InfoLeak: Scheduling-based Information Leakage

Tsvetoslava Vateva-Gurova*, Salman Manzoor*, Yennun Huang' and Neeraj Suri*
*TU Darmstadt, CS Department, Germany
{vateva, salman, suri}@deeds.informatik.tu-darmstadt.de
tResearch Center for Information Technology Innovation, Academia Sinica, Taiwan
{yennunhuang} @citi.sinica.edu.tw

Abstract—Covert- and side-channel attacks, typically enabled
by the usage of shared resources, pose a serious threat to
complex systems such as the Cloud. While their exploitation
in the real world depends on properties of the execution
environment (e.g., scheduling), the explicit consideration of
these factors is often neglected.

This paper introduces InfoLeak, an information leakage
model that establishes the crucial role of the scheduler for
exploiting core-private caches as covert channels. We show,
formally and empirically, how the availability of these chan-
nels and the corresponding attack feasibility are affected by
scheduling. Moreover, our model allows security experts to
assess the related threat, posed by core-private cache covert
channels for a particular system by considering solely the
scheduling information. To validate the utility of InfoLeak, we
deploy a covert-channel attack and correlate its success ratio
to the scheduling of the attacker processes in the target system.
We demonstrate the applicability of the InfoLeak model for
analyzing the scheduling information for possible information
leakage and also provide an example on its usage.

Index Terms—information leakage model, scheduling, side-
channel attacks, covert-channel attacks, feasibility

1. Introduction

The first studies related to covert-channel attacks (CCAs)
and side-channel attacks (SCAs) go back decades [1], [2].
However, with the advent of Cloud computing their rele-
vance has even increased due to the inherent resource shar-
ing among different services and customers in the Cloud [3],
[4]. The access to shared resources (e.g., the L1 cache
targeted in this paper) is a prerequisite for CCAs and SCAs,
and the shared resource being exploited is termed as the
covert channel (CC) for the rest of the paper. As the CCs
are not explicitly designed to be used for communication,
SCAs and CCAs are hard to be detected using traditional
intrusion detection approaches.

As background, Millen [5] defined four major areas of
research in the field of CCs, namely: (i) explaining, (ii)
finding, (iii) measuring, and (iv) mitigating CCs. These areas
have been extensively explored where the research activities
focus on finding new ways to exploit a system through a

CC (e.g., [3], [6]), increasing the bandwidth of the covert-
channel communication (e.g., [7], [8]), or protecting the
system from such exploits (e.g., [9], [10], [11], [12], [13]).
As a CC fundamentally deals with information, develop-
ing accurate models of information leakage is of practical
relevance as such models can assist security experts in
analyzing the robustness of their systems against SCAs and
CCAs. Thus, developing a CC information leakage model
that can explicitly handle the considerations of the execution
environment, such as scheduling, is the focus of this paper.

1.1. Problem Statement

Although a variety of formal models for CCAs [14],
[15], [16] and SCAs [17], [18] exist in literature, they
primarily focus on the way the information is leaked for
specific attacker scenarios, and also on the achievable band-
width. However, there are various properties of the execution
environment (e.g., CPU scheduling, shared memory, etc.)
that can influence the feasibility of the attack, along with
the previously mentioned characteristics e.g., bandwidth [9],
[19], [20], [7], [8], [4], [3]. The impact of the execution
environment has been partially studied [20], [9], but the
execution environment’s properties are not incorporated in
any of the existing information leakage models. This conse-
quently impedes the systematic analysis of the threat posed
by the CC. Of particular interest is the role of the CPU
scheduler and its impact on the core-private cache CC!
exploitability.

Scheduling, as a fundamental resource allocation
schema, directly affects the synchronization for the accesses
to the CC and the channel’s availability, especially for
attacks using the core-private cache. As proper synchro-
nization is a prerequisite for a successful SCA or CCA,
scheduling has an effect on the feasibility and the bandwidth
of the covert-channel communication, as shown in [1], [9],
[20]. However, the lack of an information leakage model
that explicitly considers the impact of the scheduling exac-
erbates conducting a comprehensive system security covert
channel analysis, as it omits this crucial execution feasibility
consideration. Despite the merits of the existing information
models, they currently do not provide the means to (a) assess

1. ”CC” and “channel” are used interchangeably throughout the paper.



whether information leakage can possibly transpire in the
system, or (b) project its impact based on the available
scheduling information as a feasibility metric.

1.2. Contributions & Paper Organization

We develop an information leakage model, termed as
InfoLeak. To the best of our knowledge, InfoLeak is the first
formal model that considers the effect of CPU scheduling
on the consequent feasibility of SCAs and CCAs exploiting
the core-private cache. InfolLeak facilitates the systematic
reasoning regarding potential SCAs and CCAs threats, and
enables system designers to use the scheduling information
for assessing the information leakage feasibility or, conduct
SCA/CCA post-mortem analysis. Studying the influence of
the CPU scheduling is a key attribute behind the secu-
rity analysis, as the CPU scheduling can result in lack of
synchronization for the access to the channel and make
its exploit impossible. However, the direct integration of
the scheduling algorithm into the security analysis is not
straightforward due to the involved indeterminism. Thus,
InfoLeak aids security analysis by ascertaining the correla-
tion between the CPU scheduling traces which are available
and the success of a covert-channel exploit.

InfoLeak can help identify potential security breaches
related to the exploitation of the core-private cache as a CC
by using only the CPU scheduling information. It can serve
as an indicator for the possible presence of a covert-channel
attacker without neglecting the noise stemming from the
workload on the system caused by other processes. A thresh-
old for the amount of possibly transmitted or eavesdropped
information can be considered as a measure for the feasi-
bility of the attack, and used to raise an alert. This can help
detecting possible leakage and triggering respective actions
(e.g., informing the parties that might have been attacked or
de-scheduling the suspected process) or, conducting a post-
mortem analysis of a system being under attack.

To validate the proposed information leakage model, we
implemented and deployed a CCA and correlated the suc-
cess of the covert-channel communication with the schedul-
ing information for the attacker’s processes. In addition, we
demonstrate the utility of InfoLeak on a synthetic example
resembling a well-known SCA by showing how InfoLeak
can assist in identifying the given attack.

Paper Contributions: Overall, our contributions are: (i)
developing an information leakage model for core-private
cache-based SCAs and CCAs that explicitly considers the
scheduler’s influence on the attacks and allows for assessing
their feasibility given the system’s scheduling information
in Section 4, (ii) demonstrating the utility of the proposed
model by applying it to a state-of-the-art example in Section
5, and (iii) empirically validating the proposed model by
applying it to a L1 cache-based CCA and using the available
scheduling traces in Section 6.

Key Findings: The experimental results show a strong
positive correlation of 0.8 between the successful transmis-
sion of bits over the core-private cache CC, and a favourable

scheduling in the context of CCAs considering the avail-
able scheduling traces in a setup with CPU load of 40%,
and a strong positive correlation between the successful
transmission of 0.44 in a setup with 80% CPU load. This
ascertains the usefulness of the usage of scheduling traces as
a feasibility metric for cache-based covert-channel exploits,
and as an upper bound of possible information leakage.

2. Related Work

The first part of this section reviews the contemporary
SCAs/CCAs exploiting the cache as a CC, and presents
formal modeling approaches in the SCA/CCA area. Then,
works considering the CPU scheduling effect on the feasi-
bility of these attacks are discussed.

2.1. Side- and Covert-Channel Approaches

A variety of SCAs and CCAs exploiting the cache as
a CC have been demonstrated in both virtualized and non-
virtualized environments. These attacks usually apply either
the Prime+Probe technique [4], [3], [7], or the Flush+Reload
technique [21], [22], [23] to acquire secret data.

The Flush+Reload attacks typically rely on the existence
of shared memory between the victim and an attacker (e.g., a
shared library). Although these attacks represent a powerful
way to leak information, they are not in the focus of our
paper, as they can be prevented by disabling the possibility
that the victim and the attacker share memory. This preven-
tive measure has already been considered in the real world
and applied in practise (cf., [24]).

The attacks exploiting the Prime+Probe technique typi-
cally employ a process accessing the whole cache repeatedly
and measuring the accesses to the different cache parts. The
attacks considering the core-private caches are the main
concern of this paper. Important works, employing this
technique, were proposed in [4], [7], exploiting the L1 and
L2 caches, respectively.

2.2, Information Theory and Covert Channels

Shannon pioneered applying information theory to an-
alyze communication flows and provided [25] an extensive
mathematical model for communication over discrete com-
munication channels. Lampson characterised a number of
leakage sources in [2], and classified the leakage channels
into storage-based, legitimate and covert. His work proposed
confinement rules to prevent leakage, but they are restrictive
to apply in practice.

Kemmemer [26] investigated information flows through
illegitimate channels and proposed a methodology to in-
crease system’s security by finding all possible CCs through
a shared resource matrix. He introduced criteria for iden-
tifying both storage and timing channels. In [27], Wray
argued that this classification of CCs to (i) storage and (ii)
timing, as presented in [26] is not representative enough.
Instead, he considered a CC as a channel with storage and



timing attributes, and defined a clock as being characterized
by sequences of events which can be distinguished from
each another. As both approaches require the exhaustive
enumeration of all shared resources or clocks, they are not
practically feasible. The CC detection depends on the level
of granularity to which the system is analyzed, as a system
level information leakage model is lacking.

The Bucket model for microarchitectural information
channels was presented in [15] aiming to cover all the char-
acteristics of the microarchitectural channels and to detect
attackers. However, the proposed model suggests a different
attacker model than the commonly used one in CCAs.
In [15] the communicating entities are not adversaries of
the system. Instead, a third party is assumed to eavesdrop
their communication through the CC. This work also does
not explicitly consider the system’s operational parameters.

Lee et al. also focused on modeling CCs and estimating
CC capacity in [28], [29]. The authors asserted that covert-
channel communication is intrinsically not synchronous. In
[28], [29], the CC is represented as an insertion-deletion
channel to reflect upon the communication degradation due
to the lack of synchronization. We consider this observation
as crucial for the cache-based CC analysis, as the syn-
chronization errors in the CC are not negligible. Thus, we
consider both works as a starting point for our analysis.

2.3. The Effect of Execution Environment

Hu [30] noted the importance of synchronization for
the covert-channel exploits, and proposed a method for
significantly decreasing the capacity of the CC by using
fuzzy time system clocks. His approach disabled proper
synchronization between the communicating parties by en-
suring that the receiver process does not have access to an
accurate reference clock. Hu experimentally demonstrated
that the capacity of the channel is reduced, but his approach
prevents processes from accessing an accurate time source
which might be needed.

In [31] Gray noticed that the channel capacity depends
on the assumptions about the execution environment. The
author modeled system’s and environmental’s probabilistic
behavior independently and expressed channel’s capacity in
information theoretical terms. He considered the system as a
finite set of states along with a set of communication chan-
nels providing interface to the external environment. Gray’s
work does not focus on how to use scheduling information
to obtain information about possible covert communication,
Gray’s distinction between system under consideration and
the environment in which the system is executing is very
important for the covert- and side-channel analysis. Gray
used this distinction in [14] to obtain an upper bound on
the capacity of the CC under fuzzy time as introduced by
Hu in [30].

Works considering the synchronization (i.e., the schedul-
ing effect) as a challenge or even feasibility aspect for
conducting SCAs and CCAs were published in e.g., [4],
[6], [20]. The authors of [4] describe how they manage

to synchronize and overwhelm this challenge by using in-
terprocess interrupts. The scheduling policy was also used
as a defense mechanism against cache-based SCAs in the
research described in [9]. Although works related to the
impact of scheduling on the accesses to the CC exist, there
is no comprehensive, systematic analysis on the topic that
might be applied on varied systems to analyze the covert-
channel threat using the scheduling information.

3. Covert Channels:
Models

System and Attacker

This section presents InfoLeak’s system model along
with the CCA’s and SCA’s attacker models focusing on the
core-private cache as a CC.

3.1. System Model

Both SCAs and CCAs compromise the confidentiality
of a system i.e., confidential information is conveyed to a
malicious party. Often the core-private caches get misused
as a CC. The cache-based SCAs and CCAs are relevant for
both virtualized and non-virtualized environments, though in
the virtualized environment an additional layer is assumed
to provide isolation among the virtual machines. In practice,
it is solely an additional source of noise in the CC.

We propose an information leakage model that is appli-
cable to both environments by abstracting from the software
layers. Our system model is thus narrowed down to focus
only on the core-private cache as a CC for communication
between processes running on the system, as shown in
Fig. 1. The cache is small memory enabling fast access to
frequently used data. The processors are typically charac-
terized by a hierarchy of caches where the last level caches
(LLC or L3) are the slowest and largest, and the core-private
level 1 (L1) caches are the smallest and fastest. Depending
on where the requested data is stored (cache level or main
memory), accessing it is faster or slower. If the data is
available in the cache, a cache hit takes place. In case of
a cache miss, the data has to be fetched from the main
memory and copied into the cache. The timing difference
between a cache miss and a cache hit is often a premise
for the exploits of the cache as a CC. We are focusing on
CCAs/SCAs where the information is transmitted through
the footprint a sending process (or a victim) leaves on the
core-private cache. The sending and receiving processes can
be any arbitrary non-privileged processes using the same
core-private cache.

Process, Process, Software

. Hardware
core-private cache a

(covert channel)
CPU

Figure 1. System model.



3.2. Attacker Model: The Covert-Channel Exploits

To illustrate the similarities between SCAs and CCAs,
we utilize the channel notion introduced by Shannon [25],
and define message, information source, transmitter, signal,
noise source, receiver and destination for each attack type.

An SCA involves a victim and an attacker, whereas
a CCA is characterized by two cooperating attackers — a
sender and a receiver. As depicted in Fig. 2 (using red
color), the SCA victim (i.e., information source) uninten-
tionally encodes secret data into the channel. This data is the
message being transmitted. In a CCA (cf., Fig. 2 using blue
color), the message is the information the sender (i.e., infor-
mation source) intentionally transmits to the receiver. The
transmitter encodes the message into the channel. This role
is taken by the victim’s (SCA) or sender’s (CCA) process
leaving its footprint into the core-private cache. Intuitively,
for both attack types, the signal is the respective footprint.
The receiver is the attacker’s process trying to analyze the
sampled cache footprint of the victim’s or sender’s process.
The destination is the attacker eavesdropping on the victim’s
data or receiving sender’s data. Noise source can be any
process other than the victim’s/sender’s process that interacts
with the core-private cache.

sender SCA/CCA receiver
(victim/attacker) (attacker)
| message message 4
encode cache-based
(un)intentional covert channel decode

Figure 2. Side- and covert-channel attack distinction.

For simplicity, we refer to both the SCA’s victim process
and the CCA’s sender as the sender, and to the SCA’s
attacker process and the CCA’s receiver as the receiver.
Without loss of generality, we model the communication as
a one-way process where the information is only conveyed
from the sender to the receiver. The sender is not restricted
to a particular user of the system and does not need any
special privileges. Thus, the same user might be both sender
or receiver at different points in time. As the core-private
cache is used in the same way to transmit information in
both CCAs and SCAs, a proper synchronization is needed in
both cases. Ideally, the receiver accesses the channel directly
after the sender. As InfoLeak focuses on the channel itself
and the synchronization issues related to its usage, it is
applicable to both SCAs and CCAs.

The focus of this paper is on the core-private caches as a
CC. As these caches are relatively small in size, their content
is often overwritten. Thus, we consider the studied channel
as a discrete memoryless communication channel.> where
the output probability distribution only depends on the cur-
rent channel input. Moreover, as not each input symbol to
the CC is received due to synchronization errors, we model
the core-private cache channel as a discrete memoryless
channel with synchronization errors.

2. This parallels the established information leakage models [28], [32]
that model a CC as a memoryless synchronous channel with or without
noise.

4. Modeling the Cache Covert Channel

This section presents our information leakage model,
called InfoLeak. InfoL.eak formally describes how the covert
channel is exploited, and how its exploitation is affected
by the CPU scheduling. We adopt the established definition
of a covert channel, and consider it as a communication
channel stemming from the usage of shared resources that
is not intended to be used as such by the designers of the
system and does not require special privileges to be used.
As mentioned earlier, our focus in on the core-private cache
as a covert channel.

4.1. Covert Channel Users

InfoLeak defines three user categories that interact with
the covert channel, namely the sender, the receiver and
other processes, abbreviated respectively as S, R and O.
Each of the user categories can access the core-private cache
and change its state. While S accesses the channel to send
information (on purpose as a CCA attacker or unintention-
ally as an SCA victim), O is not necessarily aware of the
existence of this communication channel and encodes only
noise into it. R accesses the channel on purpose to obtain
the information sent by S, but similarly to O, encodes only
noise into the channel.

4.2. Covert Channel States

Through their actions (i.e., cache accesses), the cache
users change the state of the covert channel. Hence, we
differentiate between the cache states O; (observation;) that
correspond to cache patterns which encode meaningful in-
formation to R, and a state U for undefined. U can be
considered as the state resulting from noise perturbations
in the channel. Noise can occur, e.g., if S had encoded
information into the channel but this information has been
overwritten by another process (i.e., O) before R could
decode it. In such a case, S and R are not synchronized
well, possibly due to the scheduling effect. As an example, a
CCA scenario can be characterized by two predefined cache
footprints representing bits 0 and 1 being transmitted. Then,
the states the cache exhibits are O; and O- (mapped to bits
0 and 1), and the undefined state U.

4.3. Covert Channel Interactions

To model the interactions with the channel, we employ
a non-deterministic finite automaton (NFA) A. The states
of the channel are represented as states in the NFA and the
interactions of the users with that channel trigger transitions
in the NFA. A = (@, X%, A, qo, F') consists of:

« a finite set of states Q = ObU {U}, where Ob =
UG{O;} for N € N;

o a finite set of input symbols X = {s,r, 0};

o an initial state ¢o = U,

o a set of accepted states F' = {U};



TABLE 1. NFA A TRANSITION FUNCTION.

Input Symbol

S T o
O; Ob U U
State U ob EU% EU%

o a transition function A : (Q x ¥) — 29, as defined
in Table 1.

The set of input symbols ¥ corresponds to the user
responsible for triggering a transition. S, R and O trigger
transitions s, r, and o, respectively. We assume that S
always encodes information into the cache. Hence, S always
changes the state of the channel to O; with its transitions, as
depicted in the NFA in Fig. 3 (cf., s-transitions). For exam-
ple, in a CCA, S can send one bit or a symbol at a time to R
by leaving recognizable cache footprints. The r-transitions
in the NFA in Fig. 3 illustrate the channel state changes
induced by R, aiming to decode the encoded information.
If S and R are synchronized, R causes a transition from a
state O; to the state U. This corresponds to R receiving
information and producing noise in the channel through its
decoding operations. As the operation of receiving informa-
tion is then successful, U is a part of the accepted states F'.
Since R’s interactions with the channel always correspond
to noise perturbations, the r-transitions lead to the undefined
state U, as shown in the NFA in Fig. 3.

1 r,0 = T0
T, =TT
raZ —rZ
0,0 — 00
o, — or
0,72 — oZ
2 s —e
0,8 — 0S8
3 s, 0 — so
s, —> ST
s, Z — sZ
4 S,8 — so

Figure 3. NFA A (left) and P’s stack (right).

It can be noticed that the transitions triggered by O
(o-transitions in Fig. 3) are the same as those triggered
by R. Both R and O produce only noise into the covert
channel and, their transitions lead to state U. Still, for the
further analysis, we need to differentiate between O and
R due to R’s intentional usage of the channel in contrast
to O’s unintentional interaction with the channel. To avoid
complicating the model unnecessarily, we assume that the
cache is in an undefined state before the attack. Thus, U is
the initial state of A.

4.4. Scheduling
Channel Exploits

Effect on the Cache Covert-

A prerequisite for the success of cache-based CCAs
and SCAs is the synchronization between S and R. Thus,
the effect of the CPU scheduling determining which pro-
cess is running on which core is crucial for the CCAs
or SCAs success especially when using the core-private

cache. To model this scheduling effect, we extend the
NFA A to a non-deterministic pushdown automaton (PDA)
P =(Q, % T, 0, q, Z, F)by adding a stack. Hence, we
define additionally an initial stack symbol, a stack alphabet
and a new transition function, as follows.

o a stack alphabet T' = {Z} U{s, r, o};

e a transition function § : (Q x ¥ x ;) — 2@*Te,
defined in Table 2;

e an initial stack symbol Z;

TABLE 2. PDA P TRANSITION FUNCTION.

Trans.# Transition

1 (U, s, 2)= U {(0;,52)}
2 5(0i, s, 8) = UK {(0i,s0)}
3 5(U, s, r) = U {(O;,s7m)}
4 (U, s, o) = UN?' {(0;,50)}
5 68U, r, Z2) ={(U,rZ)}

6 8(0;, 1,8) = {(U, &)}

7 8(U, r, r)={(U, rr)}

8 8(U, r, o) ={(U, ro)}

9 6(U, o, Z)={(U,02)}

10 6(0;, o, s) ={(U, os)}

11 8(U, o, ) ={(U, or)}

12 (U, o, o) = {(U, oo)}

The finite set of states in P, () is detailed in Section
4.2. InfoLeak uses ¢ to denote that the element at the top of
the stack is popped, and no new element is pushed onto the
stack (i.e., the stack is popped). In the proposed model with
each move an input symbol is read, and the element at the
top of the stack is read and popped. Then, a string consisting
of the popped element and a new element, or ¢, is pushed
onto the stack, so that the new element is on the top of the
stack. P’s transition function, (cf., in Table 2), takes a state,
an input symbol (no e-transitions considered) and a stack
symbol (which can be £ and denotes the element on the top
of the stack) as an input. The triple is mapped to a set of
states and a set of stack symbols where the first element
denotes the top of the stack (e.g., s in sZ is the element on
the top of the stack). Fig. 3 visualizes the changes in the
states along with the respective stack operations.

The transition r,0 — ro in Fig. 3 shows that o is
currently on the top of the stack, and r is the input element.
The new topmost element in the stack is r while the state U
remains unchanged (see the NFA in Fig. 3). This behavior
is defined by Transition 8 in Table 2. The only success-
ful transmission of information corresponds to a transition
r,s — € (cf., first row of Transition 2 in Fig. 3 or Transition
6 in Table 2). In this case, we pop the stack. The symbol
s is read and popped and no new element is pushed onto
the stack. A transition from a state O; to the state U takes
place, as R accesses the channel directly after S.

If an s in the stack is followed by another s (cf.,
Transition 2 in Table 2), or by an o (cf., Transition 10 in
Table 2), the sent information is overwritten, as the cache
footprint will be changed before the receiver has analyzed
it. Thus, if an s is on the top of the stack, and another s
comes, the first s is popped and “’substituted” by an so (cf.,
Transition 2 in Table 2).



The idea behind InfoLeak is to incorporate the order
of the interactions with the channel (i.e., CPU scheduling
effect) into the model. Thus, anytime S, R or O interacts with
the channel, a state change is triggered. InfoLeak’s states
correspond to the view on the core-private cache from an
observer’s perspective, and allow for encoding information
of different granularity into the channel through the states
O;, as it abstracts from details such as specific footprints.
This makes the model applicable to both the SCA and CCA
scenarios. For instance, it can be generalized to include cases
where symbols instead of single bits are transmitted in a
CCA, e.g., by adding a new state O; in the NFA for each
additional symbol and considering a single undefined state
U.

An estimate of the bandwidth of the attack can also
be inferred by keeping track of the number of successive
times the stack has been popped over certain time period.
An empty stack indicates that all the sent information was
received and there was no contention on the cache with other
processes. From a stack of a large size, it can be inferred
that either there were too many other processes interacting
with the cache, or that S and R were not synchronized. A
threshold can be defined for the number of successive times
the stack has been popped and can be used as a measure
for the feasibility of CCAs and SCAs.

5. InfoLeak Application Scenario

To show the utility of InfoL.eak, we apply it to a synthetic
example, resembling a well-know SCA. Then, we provide
insight on how InfoLeak can be applied for a post-mortem
analysis to investigate covert-channel communication.

5.1. An Example of InfoLeak’s Utility

To present an example, we simulate the SCA proposed
in [4] by Zhang et al. and model it using InfoLeak. In
the described work, the attacker abuses the scheduler to
interrupt the victim frequently enough to be able to obtain
sufficient observations on victim’s cache footprints. The
attacker collects vectors of 64 values each representing the
timings for accessing the 64 cache sets and maps them
to the Square (S¢q), Multiply (M) or ModReduce (M R)
operations of the square-and-multiply algorithm used for fast
exponentiation. Based on these observations, the attacker
can extract victim’s secret key. To model the attack using
InfoLeak, we consider the Sq, M and MR as the channel
states O; in the NFA P, as shown in Section 4. Intuitively,
the cache footprints that represent a squaring operation
are mapped to the state Sq. Analogously, the states M
and MR correspond to the cache footprints representing
a multiply and modular reduction operations, respectively.
The resulting NFA is shown in Fig. 4.

Ideally, two successive observations on this channel
reveal one secret key bit, if the bit is a 0. For revealing
a bit 1, the attacker needs four successive observations on
the channel directly after the victim. Thus, if the bits of the
secret key are normally distributed, the attacker would need

Figure 4. Example SCA.

three successive observations on average to extract one bit.
This results in the sequence s-r-s-r-s-r in InfoLeak, i.e.
popping the stack three successive times. Having this in
mind, a threshold can be set to indicate the feasibility of
the SCA in the system. The scheduling information can be
analyzed for the successive scheduling of any two processes
considering this feasibility threshold. In [4], the frequent
interrupts caused by the attacker will be visible in the
scheduling information and can be used as an indication
that an attack was feasible. It must be noted, that few bits
might lead to leaking a secret key if the SCA is combined
with another attack. Still, it would be more beneficial for an
attacker if the bits are successive. This observation can be
used to accordingly adjust the feasibility threshold.

5.2. Post-Analysis of Scheduling Information

InfoLeak can be applied to analyze the scheduling log
of the operating system for suspicious cache-based covert
communication, as well. The suspicious processes can be
represented as an S and an R, and the rest of the processes
— as O’s, as described in Section 4. By applying InfoLeak
transitions to the scheduling log, we can build a stack of
s’s r’s and o’s, where s and r correspond to the transitions
changing the cache state triggered by the two suspicious
processes. All other processes in the scheduling log repre-
sent noise. Considering the number of successive popped s’s
over certain time period, can give an estimate of the feasible
bandwidth of the leakage that might have happened.

While identifying suspicious behavior is a challenging
task, certain hints could help uncover it. Suspicious behavior
could be, for instance, any process pair consisting of two
CPU intensive processes, running (almost) always on the
same CPU core or a process issuing frequent inter-process
interrupts. In addition, if it is noticeable that two processes
try to synchronize their operations, they might also be trying
to exploit the cache as a CC.

6. Validation

To empirically validate InfoLeak’s utility, we employ a
CCA using the L1 cache, and correlate its success ratio to
the CPU scheduling of the attacker processes. This section
provides details on the attack implementation, the experi-
ments and concludes with a discussion on the results.



6.1. Implementation Details

Our CCA adhere to the Prime+Probe protocol, as de-
scribed in [33], and consists of a sender and a receiver
processes. They communicate with each other by indirectly
accessing the L1 cache, and have agreed on the meaning
of distinct cache footprints which are used for transmitting
the bits 0 and 1. Each of the processes allocates memory
of the size of the L1 cache (32KB). Through this memory,
the sender and the receiver try to encode and decode the
predefined cache footprints representing the bits 0 and 1.

In our implementation, the sender encodes one bit of
information at a time into the channel by accessing a subset
of the L1 cache. To send a bit, the sender accesses specific
parts of the allocated memory that are copied into predefined
cache sets. In that way, the sender evicts the receiver’s data
that had been in this part of the cache, and fetches other
data from the main memory or from the higher cache levels
to the L1 cache. To decode a message, the receiver accesses
the cache through its allocated memory and measures the
time for the accesses. Depending on the consumed time,
the receiver can assess which cache parts have been evicted
by the sender. In that way, the receiver determines the cache
footprint and whether the cache state corresponds to bit 0,
bit 1 or undefined, as detailed in Section 4.

The conducted attack consists of a training and a testing
phase. In the training phase we collect ground truth data
regarding the consumed clock cycles when accessing the
parts of the cache corresponding to bits 0’s and 1’s.

To obtain a reliable time reference, we sample the times-
tamp counter hardware register TSC. As both the compiler
and the processor do not guarantee executing the instructions
in their original order, we try to enforce them to respect
the order. Thus, we use volatile as a memory barrier and
the CPUID instruction for serialization. The out-of-order
execution was considered also by Timor et al. in [34].

As discussed in [35], conducting a CCA is complicated
through the distinction between physical and virtual memory
addresses. Our sender and the receiver processes do not have
any special privileges, and have a view only on the virtual
addresses of their allocated memory blocks. Although this
complicates accessing particular cache parts, it is still possi-
ble to access specific L1 cache sets by conducting operations
with specific parts of the allocated memory blocks.

To ensure that the sender and the receiver use the same
L1 cache, they request to be scheduled on the same CPU
core through scheduler’s setaffinity option. We assume that
they have agreed on the usage of a specific CPU core in the
same way they have agreed on the meaning of the cache
footprints.

6.2. Experimental Setup

In the testing phase of our attack, we conducted ex-
periments on a Debian Stretch in noiseless and noisy en-
vironments. A CCA 1is run 100 times to transmit messages

of length 1200° sent by the sender in varied setups. The
receiver tries to decode the sent data by accessing the
whole L1 cache 1200 times per experiment. In our setup
the measurements are done by an assembly program, and
the decoding is conducted offline by scripts once the access
times have been collected, so that receiver’s decoding does
not interfere with or invalidate the measurements, as the L1
cache is very sensible to noise.

Simultaneously, the CPU scheduling information is
logged in a file. To acquire this information, we make use
of the tracing options provided by /sys/kernel/debug/tracing
in Debian and set the context switch event to enabled. We
parse these logs to represent them as the InfoLeak stack
(cf., Section 4), and correlate the attack’s success ratio to
the scheduling log. To assess the correlation between a
successful transmission of information and the scheduling
of the receiver’s process directly after the sender’s process
statistically, we employ Pearson’s correlation coefficients.
As independent and dependent variables, we use the number
of favourable scheduling cases, i.e., the receiver is scheduled
directly after the sender, corresponding to the number of
s,r — € -transitions (cf., Table 2) per experiment, and the
number of successfully transmitted bits over the channel
per experiment, respectively. Furthermore, using InfoLeak
we give a capacity estimate of the channel in mathematical
terms.

6.3. Empirical Analysis

Noiseless environment.. To minimize the noise in
the channel, we dedicate one CPU core solely to the receiver
and sender using the isolcpus parameter. For all experi-
ments, only 11 bits on average were not properly decoded.
The favourable scheduling cases were 1199 on average with
a standard deviation of 0.89. For comparison, the mean value
of the successfully transmitted bits is 1189 with a standard
deviation of 4.151. Table 3 shows a summary of the results.

TABLE 3. RESULTS SUMMARY - NOISELESS SETUP.

Conducted experiments 100

Receiver operations (avg) 1200
Sender operations (avg) 1200
Receiver actually scheduled (avg) 1202
Sender actually scheduled (avg) 1201
Favourable scheduling cases FSC (avg) 1199
Standard deviation for FSC 0.89

Successfully transmitted bits STB (avg) 1189
Standard deviation for STB 4.151

The relationship between the successfully transmitted
bits and the favourable scheduling is visible in Fig. 5.
Each point in the linechart represents one experiment. The
blue plot depicts the number successfully transmitted bits
per experiment, and the red plot illustrates the number of
favourable scheduling cases per experiment. Due to the low

3. Chosen for statistically significant coverage and represents 120,000
cases.



noise, the receiver was almost all of the 1200 cases sched-
uled directly after the sender. The ratio of the successfully
transmitted bits is also high due to the lack of contention
for the channel and the atomicity of the sender and receiver
operations.

1400 T T T
#favourable scheduling cases —e—
#successfully transmitted bits ———

1300 —

1100 — —

1000

900 I I I I
0 20 40 60 80 100

Experiment #

Figure 5. Noiseless setup. Correlation between #favourable scheduling
cases (red) and #successfully transmitted bits (blue).

The similarity between the two plots confirms the influ-
ence the CPU scheduling has on the CCA’s success. The
small discrepancy in the values that are slightly visible in
the linechart Fig. 5 are due to the few cases in which the
send and receive operations were not atomic. The receiver
and sender were scheduled 1202 and 1201 times on average,
respectively, instead of 1200 times. As there are only few
such cases, InfoLeak can still reliably assist in providing an
upper bound on the CC capacity. The results are summarized
in Table 3.

Noisy environment.. To apply InfoLeak in a more
realistic scenario, we conducted 200 experiments in a noisy
setup simulating load on the system with the stressing tool
stress-ng. We considered background load levels of 40% and
80% for each of the CPU cores.

TABLE 4. RESULTS SUMMARY - NOISY SETUP.

40% 80%
Conducted experiments 100 100
Receiver operations (avg) 1200 1200
Sender operations (avg) 1200 1200
Favourable scheduling cases FSC (avg) 1138 905
Standard deviation for FSC 134 266
Min FSC (over all experiments) 534 255
Max FSC (over all experiments) 1201 1201
Successfully transmitted bits STB (avg) 934 534
Standard deviation for STB 225 200
Min STB (over all experiments) 289 194
Max STB (over all experiments) 1194 1030
Pearson correlation coefficient 0.8 0.44

For the 100 experiments with load of 40%, 934 bits on
average were successfully transmitted, and in 1138 cases on
average, the scheduling was favourable for the sender and
the receiver (average number of s, — ¢ - transitions).
The standard deviation for the successful bit transmissions
is 225, and for the favourable scheduling it is 134.

In the more noisy environment with load of 80%, for
the 100 experiments, 535 bits on average were successfully
transmitted, and the favourable scheduling cases were 905
on average. The standard deviations are 200 and 266, re-
spectively. The respective minimal and maximal values for
successful transmission and favourable scheduling are given
in Table 4 along with a summary of the results.

T —]

1600 [~ T T
#favourable scheduling cases —e—

1400 |~

#successfully transmitted bits ———

1200

1000 [

800

600

400

200 —

0 20 40 60 80 100

Experiment #

Figure 6. Workload 40%. Correlation between #favourable scheduling
cases (red) and #successfully transmitted bits (blue).

The relationship between the number of successfully
transmitted bits and the favourable scheduling for both loads
is depicted in Fig. 6 and Fig. 7. Each point in the linechart
is a representation of a single experiment consisting of 1200
receiver operations. The blue plots show the number of
successfully transmitted bits for each of the 100 conducted
experiments per linechart. The red plots in the figures show
the number of favourable scheduling cases per experiment.
As noticeable from the similar trends of the linecharts, there
is a possitive correlation between the scheduling and the
success of the attack. Calculating the Pearson’s correlation
coefficient we obtain a very strong positive correlation of
0.8, and a strong positive correlation of 0.44 for the 40%-
and the 80%- setups, respectively.

1600 [~ T T T
#favourable scheduling cases —e—
1400 |~

#successfully transmitted bits ———

1200

1000

800

600

400

200

0 20 40 60 80 100

Experiment #

Figure 7. Workload 80%. Correlation between #favourable scheduling
cases (red) and #successfully transmitted bits (blue).

The results listed in Table 4 show that the more noise in
the CC, the weaker the correlation between the successful
transmission and the favourable scheduling. This relies on
the atomicity assumption of the sender and receiver opera-
tions that InfoLeak considers. In the more noisy setup, the



sender is scheduled only 982 times on average, and the
receiver is scheduled 1178 times on average which affects
the successful transmission. In such cases, although the re-
ceiver is scheduled directly after the sender, the transmitted
bits cannot be properly decoded. However, the favourable
scheduling cases can still be used as a feasibility metric of
the attack, as the scheduling traces nevertheless provide an
upper bound on the feasible capacity of the channel.

6.4. Summary of Results

In the validation, we demonstrate that using InfoLeak
it is possible to derive an upper bound of the capacity of
the L1 cache channel between two processes, as there is a
correlation between the number of consequent occurrences
of the sender and receiver to the success ratio of the attack.
Thus, a capacity estimate can be obtained by counting the
number of the s,r — & - transitions.

We compute the capacity (C') of the channel used for the
experiments theoretically using the mutual information (/)
between the sender and the receiver processes. Considering
uniform probability distribution of the input, we calculate
C, as shown in Eq. 1 and described in [25]. The input
and output probabilities, p(x) and p(y), respectively, are
employed in the capacity computation.

Czlzzzp(%y)log(%) 1)

In our scenario, the input values are bits 0 and 1, and the
output values are 0, 1, and U. Assuming that the sender
sends bits 0 and 1 with equal probabilities, then it holds
that p(z) = 1/2. Considering InfoLeak, we obtain a pa-
rameterized probability distribution for the CCA presented
in Section 6.1 with a parameter p_sched where p_sched
denotes the probability of favourable scheduling between the
sender and the receiver. As InfoLeak considers the transi-
tions resulting in incorrectly decoding of bits as improbable,
it holds that p(y|z) = 0 for the respective cases. The result
of the capacity computation is C' = p_sched.

Using our empirical results for the 40%-load scenario,
we estimate p_sched as the ratio between the number
of favourable scheduling cases and the overall scheduling
of the receiver. Thus, the capacity of the channel C =
p_sched = 0.98 bits per channel usage. To compare this
result with the success of the attack, we calculate B denoting
the ratio between the successfully transmitted bits and the
number of receiver’s accesses to the channel. Using our
empirical data, we obtain B = 0.78. This confirms that
InfoLeak gives an upper bound on the channel capacity and
can be used to derive a feasibility metric.

Noisy vs. noiseless environment. In all the se-
tups the validation demonstrated a correlation between the
scheduling of the sender and receiver and the success ratio of
the employed CCA. In the most noisy setup, the favourable
scheduling cases were 905 on average out of 1200 performed
decoding operations per experiment. This resulted in 534
successfully transmitted bits on average. This resulted in a

strong positive correlation of 0.44 between the scheduling
and the success of the attack. In the setup with 40% load the
Pearson’s correlation coefficient computation resulted in a
very strong positive correlation of 0.8. In the noiseless setup,
the mean value of the successfully transmitted bits was 1189,
and the mean value of the number of favourable scheduling
cases of the receiver process was 1199. In summary, in both
setups, InfoLeak provided an upper bound of the capacity
of the information leakage.

6.5. Discussion & Extensions

This paper defines CCs as discrete memoryless channels
similar to [28], [32], and this consideration has an impact
on the presented model. Hence, InfoLeak models covert-
channel communication where each send, receive or other
operation on the core-private cache “erases” its previous
data, and previous states do not influence the capacity of
the channel. As the core-private caches are relatively small,
this assumption is valid as was demonstrated in Section 6.

TABLE 5. PDA P TRANSITION FUNCTION - EXTENDED MODEL.

Trans.# Transition

6.1 3(0_i, r, sn) ={(U,e)}

13 5(0_i, o, s) = {(O_i,sn)}
14 6(0_i, o, sp) = {(U,o0sn)}
15 3(0_i, s, sp) = {(O_i,s0)}

Howeyver, InfoLeak is extensible to also address channels
with memory. We give an example considering a history of
one operation, and add an additional symbol s,, (n for noise)
to the stack alphabet (i.e., I' = {Z} U{s, s,, r, o}) for
sending operation perturbed by noise. This symbol models
the case when after an S, another process O causing noise
has interacted with the CC. In this case we assume that the
sent bit can still be decoded if R interacts with the channel
directly after O. To address this case, the transitions in Table
2 simply need to be extended by the transitions shown in
Table 5. This extension is only needed to model channels
with memory, and not detailed here.

7. Conclusion

Being easily accessible without any special privileges,
the core-private caches are often reported as a convenient
CC. Although the relevance of this CC has been demon-
strated, the feasibility of its usage for attacks can be influ-
enced by varied factors e.g., the CPU scheduling.

In this paper, we proposed InfoLeak, an information
leakage model focusing on the scheduling effect on the
core-private cache exploitability as a CC. We comprehen-
sively elaborated how these exploits can be impaired by
the scheduling of the sender and the receiver processes,
and integrated the impact into the proposed formal model.
InfoLLeak can assist in investigating a system regarding
possible information leakage through the core-private cache,
and can give an approximation on the leakage by the



scheduling information post-mortom. To validate InfoLeak,
we conducted experiments with a L1 CCA in noisy and
noiseless environments. Our results discern that there is
correlation between the successful transmission and the
favourable scheduling of the sender and receiver, and the
scheduling traces can be used to detect possible CC leakage.

Cache-based CCAs and SCAs are increasing in occur-
rence due to their relevance in virtualized environments
(e.g., the Cloud). By modeling the relationship between
cache-based information leakage and the CPU scheduling,
InfoLeak helps systematically ascertain efficient ways to
address core-private cache covert-channel threats, and to
facilitate security enhancement in shared resource systems
such as the Cloud.

Acknowledgment

Research supported in part by EC H2020 MSCA-ITN
NECS GA #675320 and EC H2020 CIPSEC GA #700378.

References

[1] W. M. Hu, “Lattice Scheduling and Covert Channels,” in Proc. of

Symposium on Security and Privacy, 1992, pp. 52-61.
(2]

B. W. Lampson, “A Note on the Confinement Problem,” Commun.
ACM, vol. 16, no. 10, pp. 613-615, 1973.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You,
Get off of My Cloud: Exploring Information Leakage in Third-party
Compute Clouds,” in Proc. of CCS, 2009, pp. 199-212.

Y. Zhang, A. Juels, M. Reiter, and T. Ristenpart, “Cross-VM Side
Channels and Their Use to Extract Private Keys,” in Proc. of CCS,
2012, pp. 305-316.

J. Millen, “20 Years of Covert Channel Modeling and Analysis,” in
Proc. of Symposium on Security and Privacy, 1999, pp. 113-114.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
K. Romer, and S. Mangard, “Hello from the Other Side: SSH over
Robust Cache Covert Channels in the Cloud,” in Proc. of NDSS, 2017.

Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlicht-
ing, “An Exploration of L2 Cache Covert Channels in Virtualized
Environments,” in Proc. of Workshop on Cloud Computing Security,
2011, pp. 29-40.

Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-space: High-
speed Covert Channel Attacks in the Cloud,” in Proc. of USENIX
Security, 2012, pp. 159-173.

V. Varadarajan, T. Ristenpart, and M. Swift, “Scheduler-based De-
fenses against Cross-VM Side-channels,” in Proc. of USENIX Secu-
rity, 2014, pp. 687-702.

T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-
level Protection Against Cache-based Side Channel Attacks in the
Cloud,” in Proc. of USENIX Security, 2012, pp. 189-204.

P. Li, D. Gao, and M. Reiter, “Mitigating Access-Driven Timing
Channels in Clouds using StopWatch,” in Proc. of DSN, 2013, pp.
1-12.

J. Shi, X. Song, H. Chen, and B. Zang, “Limiting Cache-Based
Side-Channel in Multi-Tenant Cloud Using Dynamic Page Coloring,”

in Proc. of DSN-Workshops, 2011, pp. 194-199. [Online]. Available:
http://ieeexplore.ieee.org/document/1437172/

[3]

[4]

[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13] R.Martin, J. Demme, and S. Sethumadhavan, “TimeWarp: Rethinking
Timekeeping and Performance Monitoring Mechanisms to Mitigate

Side-channel Attacks.” in Proc. of the ISCA, 2012, pp. 118-129.

10

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. W. Gray, “On Analyzing the Bus-Contention Channel under Fuzzy
Time,” in Proc. of Computer Security Foundations Workshop. IEEE,
1993, pp. 3-9.

C. Hunger, M. Kazdagli, A. S. Rawat, A. G. Dimakis, S. Vishwanath,
and M. Tiwari, “Understanding Contention-Based Channels and Us-
ing them for Defense,” in Proc. of HPCA, 2015, pp. 639-650.

J. K. Millen, “Finite-State Noiseless Covert Channels,” in Proc. of
Computer Security Foundations Workshop, 1989, pp. 81-86.

B. Kopf and D. Basin, “An Information-Theoretic Model for Adaptive
Side-Channel Attacks,” in Proc. of CCS, 2007, pp. 286-296.

K. Tiri and I. Verbauwhede, “Simulation Models for Side-channel
Information Leaks,” in Proc. of DAC, 2005, pp. 228-233.

T. Vateva-Gurova, N. Suri, and A. Mendelson, “The Impact of Hy-
pervisor Scheduling on Compromising Virtualized Environments,” in
Proc. of the Conference on DASC, 2015, pp. 1910-1917.

T. Vateva-Gurova, J. Luna, G. Pellegrino, and N. Suri, “Towards a
Framework for Assessing the Feasibility of Side-channel Attacks in
Virtualized Environments,” in Proc. of Security and Cryptography,
2014, pp. 113-124.

D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games — Bring-
ing Access-Based Cache Attacks on AES to Practice,” in Proc. of
Symposium on Security and Privacy, 2011, pp. 490-505.

Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Attack,” in Proc. of USENIX
Security, 2014, pp. 719-732.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush:
A Fast and Stealthy Cache Attack,” in Proc. of DIMVA, 2016, pp.
279-299.

VMware, “Security Considerations and Disallowing Inter-Virtual
Machine Transparent Page Sharing,” VMware, Tech. Rep.
2080735, ”Last accessed on 07.06.2018.”. [Online]. Available:
https://kb.vmware.com/s/article/2080735

C. E. Shannon, “A Mathematical Theory of Communication,” SIG-
MOBILE Mob. Comput. Commun. Rev., vol. 5, no. 1, pp. 3-55, 2001.

R. A. Kemmerer, “A Practical Approach to Identifying Storage and
Timing Channels: Twenty Years Later,” in Proc. of Annual Computer
Security Applications Conference, 2002, pp. 109-118.

J. C. Wray, “An Analysis of Covert Timing Channels,” in Proc. of
Computer Society Symposium on Research in Security and Privacy,
1991, pp. 2-7.

Z. Wang and R. B. Lee, “Capacity Estimation of Non-Synchronous
Covert Channels,” in Proc. of DSN-Workshops, 2005, pp. 170-176.
[Online]. Available: http://ieeexplore.ieee.org/document/1437172/

——, “New Constructive Approach to Covert Channel Modeling and
Channel Capacity Estimation,” in Proc. of ISC, 2005, pp. 498-505.

W. M. Hu, “Reducing Timing Channels with Fuzzy Time,” J. Comput.
Secur., vol. 1, no. 3-4, pp. 233-254, 1992.

J. W. Gray, “Toward a Mathematical Foundation for Information Flow
Security,” in Proc. of Symposium on Security and Privacy, 1991, pp.
21-34.

I. Moskowitz and A. Miller, “Simple Timing Channels,” in Proc. of
the Computer Symposium on Research in Security and Privacy, 1994,
pp. 56-64.

C. Percival, “Cache Missing for Fun and Profit,” in Proc. of BSDCan,
2005.

A. Timor, A. Mendelson, Y. Birk, and N. Suri, “Using Underutilized
CPU Resources to Enhance Its Reliability,” IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 1, pp. 94-109, Jan
2010.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Coun-
termeasures: The Case of AES,” in Proc. of RSA Conf on Topics in
Cryptology, 2006, pp. 1-20.



