
DRAFT

TR-T
UD-D

EEDS-03
-20

15

Mitigating Timing Error Propagation in
Mixed-Criticality Automotive Systems

Thorsten Piper, Stefan Winter, Oliver Schwahn, Suman Bidarahalli, Neeraj Suri
DEEDS Group, Technische Universität Darmstadt, Germany

{piper,sw,os,suman,suri}@cs.tu-darmstadt.de

Abstract—For mixed-criticality automotive systems, the func-
tional safety standard ISO 26262 stipulates freedom from in-
terference, i.e., errors should not propagate from low to high
criticality tasks. To prevent the propagation of timing errors,
the automotive software standard AUTOSAR provides monitor-
based timing protection, which detects and confines task timing
errors. As current monitors are unaware of a criticality concept,
the effective protection of a critical task requires to monitor all
tasks that constitute a potential source of propagating errors,
thereby causing overhead for worst-case execution time anal-
ysis, configuration and monitoring. Differing from the indirect
protection of critical tasks facilitated by existing mechanisms,
we propose a novel monitoring scheme that directly protects
critical tasks from interference, by providing them with execution
time guarantees. Overall, our approach provides efficient low-
overhead interference protection, while also adding transient
timing error ride-through capabilities.

I. INTRODUCTION

The automotive industry is encountering growing interest
in the development and integration of mixed-criticality sys-
tems [1], i.e., systems containing components with varying
degrees of assurance on timing and safety. This trend arises
from the increasing multitude and complexity of innovative
(often software based) driver assistance features while dealing
with resource constraints of limited space, energy capacity and
distribution, weight and, fundamentally, costs. Essentially, the
integration of the historically segregated automotive systems,
which have been conservatively designed following a one
function per electronic control unit (ECU) approach, offers
cost saving potential for hardware and wiring, as it entailed up
to 100 federated ECUs distributed in modern luxury cars [2].

Similar to the “gold standard for partitioning” in integrated
modular avionics [3], the functional safety standard for road
vehicles ISO 26262 [4] permits the integration of elements
with differing criticality, as long as partitioning mechanisms
can verifiably provide freedom from interference in both the
spatial and temporal domains, i.e., regarding memory accesses
and timing behavior. In automotive systems, partitioning is
usually supported by hardware [5], [6], the operating system
(OS) [7], [8], or a combination of both (e.g. virtualization) [9].

The established AUTOSAR standard [10] for automotive
software addresses freedom from interference through a set
of safety mechanisms in its Technical Safety Concept [7] that
are provided as services by the AUTOSAR OS. To support
partitioning in the temporal domain, the OS provides moni-
toring of task execution time budgets, activation frequencies,
and resource lock times. The violation of a monitor policy

constitutes a timing error, whose propagation is prevented by
stopping the responsible task and freeing locked resources.

AUTOSAR schedules tasks based on a fixed-priority pre-
emptive scheme [11], in which the processor executes the
highest priority task among the tasks ready for execution.
Without timing protection, timing errors, i.e., any fault that
leads to a violation of the specified worst-case execution time
(WCET) of a task, may propagate from high priority to low
priority tasks. Due to rate monotonic priority assignment [12],
[13], the priority and criticality of a task are usually unaligned,
i.e., the most critical task is not necessarily assigned the
highest priority. Thus, criticality inversion [14] may occur
through timing error propagation. AUTOSAR’s timing protec-
tion mechanisms, specifically execution time monitoring, aim
at detecting and confining timing errors to the task where they
originate. To protect critical tasks from the effects of timing
errors arising in less critical tasks, all such less critical tasks
require execution time monitoring.

This approach has a number of undesired implications in
mixed-criticality systems:
• Critical tasks are protected indirectly by confining timing

errors in less critical tasks. To protect a given critical task,
all less critical tasks must be individually and correctly
monitored, which is an error-prone process.

• Monitoring causes configuration and run-time overhead
(cf. Section V), which can be reduced by focusing on
critical tasks only.

• Worst-case execution times of uncritical or less critical
tasks are often over-approximated [15], [16], which,
when enforced via monitors, may impact overall system
utilization negatively.

Paper contribution
On this background, we propose a novel, criticality-aware

AUTOSAR run-time monitoring scheme that guarantees crit-
ical tasks a configurable execution time budget to directly
protect them from timing errors of other tasks. The budget
guarantee is enforced by monitoring a task’s preemption
budget (PB), which determines how long a task may be
preempted without compromising its timely execution. By
focusing only on critical tasks, we reduce the overhead for
run-time monitoring and WCET analysis of non-critical tasks.
Further, any unused computation time of critical tasks may
be spent by erroneous non-critical tasks to eventually finish
(transient ride-through). To put this contribution in context,



DRAFT

TR-T
UD-D

EEDS-03
-20

15

we highlight that currently AUTOSAR lacks support for mixed
criticality scenarios by its monitoring mechanisms. Our work
helps to provide this support.

Paper structure
We review the work related to our problem scope in Section

II. In Section III, we provide background on AUTOSAR that
is essential in understanding the proposed preemption budget
monitor, which is presented in Section IV. In Section V, we
evaluate the efficiency and overhead of our approach in a case
study, and Section VI concludes the paper.

II. RELATED WORK

Following a standalone exposition of the body of work
relevant to our problem scope, we summarize its viability on
addressing timing error propagation.

Related to our approach is the work by de Niz et al. [14],
who identify a criticality inversion problem, for which less
critical tasks may block more critical tasks in fixed-priority
preemptive systems, if criticality and priority are not aligned.
The authors first try to address criticality inversion by the criti-
cality driven priority assignment scheme Criticality As Priority
Assignment (CAPA), which has the drawback that more critical
tasks with long periods may block the execution of less critical
tasks with short periods, resulting in deadline misses. As an
improvement, they introduce zero-slack scheduling, a scheme
that is based on a dual mode task model (normal and overload)
with the aim to maximize resource utilization, while providing
protection from criticality inversion.

The period transformation approach proposed by Sha et
al. [17] slices critical tasks with longer periods than less
critical tasks in sections, such that each of those sections has
a shorter period than any less critical task. Scheduling such a
sliced set with a rate monotonic approach will result in task
criticalities and priorities being aligned. However, this comes
with the drawback of increased system management overhead,
additional complexity of sharing data across slices, additional
development effort for task slicing, and the basic requirement
that tasks must be sliceable.

Ficek et al. [15], [18] developed a design workflow that
provides guidance on how to effectively apply the previously
discussed CAPA and period transformation approaches, to-
gether with AUTOSAR’s execution time monitoring facilities
to the overall system design, in order to ensure freedom from
interference for critical tasks.

Baruah et al. [19], [20] propose an extension to the fixed-
priority preemptive scheduling approach, in which a system
executes either in LO-criticality (normal) or HI-criticality
mode. If any task violates its assigned execution time budget,
a switch to the HI-criticality mode occurs, and task priorities
are re-assigned in such a way that a set of predefined critical
tasks remains schedulable.

In summary, the related work on mixed criticality systems
(a comprehensive review is given by Burns and Davis [1])
focuses mostly on scheduling algorithms and schedulability
analysis and not on timing errors, or how to prevent their

propagation at run-time by monitoring. Additionally, these
approaches do not directly conform to the AUTOSAR model,
thus limiting their usage as such. The work of Ficek et al.
[15], [18] is an exception in this respect. Contrary to their
work, the approach proposed in this paper does not require a
(re-)design of the system to provide execution time guarantees
and freedom from interference to critical tasks.

III. AUTOSAR SYSTEM MODEL

This section provides the reader with a background on
AUTOSAR’s scheduling model, task model, and timing pro-
tection that are essential in understanding the problem scope
and the solution of preemption budget monitoring proposed in
Section IV.

The AUTOSAR OS [21] is a statically configured mul-
titasking OS where all system objects, such as tasks and
resources, are allocated at build time. The OS schedules
tasks in a fixed-priority preemptive manner [11] executing the
highest priority task among all ready tasks. For the assignment
of task priorities [22], a rate monotonic scheme [12], [13]
is commonly used, where the period or deadline of a task
determines its priority (i.e., the shorter the period/deadline,
the higher the priority). Task priorities are generally static,
with the exception of the priority ceiling protocol [23], which
is used to avoid priority inversion when resources are shared
across tasks. In such situations, the priority of tasks that hold
a shared resource is temporarily raised to the priority ceiling
of the resource.

We define a task τi as a tuple

τi = (Pi, Ci, Ti, Di, ζi)

where:
• Pi is the static priority,
• Ci is the worst-case execution time (WCET),
• Ti is the period,
• Di is the deadline, and
• ζi is the criticality of the task.

In our model, higher values of Pi and ζi indicate higher
priority and criticality, respectively. To achieve a clearer pre-
sentation, we assume that Di = Ti throughout the paper,
unless stated otherwise. The WCET Ci constitutes the un-
interrupted, maximum possible execution time of a task, and
is either identified analytically (via static code analysis), ex-
perimentally (via tracing/measurement) or through simulation
[24], [25]. Depending on the assurance that the employed
method provides, a buffer value is usually added to the WCET
to compensate for inaccuracies. Thorough WCET analysis is
essential in determining the system schedule and conducting
schedulability analysis, which proves whether the schedule
meets the overall timing requirements and ensures that all tasks
meet their deadline under error-free conditions.

A. Timing Error Propagation

In the presence of a timing error, which we define as a task
τi exceeding its WCET Ci, the schedule’s underlying assump-
tions are invalidated. Undetected timing errors may impact the



DRAFT

TR-T
UD-D

EEDS-03
-20

15

timing of fault-free tasks through error propagation, and lead
to failures in the form of deadline violation (not finishing the
execution until Di) of fault-free tasks. To illustrate such a
scenario, we assume a system with tasks τA, τB and τC , as
shown in Table I.

TABLE I
TIMING PROPERTIES OF THE EXAMPLE SYSTEM.

Task τi WCET Ci Deadline Di Priority Pi

A 2ms 7ms 3
B 2ms 7ms 2
C 2ms 7ms 1

0 5 10
ms

Error

2ms 4ms

2ms

2ms

2ms

15

1ms

Deadline violation

τA

τB

τC

running, WCET exceededrunningready

Di Di

Fig. 1. Deadline violation of τC due to a propagated timing error.

Figure 1 depicts the task timing. During the first period
from 0ms to 7ms, all tasks are error-free and finish before
their deadline. In the second period from 7ms to 14ms, τA
is subject to a timing error at 9ms (indicated by the red bolt)
that prolongs its execution time by 2ms. The error of τA
propagates and delays the execution of τB and τC by 2ms.
When τC starts to execute at 13ms, the remaining execution
time does not suffice to finish until its deadline at 14ms. The
consequence is a deadline violation and timing failure of τC .

B. AUTOSAR Timing Protection

The propagation of timing errors from one task to another
can be detected and prevented by timing protection mecha-
nisms (TPMs) that monitor task run-time behavior. AUTOSAR
specifies and implements the following TPMs as OS services
[7], [21], which are selectively enabled on a per-task basis.

• Execution time monitoring monitors a task’s execution
time and compares it to a budget. When the budget is
exhausted without the task having finished, a timing error
is detected.

• Inter-arrival time monitoring monitors a task’s activa-
tion frequency within a statically configured time frame.
When an activation limit is exceeded, a timing error is
detected.

• Locking time monitoring limits the blocking time of
tasks imputable to priority ceiling [23] or disabling inter-
rupts. For each resource and each task, a lock time budget
can be specified, and locking a resource for longer than
its budget for that task constitutes a timing error.

Upon detection of a timing error, it can be locally confined
by killing the task or its task group (OS application). Killing
a task results in an abortion and failure of the task.

AUTOSAR detects timing errors accountable to WCET vio-
lations by execution time monitoring (ETM). As AUTOSAR’s
monitoring mechanisms currently lack support for mixed-
criticality scenarios, ETM can only indirectly protect critical
tasks by individually monitoring all tasks from which errors
could potentially propagate, which is an error-prone process.
In addition, ETM is inefficient compared to a criticality-
aware monitoring scheme in mixed-criticality scenarios with
few critical and many non-critical tasks, due to the overhead
that monitoring the non-critical tasks entails. Recalling our
previous example (Table I), we assume that task τC is critical,
while tasks τA and τB are non-critical. To guarantee freedom
from interference to τC , both τA and τB require monitoring
using ETM, while a direct criticality-aware monitor would
only require monitoring τC . In Section V, we compare the
run-time overhead of ETM and a novel criticality-aware mon-
itoring scheme that we propose in the next section.

IV. PREEMPTION BUDGET MONITORING

As augmentation to the existing monitoring infrastructure
of AUTOSAR, we propose a monitoring scheme that is
specifically suited to mixed-criticality systems. It is based on
the idea that instead of monitoring the timing behavior of all
non-critical tasks that constitute potential sources of timing
errors, it would be more efficient to only monitor critical tasks
with the aim of providing a guaranteed execution time budget
to them. Differing from the indirect protection of critical
tasks facilitated by existing mechanisms, this approach directly
protects critical tasks from interference. In consequence of this
paradigm shift, non-critical tasks are eligible for transient error
ride-through (see Section IV-B).

The execution time guarantee is provided by monitoring
the preemption time of critical tasks, i.e., the time spent in
the ready state waiting for execution. If the preemption time
exceeds a threshold value, which we term preemption budget
(PB), the immediate start of the monitored task is enforced
by re-queueing it with the highest priority in order to prevent
interference by other tasks. For systems with only one critical
task τi, the task’s PBi can intuitively be defined as Di −Ci,
as the task needs to start its uninterrupted execution Ci time
units before its deadline Di.

For systems with several critical tasks, determining PBi

is more complex, as potential preemptions through other PB-
monitored tasks with a higher precedence (explained below)
need to be factored in. The problem can be thought of as
response time analysis [26], but with an inverted time line.
We therefore make an argument along the lines of [26] and
define the response time Ri as the sum of the WCET Ci and
the total worst-case interference Ii of other critical tasks with
higher precedence on τi through preemption.

Ri = Ci + Ii (1)



DRAFT

TR-T
UD-D

EEDS-03
-20

15

The PBi of a task τi then follows as

PBi = Di −Ri (2)

We argue that the interference on task τi from a task τj
through preemption is nCj , where n denotes how often τj
executes within Ri, or in other words, how often its period
Tj fits in Ri. For non-integer values of n = Ri/Tj , n has to
be rounded up by the ceiling function, to account for the fact
that τj will always preempt τi for its full execution time Cj

(due to fixed-priority preemptive scheduling). The worst-case
interference from a task τj on task τi is therefore given by⌈

Ri

Tj

⌉
∗ Cj

Consequently, the total interference Ii of other tasks on τi
follows as

Ii =
∑

j∈hp(i)

⌈
Ri

Tj

⌉
∗ Cj (3)

where hp(i) is the set of tasks that might preempt τi due
to higher monitor precedence. The precedence between PB-
monitored tasks is defined as follows. The higher a task’s crit-
icality, the higher its precedence. For tasks of equal criticality,
their precedence is defined in alignment to their priority.

Combining (1) and (3), the unknown term Ri appears on
both sides of the equation

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
∗ Cj

which can be iteratively solved as follows.
Let Rn

i be the nth approximation to Ri.

Rn+1
i = Ci +

∑
j∈hp(i)

⌈
Rn

i

Tj

⌉
∗ Cj (4)

Starting with R0
i = Ci, the iteration terminates when Rn+1

i =
Rn

i . The iteration is guaranteed to converge if the processor
utilization is ≤ 100% [26].

In Table II we provide an example for the calculation of the
PB. The example system consists of three tasks: τB is of high
criticality, τC is of medium criticality, and τA is non-critical.

TABLE II
ASSIGNING PREEMPTION BUDGETS IN A MIXED-CRITICALITY EXAMPLE.

Task τi WCET Ci Period Ti Prio. Pi Crit. ζi PBi

A 2ms 6ms 2 0 n.a.
B 2ms 8ms 1 2 6ms
C 3ms 12ms 0 1 7ms

The PBs are computed according to the precedence relations
defined above, i.e., from the highest critical task to the lowest.
Therefore, we start the computation of the PB for task τB . As
task τB is the highest critical task, the set hp(B) is empty,
and using (4) we determine RB = R0

B = CB = 2ms. Using
(2) it follows that PBB = 8ms − 2ms = 6ms. The next
critical task is τC , for which we have to factor in that it might

be preempted by the PB monitor of task τB due to its higher
precedence. Therefore, the RC = R1

C = CC +
⌈
CC

TB

⌉
∗ CB =

3ms + 2ms = 5ms and PBC = 12ms− 5ms = 7ms.
In the presence of a timing error, the PB monitor would

force the execution of τB at 6ms after its activation, providing
τB a guaranteed execution time of CB = 2ms. For τC , the
PB monitor would force its execution at 7ms, providing τC a
guaranteed execution time of CC = 3ms, and accounting for
a possible preemption by τB for up to CB = 2ms.

A. Integration with AUTOSAR Task State Model

We integrate the PB monitor into the AUTOSAR task state
model as depicted in Figure 2.

Preemption Budget depleted

SUSPENDED

RUNNING READY

1. Activate
Start PB monitor

2a. Start/Resume
Pause PB monitor

3. Preempt
Resume PB monitor

4. Terminate
No action

2b. Start/Resume
Enforce task execution

Fig. 2. Task state transitions and corresponding PB monitor actions.

After system start-up, tasks are in the suspended state. Once
a task is activated, it enters the ready state and the PB monitor
is started (1. Activate). As long as the task is in the ready
state, its PB is consumed. In the error-free case, the task
will eventually be dispatched (2a. Start/Resume) and enter
the running state, from which it will either be preempted
(3. Preempt) and be resumed later, or it will terminate after
finishing its execution (4. Terminate). If the task leaves the
ready state, the monitor will be paused. It will be resumed
once the task re-enters the ready state.

In the erroneous case (2b. Start/Resume), the task will
deplete its PB and a timer interrupt will trigger. To guarantee
the critical task its WCET as execution time, it is either
immediately started or enqueued with the highest priority,
depending on whether higher precedence tasks have their PB
depleted as well. The case study in Section V provides further
details on the monitor’s implementation and its performance
in a transient and a permanent timing error scenario.

B. Transient Error Ride-through

A transient error is a temporary error that disappears after
a limited amount of time. For example, a task with a nominal
WCET of 2ms may exceed its WCET by 1ms and run for
3ms before it finishes. As long as the task finishes before
its deadline, it has not failed – the task made a transient



DRAFT

TR-T
UD-D

EEDS-03
-20

15

error ride-through. For tasks that are protected using AU-
TOSAR’s ETM, transient error ride-throughs are infeasible,
as the monitor strictly enforces the configured execution time
budget. Consequently, the task is forced to fail, although it
could eventually have finished, depending on the overall CPU
utilization and timing constraints.

Contrary to ETM, PB monitoring allows for transient error
ride-throughs. We again consider our example system as
specified in Table II, but assume that only task τC is critical.
For this modified scenario PBC = 12ms − 3ms = 9ms,
which is monitored. As shown in Figure 3, task τB is subject
to a timing error at 10ms (indicated by the red bolt) and
continues to execute.

DC0 5 10
ms

15

τA

τB

τC

running, WCET exceededrunningready

Error

2ms

2ms

2ms

3ms
0.5ms

0.5ms

2ms

PB timer

2ms

Fig. 3. Example of a transient error ride-through of task τB .

At 11ms, the PB of task τC is exhausted (remember
that the PB is only consumed in the ready state) and the
monitor enforces τC to execute. τC finishes its execution
after 0.5ms and has therefore not consumed all of its WCET.
The remaining 0.5ms are used by τB to eventually finish
its execution at 12ms, which is before its deadline at 16ms.
Accordingly, τB performed a transient error ride-through.

C. Applicability to Multi-core Systems

Although much research has gone into multi-core mixed
criticality scheduling (e.g. [27]), AUTOSAR uses an approach
based on static partitioning [28], [29], in which a static task
set is assigned to each partition/core. A possible explanation
is provided by Reinhardt and Morgan [9], as “automotive
software development has yet to exploit parallel processing
in an efficient manner because legacy code, designed to run
on single core systems, is difficult to adapt to run in parallel
on multi-core systems.” So, although we consider a single-core
environment throughout the paper, the given analysis should
be equally applicable to multi-core AUTOSAR systems with
a static task partitioning.

D. Limitations and Possible Solutions

The partitioning of a system in different criticality levels
using PB monitoring is subject to a set of constraints in
order to avoid effects similar to those of the CAPA approach
discussed in Section II. To illustrate the problem, we assume
an example system with three tasks of different criticality, as
shown in Table III.

According to the task precedence relationship, we first
calculate the PB of τC and then of τB . It follows that

TABLE III
EXAMPLE OF CONFLICTING TASK CONSTRAINTS IN A THREE CRITICALITY

SYSTEM.

Task τi WCET Ci Period Ti Prio. Pi Crit. ζi
A 2ms 6ms 2 0
B 2ms 8ms 1 1
C 10ms 30ms 0 2

PBC = 30ms − 10ms = 20ms. For τB , we calculate
PBB = 8ms− 2ms− 10ms = −4ms. As PBB is negative,
assigning a PB to τB is infeasible. Consequently, no execution
time guarantee can be given to τB . The explanation is straight-
forward: as τC has a higher monitor precedence, τC could
preempt τB whenever its PBC is depleted. As τC has a
WCET CC of 10ms, τB can impossibly meet its deadline
DB = TB = 8ms in that case.

The described effect cannot occur for dual criticality sys-
tems (non-critical and critical), as the set of critical tasks
simply represents an ordered subset of the overall system and
remains schedulable, if the overall system was schedulable.
For systems with more than two criticalities, the effect does
not occur as long as task criticalities are aligned with task
priorities. For all other cases, we propose the following
solutions:
• Invert the precedence of conflicting tasks (in our example
τB and τC), so that the task with the shorter period τB
can preempt τC . To continually provide freedom from
interference to the more critical task τC in such a sce-
nario, the execution time of τB would require additional
monitoring with ETM.

• Re-arrange task priorities by period transformation to
align criticalities and priorities (similar to the approach
proposed by Ficek in [18]).

V. CASE STUDY

In this section, we evaluate our implementation of preemp-
tion budget monitoring (PBM) and compare it in terms of
memory and run-time overhead to execution time monitoring
(ETM). Further, we assess the effectiveness of PBM in direct
comparison to ETM under the following timing error scenar-
ios:
• Transient: A task exceeds its worst-case execution time

to eventually finish its execution before its deadline.
• Permanent: A task is stuck, for example in a livelock or

deadlock, and is therefore unable to finish its execution.
Our test system is a simplified adaptive cruise control (ACC)

that consists of seven tasks, as shown in Table IV. We assume
that the deadline of each task matches the task’s respective
period, and that τ6 is the only critical task in our system.

We have implemented the test system for the XKT564L
evaluation board by Freescale [30] using a widely used,
commercial AUTOSAR tool suite for system integration.
The XKT564L hosts a 32-bit dual core Power Architecture
microcontroller unit (MCU) with 1MiB of flash memory
and 128KiB of RAM (both ECC). The MCU is specifically



DRAFT

TR-T
UD-D

EEDS-03
-20

15

TABLE IV
TASK CONFIGURATION OF ACC CASE STUDY.

Task WCET Ci Period Ti Priority Pi Critical

τ1 30 µs 250 µs 7 -
τ2 50 µs 250 µs 6 -
τ3 145 µs 500 µs 5 -
τ4 15 µs 500 µs 4 -
τ5 20 µs 500 µs 3 -
τ6 15 µs 1,000 µs 2 X

τ7 20 µs 1,000 µs 1 -

developed for safety-critical applications and both cores are
operated in lock-step mode to detect hardware run-time errors.

A. PBM - Implementation Details

Our PBM implementation is an extension to the monitoring
infrastructure of a widely used, commercial AUTOSAR OS.
We closely resemble the structure of the existing monitoring
mechanisms to support a seamless integration of our approach.
Following the task state diagram (cf. Figure 2, Section IV),
we added monitor hooks to the kernel’s enqueue and dispatch
functions, in order to handle task activation, start/resume and
preemption in the monitor. Further, we implemented a handler
for PB depletion (cf. Figure 2, transition 2b) to enforce the
execution of critical tasks if necessary.

TABLE V
STATIC OVERHEAD OF PBM.

Baseline with PBM Overhead

Kernel SLOC 25,736 25,985 +159 (0.6%)
Flash ROM 43,903 44,319 +416 (0.9%)

RAM 47,952 47,980 +28 (0.06%)

In Table V we review the static overhead of PBM on the
source code and binary levels. We utilized the tool SLOCCount
[31] to determine the source lines of code (SLOC) of the
baseline kernel, and compare it to the version with PBM as a
measure for the implementation complexity of PBM. Overall,
PBM increases the SLOC of the AUTOSAR OS kernel by 159
lines, which is an increase of 0.6%.

The static flash ROM and RAM consumption was obtained
using the tool objdump from the GNU Binutils toolsuite [32].
PBM consumes an additional 416 bytes (0.9%) of flash ROM,
and 28 bytes (0.06%) of RAM.

B. Timing Error Scenarios

We evaluate the efficiency of PBM and compare it to ETM
in a transient and a permanent timing error scenario. The errors
are injected at run-time using a software-implemented fault
injection (SWIFI) tool prototype for AUTOSAR that extends
previous work [33]. For both error scenarios, the injection
location is task τ5 and the trigger condition is set to the
third execution of the task after system start (activated around
6,100 µs).

(a) ETM: Prevents transient ride-through

(b) PBM: Transient ride-through (case I)

(c) PBM: Transient ride-through (case II)

Fig. 4. Transient timing error scenario.

The three graphs in Figure 4 depict the transient error
scenario for ETM and PBM. The graphs cover two full periods
of the tasks with the longest period in the system (τ6, τ7). In
the first period (5,000 µs to 6,000 µs), the error-free timing is
shown. In the second period (6,000 µs to 7,000 µs), a transient
timing error that lasts 100 µs is injected at 6,250 µs in τ5.
Figure 4a shows how ETM detects the error after τ5 has
consumed its WCET. As ETM strictly enforces the configured
budget, τ5 gets killed by the OS and thus fails. Figure 4b shows
the same scenario for PBM. As the preemption budget of τ6
is not consumed until 6,900 µs, the PBM does not interfere
with τ5, which eventually finishes its execution successfully.
Figure 4c depicts a slightly different scenario with two error
injections, in order to highlight the interaction between PBM



DRAFT

TR-T
UD-D

EEDS-03
-20

15
(a) ETM

(b) PBM

Fig. 5. Permanent timing error scenario.

and the erroneous task. The first injection at 6,250 µs serves the
sole purpose of delaying the execution of τ6. For the second
injection at 6,750 µs, we observe that PBM gets activated
around 6,900 µs and preempts τ5. After executing for less than
its WCET, τ6 finishes and τ5 uses the remaining budget from
τ6 to successfully finish. In all three scenarios, ETM and PBM
effectively prevented task failures of the critical task τ6, while
the latter two scenarios demonstrate the transient ride-through
capabilities of PBM.

The two graphs in Figure 5 illustrate the permanent error
scenario for ETM and PBM. The graphs cover four full periods
of the task with the longest period in the system to better
observe the effect of the permanent error. In the first period
(5,000 µs to 6,000 µs), the error-free timing is shown. After
the first period, a permanent timing error is injected in τ5
at 6,250 µs. Figure 5a shows how ETM repeatedly detects
the error after τ5 has consumed its WCET and kills the
task. Figure 5b shows the same scenario for PBM, which
repeatedly detects an imminent error propagation from task τ5
to τ6 and prevents it by assigning τ6 its guaranteed execution
time budget. Both monitors, ETM and PBM are effective
in preventing task failures of the critical task τ6 that are
accountable to timing error propagation. At the same time,
ETM and PBM are incapable of mitigating the failure of τ5
that is evoked by its permanent error. To address such error
scenarios, we recommend to additionally employ a monitor

that provides complementary mitigation strategies, such as an
external watchdog.

C. Comparison of run-time overhead

Monitoring the timing behavior of tasks entails run-time
overhead whenever the monitor is invoked. In general, ETM
is invoked at task start, preemption, resume, and termination.
Correspondingly, PBM is invoked at task activation, start,
preemption, and resume. As our case study only has few
preemption/resume events, we focus our evaluation on activa-
tion, start and termination. It can be expected that the overall
overhead grows linearly for ETM and PBM alike for systems
with many preemptions, due to structural similarity of the
monitors.

Our measurements over 500 activation, 500 start and 500
termination events demonstrate a very constant run-time be-
havior. For both monitors, the monitor start (at each task
activation for PBM and each task start for ETM) consumes
2 µs on average, while the monitor stop routine (at each task
start for PBM and each task termination for ETM) consumes
2.2 µs on average. Therefore, the monitor overhead for one
period of a task’s execution is fixed at 4.2 µs for ETM and
PBM alike.

TABLE VI
MONITORING OVERHEAD FOR ETM AND PBM.

ETM, per PBM, per
Task ETmax Period Ti ETmax Period ETmax Period

τ1 24 µs 250 µs 17.5% 1.7% - -
τ2 38 µs 250 µs 11.1% 1.7% - -
τ3 113 µs 500 µs 3.7% 0.8% - -
τ4 9 µs 500 µs 46.7% 0.8% - -
τ5 13 µs 500 µs 32.3% 0.8% - -
τ6 12 µs 1,000 µs - - 35.0% 0.4%
τ7 16 µs 1,000 µs - - - -

Systemwide overhead 5.9% 0.4%

Table VI compares the overhead for ETM and PBM in
our test system. For ETM, each task with a higher priority
than the critical task τ6 requires monitoring, to prevent error
propagation to τ6, while for PBM, only the critical task
τ6 requires monitoring. In direct comparison to the tasks’
measured maximum execution time ETmax, the monitoring
overhead is between 3.7% and 46.7% per monitored task.

To put these figures into a systemwide perspective, a
comparison to the period of a task is more meaningful than
to ETmax because the period determines how often a task
(and thus its monitor) is executed. For ETM, the overhead
per period is between 0.8% and 1.7%, which results in
an aggregated systemwide overhead of 5.9%. For PBM, the
overhead per period is 0.4%, which results in an aggregated
systemwide overhead of 0.4%.

D. Summary

Our case study showed that PBM and ETM both protect
critical tasks from failures due to timing error propagation in



DRAFT

TR-T
UD-D

EEDS-03
-20

15

transient and permanent error scenarios. For transient errors,
only PBM enables non-critical tasks to perform a transient
error ride-through. In terms of overhead, PBM outperforms
ETM by a magnitude. The expected benefit of using PBM over
ETM in other scenarios largely depends on the distribution of
critical and non-critical tasks, with a preference for PBM in
scenarios with a low number, and for ETM in scenarios with
a high number, of critical over non-critical tasks.

VI. CONCLUSION

We have presented preemption budget monitoring (PBM),
a novel monitoring approach that guarantees freedom from
interference in the temporal domain to critical tasks in mixed-
criticality systems. We have implemented our approach as an
extension to the existing monitoring infrastructure of a widely
used, commercial AUTOSAR OS with a 0.9% increase in
binary code size and less than 0.1% increase in memory
consumption. The evaluation of our approach in an adaptive
cruise control scenario showed that PBM effectively prevents
the propagation of timing errors from non-critical to critical
tasks with a run-time overhead that is a magnitude lower than
existing approaches. PBM achieves these impressive results
by monitoring only critical tasks and avoiding the overhead
of monitoring non-critical tasks. Therefore, we expect PBM
to perform equally well for any mixed-criticality systems,
in which few critical tasks require protection from possible
failures of many non-critical tasks. Furthermore, in contrast
to existing approaches, PBM enables transient ride-through to
allow non-critical tasks to recover from transient timing errors
and thereby improves overall system reliability.

ACKNOWLEDGMENT

The authors would like to thank Tom Fuhrman (from
General Motors, Warren, USA) for his valuable feedback and
the interesting discussions. Research supported in part by DFG
GRK 1362, Loewe CASED and EC-SPRIDE.

REFERENCES

[1] A. Burns and R. I. Davis, “Mixed Criticality Systems - A Review,”
Department of Computer Science, University of York, UK, Tech. Rep.,
2014.

[2] R. N. Charette, “This Car Runs on Code,” IEEE Spectrum, Feb. 2009.
[3] J. Rushby, “Partitioning for Avionics Architectures: Requirements,

Mechanisms, and Assurance,” NASA Langley Research Center, NASA
Contractor Report CR-1999-209347, Jun. 1999.

[4] ISO 26262: Road vehicles – Functional safety, International Organiza-
tion for Standardization, 2011.

[5] A. Wasicek, C. El-Salloum, and H. Kopetz, “A System-on-a-Chip
Platform for Mixed-Criticality Applications,” in Proc. of the 13th IEEE
International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 2010.

[6] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “FlexPRET: A
Processor Platform for Mixed-Criticality Systems,” in Proc. of the 20th

IEEE Real-Time and Embedded Technology and Application Symposium
(RTAS), 2014.

[7] AUTOSAR, Technical Safety Concept Status Report, AUTOSAR Re-
lease 4.2.1, Document ID 233, 2014.

[8] D. Bertrand, S. Faucou, and Y. Trinquet, “An analysis of the AUTOSAR
OS timing protection mechanism,” in Proc. of the 14th IEEE Interna-
tional Conference on Emerging Techonologies and Factory Automation
(ETFA), 2009.

[9] D. Reinhardt and G. Morgan, “An Embedded Hypervisor for Safety-
Relevant Automotive E/E-Systems,” in Proc. of the 9th IEEE Interna-
tional Symposium on Industrial Embedded Systems (SIES), 2014.

[10] AUTOSAR (AUTomotive Open System ARchitecture), AUTOSAR.
[Online]. Available: http://www.autosar.org/

[11] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings,
“Fixed Priority Pre-emptive Scheduling: An Historical Perspective,”
Real-Time Systems, vol. 8, no. 2-3, pp. 173–198, Mar./May 1995.

[12] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, Jan. 1973.

[13] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization And Average Case Behavior,” in
Proc. of Real Time Systems Symposium (RTSS), 1989.

[14] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the Scheduling of
Mixed-Criticality Real-Time Task Sets,” in Proc. of the 30th IEEE Real-
Time Systems Symposium (RTSS), 2009.

[15] C. Ficek, N. Feiertag, and K. Richter, “Applying the AUTOSAR timing
protection to build safe and efficient ISO 26262 mixed-criticality sys-
tems,” in Proc. of Embedded Real Time Software and Systems (ERTS2),
2012.

[16] S. Vestal, “Preemptive Scheduling of Multi-Criticality Systems with
Varying Degrees of Execution Time Assurance,” in Proc. of the 28th

IEEE International Real-Time Systems Symposium (RTSS), 2007.
[17] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for Some Practical

Problems in Prioritized Preemptive Scheduling,” in Proc. of the 7th IEEE
Real-Time Systems Symposium (RTSS), 1986.

[18] C. Ficek, M. Sebastian, N. Feiertag, K. Richter, M. Jersak, and
K. Schmidt, “Software Architecture Methods and Mechanisms for
Timing Error and Failure Detection According to ISO 26262: Deadline
vs. Execution Time Monitoring,” in Proc. of the SAE World Congress,
no. 2013-01-0174, 2013.

[19] S. K. Baruah, A. Burns, and R. I. Davis, “Response-Time Analysis
for Mixed Criticality Systems,” in Proc. of the 32nd Real-Time Systems
Symposium (RTSS), 2011.

[20] S. Baruah, A. Burns, and R. I. Davis, “An Extended Fixed Priority
Scheme for Mixed Criticality Systems,” in Proc. of Real-Time Mixed
Criticality Systems (ReTiMiCS), 2013.

[21] AUTOSAR, Specification of Operating System, AUTOSAR Release
4.2.1, Document ID 034, 2014.

[22] A. Monot, N. Navet, B. Bavoux, F. Simonot-Lion et al., “Multicore
scheduling in automotive ECUs,” in Proc. of Embedded Real Time
Software and Systems (ERTS2), 2010.

[23] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Proto-
cols: An Approach to Real-Time Synchronization,” Computers, IEEE
Transactions on, vol. 39, no. 9, pp. 1175–1185, Sep 1990.

[24] R. Kirner and P. Puschner, “Classification of WCET Analysis Tech-
niques,” in Proc. of the 8th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), 2005.

[25] J. Gustafsson and A. Ermedahl, “Experiences from Applying WCET
Analysis in Industrial Settings,” in Proc. of the10th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), 2007.

[26] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Software Engineering Journal, vol. 8, no. 5, pp. 284–292, Sep.
1993.

[27] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, vol. 50, no. 1, pp.
142–177, Jan. 2014.

[28] AUTOSAR, Guide to Multi-Core Systems, AUTOSAR Release 4.1 Rev
3, Document ID 631, 2014.

[29] G. Morgan and A. Borg, “Multi-core Automotive ECUs: Software and
Hardware Implications,” ETAS, Tech. Rep., 2009.

[30] “Freescale MPC564xL: Qorivva 32-bit MCU for Chassis and
Safety Applications,” http://www.freescale.com/webapp/sps/site/prod
summary.jsp?code=MPC564xL.

[31] D. A. Wheeler, “SLOCCount: Tools for counting physical Source Lines
of Code,” http://www.dwheeler.com/sloccount/.

[32] “GNU Binutils,” http://www.gnu.org/software/binutils/.
[33] T. Piper, S. Winter, P. Manns, and N. Suri, “Instrumenting AUTOSAR

for Dependability Assessment: A Guidance Framework,” in Proc. of the
42nd IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2012.


