use
AUTOSAR FI framework publicly and freely available, we
will release our AUTOSAR adaptation of GRINDER as open
source3.

TargetAbstraction

start()
stop()
reset()
runExperiment()

TargetController

-campaign : Campaign
-experiment : ExperimentRun

start()
stop()
reset()
setCampaign(c : Campaign)

Target-specific functions

Fig. 2. The TargetController class and the TargetAbstraction interface [1].

GRINDER is adapted to a new target system (e.g., an
AUTOSAR system) by providing a target-specific implemen-
tation of the so-called TargetAbstraction interface, by which

3The URL to the public repository will be provided with the camera ready
version of the paper.
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GRINDER interacts with target systems (cf. Figure 2). The
TargetAbstraction specifies a simple set of target-specific func-
tions that GRINDER’s TargetController class requires to con-
trol target systems: start(), runExperiment(), reset() and stop().
The specification was driven by the observation that on an
abstract level the progression of FI experiments across different
tools and targets is the same: target initialization, workload
invocation, fault injection and data collection [1], closely
matching the description of the FI workflow in the beginning of
the section. After starting the target, an experiment is run and
data is collected for analysis. After experiment completion,
the target is reset to a known stable state to avoid the
impact of undetected residual injection effects on subsequent
experiments. These steps are repeated until each experiment of
the current campaign has been executed. Afterwards, the target
is stopped and exchanged or reconfigured, if this is required
for subsequent experiments.

Hardware

AUTOSAR OS

Task 1 Task 6

libGRINDER

AUTOSAR

Debugger

Multiplexer

AutosarAbstractionTargetController

T
C

P

TCPServer

Database

TCP

T
C

P

GRINDER

Fig. 3. Adapting the GRINDER FI framework to AUTOSAR [1].

GRINDER’s architecture resembles the general FI tool
architecture presented by Hsueh et al. [8]. Its integration
in an AUTOSAR FI setting is depicted in Figure 3 where
components that had to be either developed or adapted for
GRINDER’s use with the AUTOSAR system, i.e., the Au-
tosarAbstraction, the Multiplexer for communication with the
target, and the fault model library libGRINDER, are colored
gray. The details on each of these components are provided
below.

Using GRINDER, the experiments are directly configurable
regarding the location of fault injectors, for the placement
of monitors, for selecting employed fault models and for
logging of campaign data. The experiment and campaign
configurations are stored in a MySQL-compatible Database
(e.g., MariaDB). To transmit the experiment configurations
from GRINDER to the target and experiment data back from
the target to GRINDER, a communication channel between
GRINDER and the target is used. The TCPServer provides
a TCP-based communication interface to (a) handle incoming
configuration requests from the target by fetching and sending
the configuration of the next executable experiment from the
database and (b) store log data from the target for the currently
executing experiment in the database.

The AUTOSAR target system that GRINDER is adapted
for runs on a Freescale XKT564L evaluation board4, which
hosts a 32-bit dual core Power Architecture microcontroller. As
the XKT564L target is not equipped with an Ethernet interface

4http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=
XKT564L

to directly interact with GRINDER’s TCPServer, the board is
connected to a host computer via its JTAG/Nexus hardware
debugging interface. On the host computer, the Green Hills
MULTI5 Debugger is utilized by GRINDER to interact with
the hardware, and a Multiplexer handles interactions of the
AutosarAbstraction and the TCPServer with the target through
the debugging interface and vice versa. On the AUTOSAR
target, the generic and extensible C library libGRINDER im-
plements a compatible communication interface for debugger-
based message exchange. The library further provides pre-
configured injector, detector, and logging logic for the use in
interceptors, i.e., probes in the target system that can be used
to inject faults or monitor the system’s state (they are indicated
by gray circles in Figure 3).

The AutosarAbstraction implements GRINDER’s Tar-
getAbstraction interface as follows.

• start() initializes the experiment environment by starting
a new instance of the MULTI debugger, connecting to the
debugger via TCP and establishing a connection between
the debugger and the evaluation board using the debug-
ger’s connect command. A valid target configuration in
MULTI is required for the connect command to succeed.

• runExperiment() prepares the target system by verifying
that the correct binary is loaded and starts the execution
of the target system. Furthermore, a variable watch6 is
used by the target to indicate a communication request,
for example to retrieve configuration options or to store
log information. As runExperiment() has full access to
the debugger’s features, additional functionality may be
implemented if needed.

• reset() instructs the debugger to halt the system and set
it to the initial state. Since the debugger is always able to
reset the target system, this method works well to reset
the entire system without further interaction.

• stop() terminates the experiment environment by discon-
necting the target system and shutting down the MULTI
debugger.

It is noteworthy, that the presented AutosarAbstraction is
applicable for debugger-based interaction of the host computer
and the AUTOSAR system, using Greenhills MULTI and
the Nexus debug interface, as a direct TCP connection is
unavailable. While both, the MULTI toolchain and the Nexus
interface, are widely used, other AUTOSAR evaluation setups
may feature slightly different tools or interfaces. For such
scenarios, we estimate that the adaptation of the provided
AutosarAbstraction to a different setup entails low overhead
as only the communication channel needs to be adapted
accordingly.

B. Instrumenting AUTOSAR Systems for FI: What is special
about AUTOSAR?

Fault injection relies on mechanisms to access and modify
the actual data- and control-flow within a system. These
mechanisms are typically implemented as interceptors that are
inserted in the system by instrumentation. Interceptors may
implement arbitrary functionality, such as altering data (e.g.,

5http://www.ghs.com/products/MULTI IDE.html
6A hardware breakpoint that constantly inspects a watched variable during

program execution for write access.
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bit-flips, fuzzing, etc.), modifying the control flow (e.g., call
other functions) or monitoring the system (e.g., for logging
data).

The instrumentation of AUTOSAR systems is complex due
to the following factors [26]:

• AUTOSAR systems are developed as models that highly
abstract from the actual implementation, which comprises
a mixture of tool-generated and hand-written code. As
consequence, instrumentation at the model level cannot
leverage implementation specifics (thereby limiting cus-
tomizability), while instrumenting the implementation,
i.e., mostly tool-generated code, is a tedious process if
performed manually (thereby limiting usability).

• Given the degree of abstraction, elements of the model
often have no singular representation in the implementa-
tion. Thus, the view on the system that the model provides
is inherently different from the actual implementation.
Moreover, as AUTOSAR promotes the integration of
white-box and black-box components by various suppli-
ers, who distribute their software either as source code
or binary-only (to protect their intellectual property), the
chosen instrumentation approach should work on source
code and binary objects.

For the assessment of the functional safety mechanisms,
the instrumentation of all AUTOSAR layers is beneficial, as
it enables the injection of faults that manifest at the SW-C,
RTE or BSW layers, and the flexible placement of monitors to
observe system behavior and fault effects. As shown in [26], an
automated framework, which leverages development artifacts
from the system model and the implementation to drive the
instrumentation process, can help with the instrumentation on
the SW-C and RTE levels.

On the BSW level and specifically for the OS, a different
approach has to be chosen, as no standardized model of the
OS exists to augment and drive the instrumentation process.
Our analysis of actual AUTOSAR OS code has shown that
the situation is further complicated by the extensive use of
macros throughout the OS for performance reasons. This
directly impacts the applicability of static analysis to derive
potential instrumentation locations, e.g., for interface injections
[36], as constructs that syntactically look like function calls
can turn out to be macros that lack type safety and have
no type declarations. Macros, in contrast to actual functions,
do not have explicit signatures (prototypes), return types or
parameter types. Despite these impediments, a tool-supported
instrumentation still has the advantage of the automated gener-
ation of interceptor code. Hence, we have chosen to extend the
static analysis tool CIL (C Intermediate Language) [37] with
a plug-in for the instrumentation of AUTOSAR OS source
code, which we complement with manual instrumentation
when needed. For binary level instrumentation, the approaches
presented in [25], [38] are conceivable.

We do emphasize that recurrent instrumentation can neg-
atively impact the experiment efficiency especially when run-
ning experiments on actual embedded hardware due to the nec-
essary time-consuming re-flash cycles. Our approach to avoid
re-flashing, or at least to minimize its usage, is to instrument
the system upfront with all interceptors that are potentially
required for various test campaigns and to selectively enable

or disable them at runtime in a pre-experiment configuration
phase. This is achieved by assigning a unique identifier to each
interceptor, whose state (on or off) can be configured on a per-
experiment basis.

VI. FAULT INJECTION CASE STUDY

Having outlined the FI framework and instrumentation
approach, we now present our case study where we demon-
strate the assessment of AUTOSAR’s timing monitoring safety
mechanisms in two scenarios using GRINDER. As mentioned
earlier, the intent is to highlight the viability of the approach
and its effectiveness in locating a bug in the timing monitoring
implementation of a commercial AUTOSAR OS. For simplic-
ity of illustration and communicating the insights, we focus
on a small subset of the conducted FI experiments.

In the conducted experiments, we concentrate on assessing
safety mechanisms specifically related to timing monitoring.
This choice was motivated by the following factors.

• Timing monitoring is one of the newest safety mech-
anisms added in AUTOSAR and, except for a pro-
grammable timer interrupt, the monitoring functionality
is entirely software based. With the discussion (cf. Sec-
tion III) on the limitation of classical FI to address timing
issues, this constitutes a good target to detail how faults
related to task timing can be accurately injected with
software.

• Memory protection is based on COTS hardware that is
widely applied in other domains. Except for project-
specific misconfigurations, we did not see much potential
for software-related dependability issues.

• Logical supervision features, such as aliveness and dead-
line monitoring, that are implemented by a watchdog are
well-established and were already used in systems based
on the AUTOSAR predecessor OSEK.

• End-2-end protection is library-based and does not neces-
sarily require an AUTOSAR environment for testing, as
was shown by Vedder et al. [15].

In summary, we considered the assessment of timing monitor-
ing to offer a pertinent case study for FI applicability and of
its effectiveness.

AUTOSAR’s timing monitoring consists of four discrete
mechanisms that, in general, can be used independently, but
may require a combined use to attain guarantees on specific
system timing characteristics.

• Execution time monitoring checks a task’s execution time
against a fixed time budget. When the budget is exceeded
without the task finishing its execution, a timing error is
detected.

• Inter-arrival time monitoring monitors a task’s activation
frequency within a statically configured time frame. When
an activation threshold is exceeded, a timing error is
detected.

• Resource locking time monitoring checks the locking time
of resources by tasks against a fixed time budget. When
the budget is exceeded without the task releasing the
resource, a timing error is detected.

• Interrupt locking time monitoring checks the locking
time of interrupts by a task against a fixed time budget.
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When the budget is exceeded without the task re-enabling
interrupts, a timing error is detected.

For the case study, targeting correctness and robustness as
the drivers, we illustrate the FI approach and its evaluation
over two example scenarios (i.e., a simple case of execution
time monitoring and a complex timing interaction scenario) to
demonstrate its broad applicability.

Scenario 1: Task timing errors are provoked to (a) assess
the correctness of the error detection and error mitigation of
execution time monitoring, i.e., whether the mechanism detects
the timing errors and mitigates their effect, and (b) analyze
error propagation within the system with and without timing
monitoring enabled.

Scenario 2: The interaction between execution time mon-
itoring and resource locking time monitoring is investigated.
Both mechanisms share a common timer (embedded hardware
usually has a limited number of timers), and the timer for
execution time monitoring is reset and overwritten when a
monitored resource is acquired. Arbitrary task timing and re-
source usage patterns are injected to (a) assess the correctness
of the mechanisms, and (b) to assess their robustness by aiming
to provoke situations in which the re-activation of the original
timer fails.

The following sections detail the progression of the FI
setup and its execution. We start with the detailed specification
of the used fault models. Subsequently, the evaluation setup is
presented in Section VI-B and the results of the evaluation are
discussed in Section VI-C.

A. Deriving Fault Models for the Case Study

In the following, we describe how we derived the fault
models used for the case study. As the fault models provided
by AUTOSAR and ISO 26262 are very abstract, the intent
is to provide these examples as guideline for other FI-based
assessments of AUTOSAR safety mechanisms.

Scenario 1 - Assessing Execution Time Monitoring

In the first scenario, we aim to trigger timing errors of
arbitrary tasks by altering their control flow to either call a
timed loop, thereby extending their runtime by a fixed offset
(transient fault), or an infinite loop, thereby blocking execution
completely (permanent fault). The trigger condition of the
injection should be freely configurable in order to analyze the
effects of error propagation throughout the system at workload-
dependent times. The fault model for this scenario is specified
as follows.

• Fault type: A loop that consumes a defined (possibly
infinite) amount of CPU time to inject transient and
permanent timing faults with high accuracy.

• Fault location: In the control flow of a monitored task,
e.g., in its implementation (when source code is available)
or its invocation.

• Fault timing: During different phases of the workload.
The injection is triggered when a counter of the number
of task invocations reaches a configurable threshold.

Scenario 2: Assessing Timing Monitor Interactions

For the second scenario, we manually reviewed the source
code of the implementation of timing monitoring in a com-
mercial AUTOSAR OS to identify potential robustness issues
that we could further analyze with FI. We should highlight,
that although having profound knowledge of AUTOSAR and
the C programming language, this was our first encounter with
AUTOSAR OS code. As such, our analysis was not influenced
or guided by in-depth knowledge, and we chose the generic
approach of identifying assumptions that were potentially
made by the developers (OS experts could have used a more
refined approach). We checked for assumptions regarding the
outcome or return value of an operation, shared resource
usage, potential time-of-check to time-of-use issues (i.e., race
conditions), assumptions on variable initialization or state, and
more, which resulted in eleven potential FI targets. In the
following, we detail the FI target that we use in our case study
and that uncovered a deficiency in the implementation of the
timing monitoring safety mechanisms, which was subsequently
acknowledged and fixed by the supplier.

In our code review, we had noticed that resource lock
monitoring uses the same timer as execution time monitoring
to detect resource lock errors accountable to the excess of a
lock time budget. When a task acquires a monitored resource,
the timer for execution time monitoring is reset and the
remaining execution time budget is stored and compared to
the lock budget of the resource. The smaller value (i.e., the
shorter time frame) is then used as the new timeout value and
the resource lock timer is activated. Whenever the resource
lock is released by the task, execution time monitoring is re-
activated. Although sharing a timer, or resources in general,
is common in embedded systems, it also increases complexity
due to synchronization issues.

To assess whether any resource usage and task timing
patterns could potentially lead to a failure of the re-activation
of the execution time monitor, we iterated over various timings
for the resource lock time, execution time and the resource lock
time budget. To emulate different time budget configuration
efficiently, we directly inject in the monitoring mechanism’s
kernel data structure. This FI-based approach has two ad-
vantages over a conventional approach. Firstly, it enables the
injection of unexpected budget configurations for the purpose
of robustness testing, which is restricted by the configuration
tool to sound budget settings. Secondly, it greatly accelerates
the assessment, as the workload (i.e., task timing behavior) and
the configuration of timing monitoring budgets can be directly
adjusted between experiments. Normally, changing the config-
uration of timing monitoring on the target is a tedious and
time-intensive process. It entails modifying the configuration
in a GUI, generating kernel source code, compiling the binary
image and flashing it to the target. The same process applies
to modifications of a task’s timing behavior with additional
adjustments needed for the actual implementation.

For the assessment of timing monitor interactions, we
employ two fault models specified as follows. The first fault
model is adapted from the previous scenario to flexibly induce
different resource lock times during a task’s execution. This is
achieved by altering its control flow between the acquisition
and release of a monitored resource.
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• Fault type: A loop that consumes a defined (possibly
infinite) amount of CPU time to emulate transient and
permanent timing faults with high accuracy.

• Fault location: Between the acquisition and release of a
monitored resource.

• Fault timing: Between the acquisition and release of a
monitored resource. The injection is only triggered on
the first acquisition of a resource.

The second fault model aims to modify the configured
resource lock budget by injecting arbitrary budget values in
the monitoring mechanism’s kernel data structure as follows.

• Fault type: An arbitrary, potentially unsound resource
lock budget. A series of lock budgets is generated by
iterating over a fixed time interval with a configurable step
size. Of this series, one budget is injected per experiment.

• Fault location: In the kernel data structure holding the
monitored task’s timing characteristics and budget con-
figuration.

• Fault timing: Before or upon the resource allocation of the
monitored task. The injection must have occurred before
the budget configuration is evaluated by the monitoring
mechanism.

B. Evaluation Setup

The case study example is a simple adaptive cruise control
(ACC) system and depicted in Figure 4. The ACC comprises
four software components that contain one or two runnables
with periods of 10ms and 40ms each. Further, the SW-C
Environment provides environmental stimuli to the ACC. It
is noteworthy that although this case study example is purely
hypothetical and does not represent any particular real design
it is intended to represent plausible mixed-IP7 and mixed-
criticality integration scenarios relevant to the automobile
industry.

SteeringWheelTorque

LaneMarkingPosition

BrakePedalPressure

SteeringWheelAngle

AccelPedalPosition

CruiseSetSpeed

AutoSteeringOn

TargetDistance

CruiseOn

SW-C: OEM_Hi

SW-C: OEM_Low

SW-C: Tier1_Hi

SW-C: Tier1_Low

SW-C: Environment

SteeringOnIndicator

CruiseOnIndicator

PropulsionTorque

BrakingTorque

SteeringTorque

40msUpdateEnvironment

40msOutputArbitration

10msAutoSteering

40msManualPropulsion

10msAdaptiveCruise

40msManualSteering

40msManualBraking

Injection

Fig. 4. The adaptive cruise control (ACC) case study example.

Table I lists the runnable to task assignment and the
configuration of the six tasks of the system. The tasks are
ordered from highest to lowest priority, which AUTOSAR
schedules following a fixed-priority preemptive approach, i.e.,
when a tasks becomes ready that has a higher priority than the
currently running task, the running task is preempted and the
new task is executed.

7Mixed-IP systems integrate intellectual property (IP) by various suppliers.

TABLE I. TASK CONFIGURATION OF ACC CASE STUDY EXAMPLE.

Task name Priority Runnable(s)

OEM Hi 10ms 100 AutoSteering
Tier1 Hi 10ms 90 AdaptiveCruise
OEM Hi 40ms 80 OutputArbitration
Environment 40ms 70 UpdateEnvironment
OEM Low 40ms 60 ManualPropulsion
Tier1 Low 40ms 50 ManualBraking, ManualSteering

In order to enable error reporting and a flexible reaction
to different errors, AUTOSAR specifies the so-called Protec-
tionHook interface as part of its error handling process [39],
[40]. The ProtectionHook is invoked whenever one of the
safety mechanisms detects an error. The detected error type
is passed as parameter, based on which further analysis and
mitigation steps may be initiated. The user-supplied return
value of the ProtectionHook defines whether the OS performs
further actions (e.g., task termination or ECU shutdown) or
ignores the error. Throughout the case study, we use the
information provided by the ProtectionHook to determine if
and when an error was detected. Moreover, to flexibly enable
or disable timing monitoring (e.g., to compare system behavior
or error propagation), we modify the return value of the
ProtectionHook depending on the experiment configuration
using an injector.

C. Experimentation and Results

In the following, we illustrate and discuss the results of our
experiments on the basis of two timing monitoring assessment
scenarios.

Scenario 1: Assessing Execution Time Monitoring

In the first scenario, we evaluate the error detection and
error mitigation of execution time monitoring for timing errors
caused by a permanent hang of task OEM Low 40ms. In
order to inject an infinite loop in the control flow of the
task OEM Low 40ms, we place an injector in the runnable
ManualPropulsion. The injection is triggered, whenever the
number of invocations of the runnable passes a configurable
threshold.

To enable the comprehensive observation of the system’s
reaction to fault injections and to analyze error propagation
effects, we require access to signal traces within the system.
For this reason, we have instrumented the SW-Cs Environment
and OEM Hi with 20 interceptors that are capable of logging
all relevant signals within the system.

The scenario consists of three FI campaigns: (1) the fault-
free golden run, (2) a series of experiments in which faults
are injected at fixed, workload-dependent times and execution
time monitoring is disabled, and (3) the same series of
experiments with execution time monitoring being enabled.
Using the flexible configuration approach of libGRINDER (cf.
Section V), no re-compilation or re-flashing was necessary
for the different campaigns. Instead, we used the same binary
image for all three campaigns and adjusted the configuration
at runtime. Each FI experiment runs for 45 seconds, which
is the time during which workload stimuli are provided by
the Environment. In the following, we discuss one experiment
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(a) Fault-free golden run. (b) Monitoring disabled, error propagates. (c) Monitoring enabled, propagation mitigated.

Fig. 5. Scenario 1: Signal traces for a fault injection of an infinite loop (i.e., a permanent timing fault) in task OEM Low 40ms at 20 seconds.

from each campaign in detail to evaluate the effectiveness of
error mitigation due to execution time monitoring.

Figure 5 depicts the traces of the three signals Propulsion-
Torque, BrakingTorque and SteeringTorque. These three traces
were chosen from the 20 available traces because the signals
are affected by the fault injection either directly or indirectly
due to error propagation. The fault-free golden run is shown in
Figure 5a, whereas Figure 5b and Figure 5c depict the signals
in the presence of a permanent task hang injected at 20 s where
execution time monitoring is either disabled or enabled.

For the scenario in Figure 5b where monitoring is dis-
abled, all three signals have observable deviations from the
golden run at different times in their signal. The change of
PropulsionTorque (from 30 s to 37 s) is directly accountable
to the FI, as PropulsionTorque is a composite signal8 that
also comprises input from the ManualPropulsion runnable that
we injected into. The change of BrakingTorque (from 37 s
to 44 s) and SteeringTorque (from 20 s to 28 s) is caused by
error propagation from the task OEM Low 40ms, which we
injected into, to the task Tier1 Low 40ms. Tier1 Low 40ms
comprises the runnables ManualBraking and ManualSteering
whose outputs contribute to the composite signals Braking-
Torque and SteeringTorque. As direct consequence of the
propagation of the timing error, critical functionality provided
by both runnables is lost.

In Figure 5c the same injection scenario is depicted
with execution time monitoring enabled. The monitor-
ing mechanism correctly detects the timing error of task
OEM Low 40ms that is caused by the injected fault. Despite
the detection of the error, the signal of PropulsionTorque
still deviates from the golden run, as the injected fault is
permanent. Therefore, the monitoring mechanism repeatedly
detects the persisting timing error and, in consequence, kills
the erroneous task in each period after the injection. While the
chosen strategy of killing the task is inadequate to mitigate
the permanent timing fault in this case, it still successfully
mitigates the propagation of the timing error to other tasks.
The BrakingTorque and SteeringTorque signals, which were
affected by error propagation without timing monitoring in the
previous scenario, are now identical to the golden run.

8A composite signal combines inputs from various sources.

In summary, execution time monitoring correctly detected
errors due to injected timing fault in all of our experi-
ments. Moreover, it successfully mitigated the effects of error
propagation to lower priority tasks whenever monitoring was
enabled, thus preventing the loss of critical functionality.

Scenario 2: Assessing Timing Monitor Interactions - Finding
the Bug!

In our review of the timing monitoring implementation
of a commercial AUTOSAR OS (cf. Section VI-A) we had
noticed that execution time monitoring and resource lock time
monitoring share a common timer to signal timing errors.
If both monitoring mechanisms are enabled, the timer used
by the execution time monitor is reset and overwritten by
the resource lock monitor when a monitored task acquires
a monitored resource. The new timer value is determined in
the resource lock monitor’s implementation by comparing the
remaining execution time and resource lock budgets, and using
the smaller value as the new budget. This ensures that budget
violations, i.e., timing errors, are detected at the earliest point
in time. In the error-free case, the resource is released after use
and the cleanup routine of the resource lock monitor reinstates
the execution time monitor. In the error case, the OS’s error
handling mechanisms are invoked.

In this assessment, we investigate the precedence relation-
ship between both monitoring mechanisms with the intent to
uncover any cases in which the re-activation of the original
timer fails. Contrary to the previous scenario, our focus is not
on the analysis of overall system behavior and error propaga-
tion effects, but on the correctness of the timing error detection
and the robustness of the OS’s timing monitoring mechanisms.
Consequently, we do not require extensive logging mechanisms
for signal traces in this scenario. Instead, we only instrument
the ProtectionHook to provide logging of errors that are
detected by the OS. Furthermore, we place injectors at two
locations in the software stack. The first injector is placed
between the resource acquisition and resource release in the
runnable ManualPropulsion of task OEM Low 40ms to inject
arbitrary timing faults while holding a monitored resource. The
second injector is placed in the resource lock monitor setup
routine to inject arbitrary resource lock budget configurations.
The aim of the budget injections is twofold: Firstly, we evaluate
the robustness of the monitoring mechanism by injecting
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unsound budget values that are normally prohibited by the
GUI-based configuration (e.g., resource lock budgets that are
bigger than execution time budgets). Secondly, we inject sound
budget values to change the configuration of the monitoring
mechanism on-the-fly during runtime, thus avoiding the time-
consuming steps of reconfiguration, recompilation and flashing
of the binary.

This scenario consist of one campaign, in which we inject
an infinite loop (i.e., a permanent timing fault) between the
acquisition and release of a resource in the runnable Manu-
alPropulsion. Per experiment, one value of a series of sound
and unsound resource lock budget values is injected directly
in the data structures of the monitoring mechanism when the
resource is acquired and the monitor is initialized.

For all of our experiments, the timing monitoring mech-
anisms detected that a timing error had occurred and also
the point in time of the error was detected correctly. After
reviewing the log data, and to our surprise, the distribution
of the reported error types (execution time vs. resource lock
time) did not match the distribution expected from the injected
budget values. As the series of injected budget values was
generated using the execution time monitor budget as median
value, we expected a fifty-fifty distribution of each error type,
i.e., for those experiments where the resource lock budget was
smaller than the execution time budget, we expected a resource
lock error, and for the opposite case an execution time error.
Instead, all error types were logged as resource lock errors.

In order to verify that the observed mismatch of the
distribution is not only accountable to the injection of unsound
budget values, we analyzed the root cause for the mismatch
further. As a result, we discovered that the type of timing error
is misidentified whenever a timing error occurs while holding a
locked resource and, at the same time, the remaining execution
time budget is lower than the remaining resource lock budget.
Whenever these constraints are met, errors accountable to
execution time violations are reported as resource lock errors,
affecting both, sound and unsound, configuration conditions.

This deficiency of the implementation is critical, as the
handling of errors by the OS and the user (through means of
the ProtectionHook) relies on the correctness of the supplied
error type. A wrongfully identified error may therefore directly
impact the error analysis and, in consequence, may lead to
the execution of inappropriate mitigation actions. We reported
the discovered issue to the vendor of the AUTOSAR OS
implementation, who was able to reproduce it. The vendor
acknowledged the issue as a bug and fixed it in subsequent
releases of the OS.

Case Study Summary

In the case study, we have presented two scenarios for
the FI-based assessment of AUTOSAR’s timing monitoring
mechanisms using the FI framework GRINDER. In the first
scenario, we evaluated the correctness of the error detec-
tion and error mitigation of execution time monitoring for
permanent timing faults. The monitor detected all injected
timing faults correctly and was able to mitigate error propaga-
tion successfully, thus preserving critical functionality. In the
second scenario, the correctness and robustness of execution
time monitoring and resource lock monitoring was evaluated

by injecting a permanent resource lock timing fault in com-
bination with the injection of sound and unsound resource
lock budgets. While the monitoring mechanisms correctly
detected the presence of an error and its point in time, the
source of the error was misidentified under certain conditions,
which potentially affects error mitigation actions negatively.
As the focus of our work was on providing the FI assessment
mechanisms and guidance on their use, we only conducted
around 200 experiments overall, which comprise the basis for
this case study. To put this number into context, we should note
that comprehensive FI studies sometimes comprise hundreds
of thousands of experiments and that consequently the amount
of experiments that we conducted can be considered very low.
It is therefore even more impressive that, as a result of our FI
experiments, we uncovered a bug in a commercial AUTOSAR
OS implementation, which emphasizes and justifies the use of
FI as an effective method for the assessment of AUTOSAR’s
safety mechanisms.

VII. CONCLUSION

Innovation in the automotive sector is mainly driven by
software, which is leading to automotive software systems of
massively increased complexity. To foster reusability, porta-
bility and interoperability of automotive software components,
the AUTOSAR industry standard promotes a modular software
architecture for automotive systems. At the same time, the
ISO 26262 standard addresses safety considerations for auto-
motive control systems, covering both hardware and software
aspects, which has led to the addition of a safety concept
to AUTOSAR comprising several safety mechanisms. While
the ISO 26262 explicitly recommends fault injections (FI)
to assess such mechanisms, it provides little guidance on
how experiments should be performed and how suitable fault
models can be identified.

In this paper we describe the process of implementing
and applying FI for the validation of AUTOSAR’s safety
mechanisms, according to recommendations outlined by the
ISO 26262 standard. To conduct the FI experiments, we
have adapted the open source FI framework GRINDER to
AUTOSAR. By making our implementation openly available,
we provide a ready to use FI framework for AUTOSAR and
hope to foster the development and use of FI for this target
environment. To fill the gap between the ISO standard’s re-
quirement to apply FI and the absence of suitable fault models,
we provide a detailed discussion how we derived fault models
for our assessment, which targets a commercial implementa-
tion of AUTOSAR’s timing monitoring safety mechanisms.
The conducted experiments uncovered an actual bug in the
interaction of two timing monitoring mechanisms that could
lead to a misidentification of the source of a timing error and
negatively impact the effectiveness of error mitigation. The bug
was subsequently acknowledged and fixed by the supplier of
the safety mechanism’s implementation.

In summary our results demonstrate that (1) FI is an
effective method to assess automotive suppliers’ implemen-
tations of AUTOSAR safety mechanisms, (2) suitable fault
models for these systems can be derived from their functional
specification and their intended usage context, and (3) using
these fault models actual deficiencies in the implementation
can be identified with a modest amount of experiments.
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