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Abstract—A virtualized environment (VE) is expected to pro-
vide secure logical isolation across the co-located tenants encapsu-
lated in the virtual machines. In particular the VE should prevent
covert-channels exploitation stemming from the usage of shared
resources. However, as sophisticated covert- and side-channel
attacks exist, the logical isolation in a VE is often considered
insufficient to raise concerns about the security in VEs e.g., the
Cloud. Technically, the actual feasibility of such attacks strongly
depends on the specific context of the execution environment
and the resource allocation schemas used in the virtualization
solution. Addressing these VE aspects, we detail the effect of
scheduling parameters on the noise (affecting the information
leakage) in the covert-channel and empirically validate the impact
on the feasibility of covert-channel attacks, using a real VE.

I. INTRODUCTION

Virtualization is the underlying technology in Cloud com-
puting where multiple tenants with different security require-
ments share resources. The Virtual Machine Monitor (VMM)
along with the physically co-located virtual machines (VMs)
are the main entities characterizing a virtualized environment
(VE). The VMM, also known as the hypervisor, provides low-
level abstraction by decoupling the operating system from the
hardware state, and enables multiplexing multiple tenants with
varied security and functional demands encapsulated in VMs
onto a single physical machine. These VMs are expected to
provide securely isolated resources to the encapsulated tenants
[1], where VE isolation is defined as ”the inability of one
VM to gain information regarding the co-located VMs, as
well as to affect or intervene with their operation” in [2].
On this definition, the paper focuses on the confidentiality
aspect of isolation – namely the presumed impossibility to
leak information beyond the boundaries of a VM despite the
shared usage of resources in a VE. However, covert-channel1

attacks (CCA) and side-channel attacks (SCA) can be applied
to compromise the confidentiality in a VE. While CCAs
misuse the covert channel to enable communication across two
adversaries, an attacker for SCAs abuses the covert channel to
observe the victims operations.

1A covert-channel is a communication channel stemming from the usage of
shared resources that was not supposed to be used as such by the designers
of the system. The existence of a covert-channel is a prerequisite for the
successful conduct of side-channel and covert-channel attacks.

A. Problem Statement

Various shared resources have the potential to be used
as covert-channels in a VE, though the cache is the one
considered most practical. While the feasibility of cache-based
CCAs and SCAs, as well as their practical relevance for a VE,
has been demonstrated in the security community [3]–[7], little
work exists to investigate how the environment affects their
feasibility. [2] recently highlighted that the VMM scheduling
policy, among other factors, plays a role for compromising
the isolation in a VE through a SCA or a CCA. The results
shown in [8] reinforce this statement by providing a defense
mechanism that alters one of the VMM scheduling parameters
to prevent the VE from the cache-based side-channel exploits.
However, no work has systematically studied the effect of the
multitude of VMM scheduling parameters on the feasibility of
cache-based CCAs or SCAs in a VE, and no work provides
guidelines on what is the most secure configuration of the
hypervisor’s scheduler considering the covert-channel attack
threat. The lack of such research impedes the better under-
standing of the threat related to SCAs and CCAs in the VEs
as well as the assessment of the strength of the isolation in
terms of confidentiality provided by a specific VE.

B. Contributions

On this background, we investigate the effect the VMM
scheduling has on the feasibility of covert-channel attacks.
For this, we study a set of scheduling parameters, and con-
sider how changing the value of each parameter can affect
the exploitability of the cache-based covert-channel in a VE
empirically. The environment, and more specifically the VMM
scheduling, affects the cache-based covert channel in the same
way for both SCAs and CCAs2. In addition, a CCA is charac-
terized by two cooperating attackers. In this case the feasibility
of the exploit depends less on the capabilities of the attackers
than in the case of SCAs which are characterized by an
attacker who tries to steal information from a victim through
the covert-channel. Thus, we can make stronger statements
about the effect of the VMM scheduler on the covert-channel
for CCAs than SCAs.

2As the effect on CCA/SCA is similar, the terms covert-channel and side-
channel are interchangeably used.



Hence, as contributions we: (i) model the cover channel
exploit with respect to the way information is conveyed,
(ii) identify scheduling parameters that can affect the covert
channel, and (iii) empirically ascertain their effect on the
feasibility of CCAs by deploying a CCA in a real VE. Our goal
is not to propose a novel to the VE exploit, but to investigate
under which conditions, e.g., scheduling configuration, the
cache-based CCAs are more or less feasible in a VE. Overall,
we provide guidance on which scheduler configuration tends
to be more secure in regard to the CCAs. The exact feasibility
of CCAs naturally depends on the specific implementation.

The paper is structured as follows. Section II investigates the
state-of-the-art in the area of SCAs and CCAs and the impact
of scheduling on the feasibility of CCA/SCA. Section III
describes the system and attacker model for the covert-channel
based communication. Section IV discusses the scheduling
parameters and their roles in the VE, Section V details the
experimental results for their CCA impact.

II. RELATED WORK

The relevance of SCAs and CCAs and their practical
applicability to the VE has been recognized in the security
community [3]–[6], [9]. Much effort has been devoted to
enhancing the VE isolation and confidentiality by research-
ing preventive mechanisms against side- and covert-channel
attacks [10]–[14]. Despite that Mowery et al. expressed doubts
about the feasibility of SCAs on a specific architecture in [15]
after an unsuccessful attempt to exploit the system using the
cache as a side-channel. According to the work described in
[2], various factors characterizing the execution environment
such as scheduling policies can impact the feasibility of side-
channel exploits by making them harder or easier. However,
the effect of these factors has not been extensively studied.
With this context, we overview the state-of-the-art in terms of
the effect of the hypervisor’s scheduler on the feasibility of
covert- and side-channel exploits.

The relevance of the scheduling policy for SCAs and
CCAs.: In 1992 Hu observed that the scheduling policy plays
a major role in exploiting hardware timing covert-channels
based on shared CPU usage. Hu addressed the covert-channel
threat by proposing a scheduling scheme [16] for the VAX
security kernel where each process is characterized by a 64-
category secrecy class. A time slot list is used to determine
the CPU time allocation and the initial execution order for the
processes. To eliminate the covert-channel, the scheduler does
not base its decision about the execution order on the readiness
of the processes to be executed. In that way alternating execu-
tion of the malicious processes which is a prerequisite for the
cache-based communication cannot be guaranteed anymore.
Although Hu’s work is focused on the VAX security kernel, it
raised awareness about the relationship between the scheduling
scheme and the hardware timing covert-channel exploits.

Recently, Varadarajan et al. addressed the SCA threat by
altering the value of one of the VMM’s parameters and

studying its impact both on the performance and the side-
channel exploits [8] while stressing that the effect of the
scheduling on the isolation in a VM is not studied extensively
in the community. They demonstrated that by altering the rate
limit scheduling parameter they can provide a minimum run
time guarantee for a particular VM. As a consequence the
granularity of the observations the attacker can do is affected.
Namely the possibility for frequent preemptions is one of the
vulnerabilities that is exploited in the attack described in [5],
which leads to the successful execution of a SCA that uses
the L1 instruction cache. The work described in [8] actually
investigates the impact of one of the VMM’s scheduling
parameters on the side-channel exploits. In contrast, our aim
is to consider the influence of the spectrum of scheduling
parameters and to provide guidelines on the most secure
configuration in regard to CCAs in a VE. Unlike [8], we
specifically consider CCA versus SCA, as the covert-channel
exploits depend less on the capabilities of the attacker and the
direct impact of the role of scheduling is discernible.

In [12] the authors reported the role of scheduling al-
gorithms for the successful exploit of cache-based covert-
channels highlighting that deterministic information flow con-
trol systems are vulnerable to cache-based timing channels
if time-based scheduling is used. To eliminate the covert-
channel, the authors propose an instruction-based scheduling
scheme. Although the work does not address VE’s, the obser-
vation that the scheduling scheme can be used as a preventive
mechanism against cache-based CCAs raises awareness of the
role the scheduler plays in security.

A VMM scheduler vulnerability, though only indirectly
related to the covert-channel exploits, is reported also in [17]
by Zhou et al. It can be exploited by an attacker residing in a
VM to consume more CPU time on the Amazon EC2 Cloud
computing infrastructure. Although this work is not directly
related to the feasibility of covert-channel attacks and the
impact of the configuration of the hypervisor scheduler on that,
it demonstrates that the choice of the scheduling mechanism
and its parameters is important not only from performance but
also from security perspective.

III. SYSTEM AND ATTACKER MODEL

A. System Model
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Fig. 1. Isolation in a virtualized environment.



We investigate the impact of the hypervisor scheduler on the
cache-based covert-channel attacks that might compromise the
confidentiality and with that the isolation in a VE. Our system
model is thus focused on the VE, consisting of the VMM
and the co-located VMs. The isolation, as shown in Fig. 1, is
considered with respect to the logical boundaries of the VMs.
Except for the hypervisor scheduler, which is depicted as a
part of the VMM, we abstract the role of the other VMM’s
components and functions. As our focus is on cache-based
CCAs, we also model the hierarchy of caches, as can be seen
in Fig. 1. For the purpose of better understanding, we highlight
the concept of cache set associativity. The cache is divided into
cache lines, and the cache lines might be grouped into cache
sets depending on the associativity level of the cache. N-way
associative cache means that N cache lines are grouped into
the same set, and each memory address is mapped to exactly
one set, but might be mapped to any of the N cache lines
within that set.

Depending on the architecture, each level of cache might be
private per core or shared among all CPU cores. Usually the
Last Level Cache (LLC) is shared among the cores, and the
First Level Cache (L1) is private per core. Some architectures
have an L2 cache which can be shared or private. L1 is the
smallest and also the fastest cache while the LLC is larger
and slower, but still faster than the main memory. If data is
needed from the main memory, the processor looks for it in
the L1 cache first, then in the other levels of cache, and if it
is in none of the caches, it is fetched (copied) from the main
memory into the cache and then used. If the data is not in the
cache (cache miss), accessing it takes longer. In case of a cache
hit (the data is in the cache), the access time is shorter. These
timing differences in accessing data enable attackers to use the
cache as a covert-channel. Theoretically, each cache level can
be used as a covert-channel, but due to the different properties
of the caches, the L1-based covert-channel exhibits different
properties compared to the LLC-based channel for instance in
terms of bandwidth or error rate of the transmitted data. The
subsequent paragraphs detail how a cache-based CCA works.

B. Attacker Model

To illustrate how a cache-based CCA works in a VE, we
consider two distinct co-located VMs: VM1 and VM2, and
refer them to as the sender and the receiver, respectively.
We assume that they have no other means of communication
except for by using the cache as a covert-channel. As depicted
in Fig. 2, VM1 aims to transmit data to VM2 by encoding each
bit of information as a predefined cache access pattern, i.e.,
by accessing specific cache sets indirectly. For this purpose,
the two cooperating VMs have to agree on the meaning of the
varied cache access patterns in advance. To infer the cache
access pattern and decode the encoded bit, the receiver makes
use of the timing difference for fetching data from the main
memory (i.e., cache miss) and from the cache (i.e., cache hit).

To perform the attack, the attackers divide the cache sets

logically into two parts where each part of the cache corre-
sponds to either bit 1 or bit 0, as shown in Fig. 2, and thus
both the receiver and the sender are aware of the meaning
of the specific sets. As an initialization step of the attack the
receiver accesses both parts of the cache. In that way, the
receiver fetches certain data into the cache and a repetitive
access to the same data will result in a cache hit and will be
fast. If the receiver’s data has been evicted from the cache, the
repetitive access to it will be slower, as it has to be fetched
again from the main memory. Having this in mind, when the
sender wants to encode bit 1, he accesses the part of the cache
that corresponds to 1 according to the cache access pattern he
has agreed on with the receiver. When the sender wants to
encode bit 0, he accesses the other part of the cache. Once
the sender has encoded the bit of information he wants to
transmit, the receiver measures the time for accessing each
part of the cache again. The part which corresponds to the
longer access time is the part which has been accessed by the
sender. In that way, by timing the cache accesses the receiver
can infer whether the received bit is 1 or 0. Note that other
access patterns can also be successfully applied e.g., the one
used in [16].

Underlying technologies
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Fig. 2. Transmitting one bit of information.

IV. VMM SCHEDULER

The VMM scheduler is responsible for scheduling VMs
CPUs (VCPUs) on the physical CPUs of the underlying
hardware. Moreover, for its resource allocation decisions, the
VMM scheduler has to consider not only VMs’ performance
requirements, but also possible security violations that might
be a consequence of the scheduling decisions. The objective of
this paper is to investigate how the configuration of the VMM
scheduler (the values of the various scheduling parameters)
affects the feasibility of CCAs in a VE with regard to the
successful transmission of bits through the covert commu-
nication channel. Various scheduling algorithms are used by
the VMMs e.g., Simple Earliest Deadline First (SEDF) [18],
Completely Fair Scheduler (CFS) [19], [20], Borrowed Virtual
Time (BVT) [21], Credit scheduler [22], etc. To assess the
impact of the scheduling configuration on the covert-channel,
we consider fair-share schedulers which represent a widely
used solution for VMMs such as KVM [20] and Xen [23]. We



TABLE I
VMM SCHEDULING PARAMETERS.

Parameter Function
Load balancing Determines whether automatic load balancing is used
Weight Denotes the relative CPU allocation among the VMs
Cap Imposes an absolute limit on max amount of CPU a

VM can consume
Time slice Determines max time period a VM is allowed to run
Rate Limiting Guarantees min amount of time a VM can run

without being preempted

focus on the publicly available Credit scheduler used in Xen
[18], [22] —this scheduler is widely used in real-world Cloud
scenarios and provides most of the scheduling parameters that
are also relevant for many other schedulers used in real-world
VEs. It is worth mentioning that parameters with the same
conceptual function are often known under different names
for different schedulers.

A. Credit Scheduler

The Credit scheduler is a proportional fair-share CPU sched-
uler. Pursuing its main goal to achieve fairness in terms of re-
sources allocation, the Credit scheduler assigns to each VCPU
a certain number of credits [17], [24]. With the consumption
of CPU time, the VCPU ”consumes” credits, thereby reducing
the number of its available credits. The scheduler keeps track
of the VCPUs that have exceeded their credits. The absolute
value of the available credits is not of importance, but only
whether a VCPU has exceeded its credits. If a VCPU has
run out of credits, its priority is set to ”OVER” and it only
gets scheduled when the VCPUs with available credits have
finished executing. If a VCPU has credits left, its priority is
set to ”UNDER” and the VCPU can get scheduled until its
credits are depleted. Periodically, the VCPUs are given new
credits and their available credits are updated.

B. Scheduling Parameters

The scheduling parameters we are considering are load
balancing, weight, cap, time slice and rate limiting. They
are part of the Xen’s Credit scheduler, but are also relevant
for other scheduling schemes, though known under different
names. Table I gives an overview of their functions.

Load balancing: Among the advantages of the Credit
scheduler is its ability to automatically balance the load
between the available CPUs. If all the VCPUs running on a
certain CPU have exceeded their credits, the scheduler checks
whether there is a VCPU with available credits waiting to be
scheduled. The system administrator still has the choice to use
automatic load balancing, or to manually balance the load by
assigning VCPUs to CPUs. The latter option, also called CPU
pinning or fixing the CPU affinity, is used as a restriction to
limit the CPU cores a VCPU can use. The load balancing or
CPU pinning parameter is specified per VCPU.

Weight: The weight, also known as shares, is assigned per
VM. It denotes the relative CPU allocation time of a VM with

regard to the other VMs. A VM with a weight twice as high as
the weight of another VM receives twice as much CPU time
as the other VM. The scheduler uses the weight value for the
calculation of the credits that a VCPU gets.

Cap: The Credit scheduler supports both work-conserving
and non-work-conserving modes. This feature is controlled by
the cap parameter, also known as limit. It imposes a limit on
the maximum amount of CPU a VM can consume. A VM
with a cap 0 is not capped. This corresponds to scheduler’s
work-conserving mode in which the CPU is idle only if no
VCPU is waiting to be scheduled. If the cap is set to a non-
zero value which represents the absolute limit on the amount
of CPU a VM can use even if more processing resources are
available, the scheduler is in non-work-conserving mode. The
cap limits the consumption of a CPU cycles for the VCPUs
and with that might increase the time for completion of a task.
The cap value is expressed in percentage per VM.

Time slice: The time slice, also referred to as quantum,
determines the maximum period of time a VM is allowed to
run before being interrupted by the scheduler. If the execution
time of a VM exceeds the time slice, the VM gets preempted
and another VM is scheduled. The time slice represents the
maximum time a VM is allowed to run, but does not guarantee
that a VM will run without being interrupted that long. The
time slice parameter is set once for all the VMs. For instance,
if it is set to 30 ms, each VM gets preempted every 30
ms, and the credits of all runnable VMs are recalculated.
Thus, the value of the time slice usually has performance
implications —for latency-sensitive workloads having a long
time slice can be devastating, whereas for computationally
intensive workloads it can have positive effect.

Rate limiting: The rate limiting guarantees minimum
amount of time a VM can run without being preempted. This
can be disabled by setting its value to 0. Similar to the time
slice, the rate limiting value can have impact on system’s
performance depending on the workload requirements.

V. EMPIRICAL EVALUATION

We experimentally study whether certain scheduling config-
urations result in a noisier covert-channel and, consequently,
in a more secure VE. For each of the scheduling parameters
introduced in Section IV, we assess how a change in the value
affects the CCAs in terms of bandwidth and error rate.

A. Experimental Setup and Implementation Details

We use two physically co-located VMs: VM1 and VM2. A
sender process running in VM1 transmits information to the
receiver process running in VM2 via the L1 cache. In order
to assess the influence of the scheduling parameters on the
feasibility of CCAs, we conducted experiments considering
both minimal and higher third-party workload. For most of
the cases, the scheduling’s effect is observable without third-
party workload. This helps us draw meaningful conclusions
on the impact of the scheduling without the need to filter



out the noise caused by third parties. However, in other
cases, the effect of the scheduling is better shown if higher
load is present in the VE. From a practical point of view,
we consider selectively chosen scheduling configurations that
are representative of broad scheduling configurations and are
expected to result in different levels of noise in the covert-
channel. The empirical assessment is done in a real VE. Please
note that the implementation details described in this section
are specific to our setup and the use of other setup requires
adjustments of the implementation.

Hardware: The experiments are conducted on commodity
hardware: Intel R©Quad CoreTM i7-4770 CPU@3.4GHz. Each
CPU core has 8-way associative L1 cache with a data cache
size of 32KiB. Each cache line is 64 Bytes long. As it has
been demonstrated that advanced CPU features such as SMT
might enable an easier CCA [25], we have disabled the Intel R©
Hyper-Threading Technology.

Virtualization and Scheduler: We use Xen 4.3 hypervisor
[26] as a virtualization solution. In Xen terminology all the
VMs are referred to as guests. Apart from the hypervisor,
Xen uses a guest domain with special privileges, called Dom0
which can be seen as a service console. It is used to create or
destroy other guests, to adjust the scheduling parameters, etc.

Approach and Algorithm: In our CCA the sender and
receiver exploit the timing difference for accessing data from
the L1 cache and the lower cache levels or the main memory
(cf., Section III). As they cannot access L1 directly, they
allocate buffers of integers of the size of the L1 (32 KB) which
are also aligned by the cache line size (64 Bytes). Through
its buffer, the sender evicts one cache line from every even
cache set to transmit bit 0 and one cache line from each odd
cache set to transmit bit 1, by accessing those parts of the
buffer that are mapped to the respective cache sets. Then, the
receiver determines which parts of the cache have been evicted
by measuring the time for accessing one cache line for each of
the odd and even cache sets to decode sender’s access pattern.

Our L1 is physically tagged and virtually indexed. As the
index bits of the memory address indicate the cache set which
the data should be mapped to, the attackers can use the virtual
addresses of their respective buffers to access specific cache
sets. By accessing one integer (4 Bytes) from the allocated
buffer, the receiver fetches a 64 Byte chunk (cache line) of
data from main memory which corresponds to 16 integers
into L1. This scheme allows us to speculate that accessing the
receiver’s buffer with consecutive indices will result in cache
hits even if the sender has previously evicted the respective
cache lines. In this case, if the receiver should measure 16
cache misses, most probably he will measure 1 cache miss
and 15 cache hits. To diminish this effect, our receiver accesses
only one cache line per set and ”moves” to the next cache set.

As the difference between a L1 cache miss and hit is ∼ 6
clock cycles, for a single cache line the receiver can hardly
measure it when decoding the sender’s cache access pattern. To
overcome this problem, the receiver accumulates clock cycle

measurements for accessing one cache line in every even cache
set and one cache line in all odd cache sets. Although this
approach might not be adequately precise to work for specific
implementations, it is sufficient for assessing and analyzing the
effect of the scheduling configuration on the covert-channel.

The role of synchronization: A prerequisite for a successful
attack is that the receiver times his access to the L1 directly
after the sender has encoded one bit of information into it in
the form of access pattern. If meanwhile another process or
the sender access the L1 cache, the previously encoded bit
of information is lost. In our implementation, the receiver and
sender are synchronized using POSIX sockets to guarantee that
the receiver will not access its buffer (and the cache) before
the sender has finished encoding data into it. The implemented
synchronization represents the ideal case for measuring the
effect of the scheduling on the CCAs, as it eliminates the
noise stemming from the incapabilities of the attackers to
synchronize. The employed synchronization is just a tool
that enables drawing valid conclusions about the scheduling’s
effect. Our experiments are comprised of a training and a
testing phase.

A training phase is employed to determine how many
consumed clock cycles represent bit 0 and how many clock
cycles represent bit 1. We notice that the difference in the
clock cycle consumption for transmitting a 0 and a 1, although
observable, is not particularly large. This is expected, as we
use L1 cache as the covert-channel and the penalty for a cache
miss is moderate. Still, the difference is measurable, as we
consider accumulated clock cycles consumed for accessing all
the odd/even cache sets versus single set or line accesses.

In the testing phase, we measure the error rate and the
bandwidth of the communication in regard to a predefined
string of bits that the sender tries to encode for varied schedul-
ing configurations. In each experiment the sender encodes 0s
for 1000 iterations. Then, 1s are encoded for the remaining
iterations. For each scheduling configuration we run altogether
1000 experiments with more than 10000 iterations per exper-
iment. The measured error rate is the ratio of the number of
correctly transmitted bits to all the conducted measurements on
the receiver’s side and is given in percentage. The bandwidth
indicates the number of correctly transmitted bits per time unit
(second). We do not apply any error correction mechanisms.

B. Evaluating the role of Scheduling Parameters

The remainder of the section describes the results of the em-
pirical evaluation for the scheduling parameters (cf., Section
IV). In each experimental set we vary a single parameter. All
the presented results represent the time difference for accessing
the even and the odd cache sets per single iteration explicitly
for our setup. Due to space limitations, we show the detailed
plots only for load balancing and weight.

1) Load balancing: In our VE Dom-0 is also competing for
resources with the sender and receiver VMs, and we consider
its role as a third-party workload when we study the impact
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of the load balancing parameter on the covert-channel. We
distinguish four relevant configurations.

• C1: Sender and receiver are pinned to the same CPU core
and Dom-0 is pinned to another CPU core

• C2: Sender and receiver are automatically load balanced
and Dom-0 is pinned

• C3: Sender, receiver and Dom-0 are pinned to the same
CPU core

• C4: Sender and receiver are pinned to distinct cores

Expectations: We speculate that the load balancing pa-
rameter has the highest impact on the cache-based covert-
channel and with that on the feasibility of CCAs. This holds
in particular when private per core cache e.g., L1 is exploited
for the attack. We expect that C4 represents the worst case
from attacker’s perspective. Logically, in this case the com-
munication channel between the two cooperating attackers
is unavailable which results in noise on the receiver’s side.
Analogously, we expect that the optimal case for attacker’s
communication is C1, as for the whole experiment duration
the sender and the receiver share the same L1, whereas Dom-
0 uses the L1 cache of another CPU core. Hence, the receiver
and the sender communicate over a channel that is constantly
available without interference from the operations of Dom-0.

Results and discussion: We measured the lowest error rate
of 39% and the highest bandwidth of 90bps for C1. Fig. 3
clearly shows clock cycles increase after the 1000th iteration
which remains for the rest of the experiment. It corresponds to
the transition from sending 0s during the first 1000 iterations
to 1s after that. In C4, on the other hand, this transition is
not visible (cf., Fig. 4). The measured error rate in this case is
almost 99%, and the bandwidth is below 1bps. All the receiver
measurements consist of noise or data resulting from third-
party processes but not from the actions of the sender, as the
L1-based channel is unavailable in this case. This explains the
lower clock cycle consumption indicated by the arrow in Fig.
4. The exhibited error rate for C3 is 72%, and the bandwidth is
9bps. As can be seen, C3 results in a less noisy communication
than C4 and a more noisy communication than C1. This is
logical as the covert-channel is available for the whole time
of the experiments, but the sender and the receiver compete
for the cache with a third-party (Dom-0). This explains the
variation in the consumption of the clock cycles. C2 is almost
as noisy as the worst case configuration (error rate of 97% and
bandwidth below 1bps). In this case there is no guarantee that

the attackers will share the communication channel even for
a limited time due to the automatic load balancing. Actually,
during the experiments they get automatically scheduled on
distinct CPU cores. Due to space restriction, we omit the plots
of the communication between the attackers for C2 and C3.
To guarantee the availability of the channel for the rest of the
experiments, we use C1 with regard to the load balancing.

2) Weight: The weight specifies the relative CPU allocation
time of a VM with respect to the other VMs. To investigate its
impact on the covert-channel, we distinguish four scheduling
configurations.

• C1: Both weights are 256
• C2: Sender’s weight is 512, receiver’s weight is 256
• C3: Receiver’s weight is 512, sender’s weight is 256
• C4: Receiver’s weight is 512, sender’s weight is 256,

Dom-0’s weight is 256

Expectations: The optimal case for exploiting the covert-
channel should be when the sender and receiver VMs are
equally weighted. Then they have nearly equal chances to be
scheduled. If the weight value is higher for the sender, the
sender will be scheduled more frequently than the receiver, as
the processes for the sender and the receiver are of roughly
equal magnitude in terms of execution time. Then, the sender
will encode bits that are likely not to be received. Analogously,
if receiver’s weight value is higher than sender’s weight value,
the chance that the receiver will be scheduled more frequently
is higher. The receiver will try to decode the state of the cache
that is a result of his own actions.

Results and Discussion: Due to the applied synchroniza-
tion mechanism, we do not notice any significant difference
in terms of error rate in C1-C3 when we consider minimal
workload on the VMs. With its synchronization mechanism
our implementation guarantees the alternating execution of the
sender and the receiver processes even in the cases when one
of them is scheduled more frequently. Both parties will have
to wait for the confirmation of the other party that a bit has
been encoded or decoded before being able to proceed. This
is the reason why the error rate is only moderately affected in
the case of minimal workload (38%, 42% and 44% for C1, C2
and C3, respectively). Fig. 5 represents the best case of equal
weights for the attacker and the sender. The slightly increased
error rate can be noticed in Fig. 6 - 7, as indicated by the
boxes. The bandwidth of the covert-channel communication,
on the other hand, is significantly lower for C2-C3 (32bps and
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Fig. 5. The sender and the receiver exhibit the same weight values.
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Fig. 6. The sender weight value is 512, the receiver weight value is 256.
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Fig. 7. The sender weight value is 256, the receiver weight value is 512.
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Fig. 8. The sender weight value is twice the weight of the receiver and Dom-0.

29bps, respectively) compared to C1 (89bps). In C2-C3 one
party gets scheduled more frequently and has to wait for the
the other one to complete its operations. Then the time spent
without encoding/decoding a bit is significantly longer.

In the presence of third-party workloads (C4), the error rate
also gets affected by the value of the weight parameter. If the
weight value of the sender’s (receiver’s) VM is sufficiently
higher than the weight value of the receiver’s (sender’s) VM,
the third-party workload can get scheduled in between the
attackers processes for send and receive and the error rate in
the covert-channel will be increased. The receiver will decode
after the sender has encoded a bit, but sender’s cache access
pattern will be overwritten by the access pattern of the third-
party workload. We observed an increased error rate of 78%
which is noticeable also from Fig. 8 for C4. As pointed out
by the boxes in the figure, in this case we observe a much
noisier communication than for configurations C1-C3.

3) Cap: The cap parameter can evoke VMs preemption if
the VM has exceeded its CPU usage. We consider four relevant
configurations.

• C1: The sender’s and receiver’s caps are 0
• C2: The sender and the receiver are capped with 40
• C3: The sender’s cap is 1 and the receiver is not capped

Expectations: Our expectation is that attackers’ optimal
case is if none of them is capped (C1) or when one/both
of them are capped but the cap value is sufficiently high so
that they can finish encoding or decoding the data, without
being interrupted. In such cases, we expect no influence on
the feasibility of the covert-channel exploit considering both
the bandwidth and error rate. However, we speculate that low
cap values are disadvantageous for the attackers as they will
get interrupted before having finished their tasks.

Results and Discussion: As expected, for C1 and C2 we
measured an error rate of 38% and 41%, respectively, and
obtained a communication bandwidth of 81bps for C1 and
78bps for C2. In these cases, the sender and the receiver are

not interrupted before being able to complete their operations.
As we speculated, when the sender gets only 1% of the CPU,
the sender gets preempted before being able to encode a bit
of information. This does not deteriorate the error rate due to
the synchronization between the attackers, but results in a very
low bandwidth(10bps) for the covert-channel communication.

4) Time slice: The time slice shows the maximum allowed
time for a VM to run and is the same for all the VMs.
Representative are the values listed below.

• C1: The lowest possible value - 1ms
• C2: The highest possible value - 1000ms
• C3: The default value - 30ms

Expectations: We speculate that the time slice affects the
covert-channel in relation to sender’s and receiver’s execution
times. If it is set to a very low value, i.e., lower than
receiver’s or sender’s execution time, or both, this will result in
interrupting the sender while encoding one bit or the receiver
while decoding one bit. In both cases this hardens the covert-
channel exploit. In contrast, if the time slice parameter is set to
a higher value than the execution times of both the sender and
receiver, it should not affect the CCA and the covert-channel.
The latter case is optimal from attacker’s perspective.

Results and Discussion: Analogous to the cases with the
weight and the cap, due to the synchronization mechanism
the error rate for all time slice configurations is similar. This
changes, as in the case of the weight parameter, if third-party
workload is involved. Also for the time slice, we have noticed
that with the variation of its value, the number of transmitted
bits within certain time interval varies. The bandwidth for C1
is 8bps whereas for C2 it is 79 bps. In the latter case no time
is wasted for waiting for the other party to finish after being
interrupted which increases the achieved bandwidth.

5) Rate limiting: This parameter guarantees minimum
amount of time a VM can run without being preempted. To
study its impact on CCAs’ feasibility, we consider its lowest
(100) and highest (500000) possible values.



Expectations: We expect that the impact of the rate
limiting on the covert-channel depends on its relation to the
execution times of the sender and the receiver processes. If
the rate limiting is set to a value that is as high as the
execution time of the sender or the receiver, this guarantees
that the sender or the receiver will manage to encode or decode
one bit of information, respectively, before being preempted.
This scenario depicts the most lucrative case for the attackers.
Setting the rate limiting to a value lower than their execution
times is not expected to have an effect on the covert-channel
exploit. The reason is that the rate limiting parameter imposes
a minimum runtime guarantee for the VMs, but after the
rate limiting time has elapsed, the VMs are not definitely
preempted. Values larger than the execution times of the
attacker are expected to harden the attack as they impose the
sender or the receiver to run longer than needed.

Results and Discussion: We observe that by setting the
rate limiting to 500000 the error rate is not increased, but the
bandwidth is affected, as the value exceeds attacker’s execution
times. Thus, it guarantees that they will not be preempted
for a longer period than needed. Logically, this hardens the
attack and reduces the bandwidth. By setting rate limiting to
the lowest possible value of 100, the guarantee that the receiver
and the sender will not be preempted is not viable, but this
affects neither the error rate nor the communication bandwidth.
This happens as the rate limiting value does not affect the time
the attackers are allowed to run before being preempted.

VI. CONCLUSION AND SUMMARY

This paper analyzes the influence of the VMM scheduling
configuration on the feasibility of covert-channel exploits in a
VE. It empirically shows the role of the scheduling parameters
and how their values affect the covert communication channel
in terms of error rate and achieved bandwidth. We have shown
that all the parameters have an impact on the CCA’s feasibility.

Depending on the implementation, the scheduling configu-
ration affects the bandwidth, the error rate or both. Based on
the conducted empirical study, we have noticed that the load
balancing is the parameter that has the highest impact on the
covert-channel because it controls its availability. Logically,
the optimal configuration for the attackers is when they are
pinned to the same CPU core and any additional workload is
deployed to the other cores. Automatic load balancing makes
the VE much more secure with respect to CCAs. If the sender
and the receiver are equally weighted, their communication
exhibits the highest bandwidth. A high difference in the
weights of the sender and the receiver has a negative effect
on the bandwidth of their communication. Low values for
the cap and the time slice also affect the covert-channel
communication and reduce the bandwidth, as they lead to
attacker’s preemption. The same bandwidth reduction occurs
in case of very high values for the rate limiting parameter.
Then the attackers are guaranteed too long execution time that
makes their communication slower.

Based on our results, for a more secure VE, we recommend
using the hypervisor’s automatic load balancing feature. Better
security can be also achieved if the VMs are differently
weighted. If this degrades the VM performance, altering the
VMs weights can be used. The choice of an adequately low
value for the cap and the time slice and a relatively high value
for the rate limiting parameter is also recommended despite
possible performance implications.
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