
A first look at the misuse and abuse of the IPv4
Transfer Market

Abstract. The depletion of the unallocated address space in combina-
tion with the slow pace of IPv6 deployment have given rise to the IPv4
transfer market, namely the trading of allocated IPv4 prefixes between
ASes. While RIRs have established detailed transfer policies in an ef-
fort to regulate the IPv4 transfer market for malicious networks such as
spammers and bulletproof ASes, IPv4 transfers pose an opportunity to
bypass reputational penalties of abusive behavior since they can obtain
“clean” IPv4 address space or offload blacklisted address space. Addi-
tionally, IP transfers create a window of uncertainty about legitimate
ownership of prefixes, which leads to inconsistencies in WHOIS records
and ROA objects. In this paper we provide the first detailed study of
how transferred IPv4 prefixes are misused in the wild by synthesizing
an array of longitudinal IP blacklists, honeypot data, and AS reputa-
tion lists compiled through hijack detection. Our findings yield evidence
that the transferred network blocks are used by malicious networks to
address botnets and fraudulent sites in much higher rates compared to
non-transferred addresses, while the timing of the attacks indicate efforts
to evade filtering mechanisms.

1 Introduction

The depletion of the unallocated IPv4 addresses combined with the slow tran-
sition to IPv6 has led to the emergence of a secondary market for ownership
transfers of IPv4 addresses. However, the IPv4 market has been poorly reg-
ulated due to the lack of widely adopted IP prefix ownership authentication
mechanisms, inconsistent contractual requirements between legacy and allocated
address space [43], and policy incongruences among Regional Internet Registries
(RIRs). As a result, IPv4 transfers have become target of fraud and abuse by
malefactors who try to bypass legal IP ownership processes [19]. RIRs have re-
sponded to the emergence of the IPv4 market by establishing policy frameworks
that aim to safeguard the hygiene of the accuracy of registered IP blocks and
provide oversight and transparency on how organizations trade IPv4 address
blocks [37, 19]. However, the effectiveness of these policies in preventing abuse of
the IPv4 market remains unclear. Additionally, these policies focus only owner-
ship and utilization issues, and they do not have provisions for malicious usage of
the transferred space, for instance by bulletproof hosters who seek clean address
space to address botnets and fraudulent sites. Exchanges between operators in
mailing lists and messaging boards show that the operational community is wor-
ried about these dangers but still face significant difficulties when purchasing or
selling address space [30, 42].
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In this paper we aim to shed light on the misuse and abuse of the IP transfer
market. To this end, we combine a large collection of longitudinal control-plane
and data-plane data to analyze and verify the information reported by RIRs on
IP transfers. We find that the reported transfer dates and recipient organizations
do not reflect the state of WHOIS registries and BGP routing for more than
65% of the transferred prefixes. Additionally, 6% of the prefixes covered with
ROAs have an inconsistent origin ASN. We then compile and analyze a large-
scale dataset of malicious activities that covers a period of more than a decade,
derived from IP traffic traces and control-plane paths, including IP blacklists,
honeypots, prefix hijacking detection and AS reputation mechanisms. Our find-
ings reveal that the transferred IP space is between 4x to 25x more likely to be
blacklisted depending on the type of malicious activity, while the majority of the
transferred IPs are blacklisted after the transfer date, even when the transferred
address space was deployed and visible to IP scans at least a month before the
transfer. The disproportionate representation of transferred prefixes in blacklists
persists even when we filter-out the address space used by well-known legitimate
networks, such as cloud platforms (e.g. Amazon Web Services, Google Cloud,
Microsoft Azure) whose Infrastructure-as-a-Serive (IaaS) is often abused to host
malware in short-lived Virtual Machines (VMs). Finally, we provide evidence
that ASes detected to be serial BGP hijackers or bulletproof hosters are over-
represented in the IPv4 market and exhibit suspicious patterns of transactions
both as buyers and sellers. These results offer new insights on agile blacklist eva-
sion techniques that can inform the development of more timely and accurate
blacklisting mechanisms. Additionally, our work can inform debates on develop-
ing and evaluating RIR policies on IP transfers to improve the hygiene of the
ecosystem.

2 Background and Related Work

2.1 IP Transfer Market

Today, the available IPv4 address space of all Regional Internet Registries (RIRs)
except AFRINIC has been depleted [21]. Despite increasing pressure on network
operators to enable IPv6, less than 30% of the ASes are currently originating
IPv6 prefixes [22]. Since RIRs are unable to allocate additional IPv4 addresses,
many network operators try to prolong the lifespan of IPv4 by buying address
space allocated to other networks, which has led to the emergence of a secondary
IP market. This market has been characterized as murky [43], due to the lack of
transparency and mechanisms to authenticate the ownership of IP space.

In an effort to prevent abuse of this secondary IP market, all RIRs have de-
vised intra-registry transfer policies, starting with RIPE in 2008 [50, 5, 8, 27, 50,
3]. All RIRs, except RIPE, have imposed restrictions on IP transactions, that
require a minimum size of transferred address space and adequate justification
of need from the side of buyers. Inter-regional transfers have been approved by
ARIN, APNIC and RIPE. Organizations involved in such transactions have to
comply with the inter-RIR transfer policies of their local registry [9, 51]. ARIN
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and APNIC follow the same need-based policy for intra-RIR and inter-RIR trans-
actions. RIPE, in contrast to its intra-RIR policy, requires inter-RIR buyers to
document the utilization of at least 50% of the transferred address space for
five years. However, these regulations do not apply in the case of transfers that
occur due to mergers and acquisitions. Under these policies, the first intra-RIR
and inter-RIR transfers occurred October 2009 and October 2012, respectively.
The IPv4 transfer market size has significantly increased over the years, from
17, 408 to 40, 463, 872 IPs for intra-RIR transfers, and from 1, 792 to 1, 885, 440
IPs for inter-RIR transfers, with the highest activity occurring within RIPE and
ARIN. Moreover, 96% of the IPv4 addresses are exchanged within the same reg-
istry and most of these IP transactions occur within the North America region,
while 85% of the inter-RIR transfers originate from ARIN. Despite the increas-
ing prominence of the IPv4 market, there are only a few studies of its ecosystem.
Periodically, RIRs and IPv4 address brokers report on the trends and evolution
of the IP transactions [7, 46–49, 56, 1], but also a portion of buyers have reported
their experiences [35, 19, 6]. Early academic studies [17, 28] discussed the possi-
ble implications of market-based mechanisms for reallocating IPv4 addresses.
Mueller et al. [32, 33] used the list of published transfers to analyze the emerging
IPv4 transfer market by quantifying the amount of legacy allocations exchanged
on the markets and the impact of the need-based policies on the utilization of
the transferred blocks. Livadariu et al. [23] provided a comprehensive study on
the IPv4 transfer market evolution, the exchanged IPv4 blocks, and the impact
on the routing table and IPv6 adoption. The authors also proposed a method for
inferring IP transfers from publicly available data, i.e., routing advertisements,
DNS names, RIR allocation and assignment data. To the best of our knowl-
edge, no prior work has studied the IPv4 transfer market from the perspective
of fraudulent behavior and misuse.

2.2 Malicious Internet Activities

An IP blacklist is an access control mechanism that aims to block traffic from
IP addresses which have been detected to originate fraudulent activities, such as
spamming, denial of service, malware or phishing. Such blacklists are compiled
using spamming sinkholes, honeypots, and logs from firewalls, Intrusion Detec-
tion Systems (IDS), and anti-virus tools distributed across the Internet. Several
works have studied malicious Internet activities based on IP blacklists [4, 62].
Ramachandran et al. [38] provided one of the first studies, by analyzing over
10 million messages received by a spam sinkhole over a period of 18 months,
and by correlating them with lookups to 8 blacklists. Their results showed that
combined use of blacklists detects 80% of the spamming hosts. Moreover, the
network behavior of serial spammers has distinctive characteristics which can be
exploited to develop behavioral and predictive blacklisting [39]. Shina et al. [54]
evaluated the accuracy of four spamming blacklists, and found that blacklists
have a very low False-Positive Rate, with 2 of the blacklists having less than 1%
FPR, but high false-negative rate (above 36%) when used individually. A similar
study by Kührer et al. [26] evaluated the effectiveness of 18 blacklists, 15 public
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Fig. 1: Overview of datasets and measurement methodology.

and 3 by AntiVirus (AV) vendors. The authors found that blacklists derived
from AntiVirus vendors are able to detect at least 70% of the malicious domains
for 13 types of malware, and at least 90% for 7 of these types, outperforming
significantly public blacklists. Zhao et al. [61] compiled an extensive historical
blacklist dataset to analyze the trends and evolution of malicious activity over
the span of a decade.

In addition to detecting malicious activity through monitoring data-plane
traffic, an array of studies developed techniques to detect attacks through control-
plane data. Shue et al. [53] studied the connectivity of ASes that are over-
represented in 10 popular blacklists. They found that a small number of ASes
with a disproportionate fraction of blacklisted address space are more likely to
have dense peering connectivity and exhibit higher frequency of peering changes.
Konte et al. proposed ASwatch [25], a system a system that aims to identify bul-
letproof hosting ASes by inferring irregularities in the routing and connectivity
patterns. Testart et al. [58] profiled serial prefix hijackers by developing a su-
pervised machine learning model, based on which they analyzed 5 years of BGP
data to infer 934 ASes that exhibit persistent misbehavior.

We utilize insights and data from the above works to conduct a comprehensive
analysis of malicious activity involving transferred IP prefixes and organizations
that participate in the transfer market. We combine both data-plane and control-
plane data to compile an extensive dataset of attacks. Our blacklist dataset
combines a large number of blacklists compiled by AV vendors, which was found
to be the best approach to maximize coverage and minimize false-positives.

3 Datasets and Methodology

In this section we present the data and methods that we employ to analyze
malicious activities and misuse of transferred IP address space. Figure 1 shows
how we synthesize and process an array of chosen datasets.
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3.1 Processing of IPv4 Transfers

Collection of reported IP transfers. As a first step of our methodology we
collect the list of reported intra-RIR and inter-RIR IP transfers, as published by
the RIRs. For each transferred resource, we extract the IPv4 address block, the
transfer date, and the names of the seller and buyer organizations. Note that
none of the RIRs provides the AS Number (ASN) of the organizations involved
in the transfer. In the case of inter-RIR IP transactions we also retrieve the
RIR for both the seller and the buyer organizations. For intra-RIR IP transfers,
ARIN and RIPE also indicate the transfer type, namely if a transfer occurred
due to changes within an organization (merger and acquisitions), or as a sale
of address space between distinct organizations. However, this information is
not available for inter-RIR transfers and for transfers within the APNIC and
LACNIC regions. Overall, we collected 30, 335 transfers involving 28, 974 prefixes
between 2009-10-12 and 2019-08-24. Of these transfers, 9, 564 (31.5%) are labeled
as Mergers/Acquisitions, 17, 934 (59.1%) as IP sales, while the rest 2, 837 (9.4%)
are not labeled.

Mapping of organization names to ASNs. We aim next to find the ASes
that map to the organizations active on the IP transfer markets. To this end
we take the following steps. First, we collect historical WHOIS records every 4
months throughout the IP transfers collection period, i.e., from October 2009
to August 2019. Second, for each allocated ASN we extract the AS name and
corresponding organization name for for each allocated ASN. Third, we match
the organization names in the RIR transfer lists against the extracted WHOIS
fields and select the corresponding ASes. We were able to map 8, 744 out of the
15, 666 organizations involved in the transfer market. Through manual inspection
we found that unresolved organizations do not operate an Autonomous Systems.

Inference of transfer types. For the 9.4% of the transfers without reported
transfer type (merger/acquisition, or IP prefix sale), we try to infer if the transfer
occurred between siblings. For organizations we successfully mapped to ASNs,
we use CAIDA’s AS-to-Organization inference [13] closest to the date of the
transfer. Additionally, for inter-RIR transfers and for organizations not mapped
to an ASN, we compare the organization names using the string comparison
algorithm introduced by Myers [34].

Fig. 2: Shift of origin AS in relation to transfer date

Correlation of transfers to BGP
activity. The algorithm returns a
value between 0 and 1, where 1
indicates identical strings. For val-
ues above 0.8 we consider the or-
ganizations as siblings. To improve
the accuracy of string comparison,
we filter-out from the organization
names stop words, and the 100 most
common words across all names (e.g.
Ltd, corporation, limited). Based on
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Fig. 3: The visibility of transferred address space in BGP advertisments.

the above process we infer 841 (29.6%) of the unlabeled transfers to be between
sibling ASes.

We use daily routing tables from all the Routeviews [16] and RIPE RIS [45]
collectors, to investigate how the transferred IP address space is advertised across
time. For each transfer, we check whether the transferred IP blocks are routed
within one year before and one year after their reported transferred date. As
shown in figure 3, 97.05% of the IPs and 64% of the prefixes are advertised
consistently across the entire period. Only ≈ 10% of the prefixes are advertised
only after the transfer, while about ≈ 5% are advertised only before the transfer.
However, the reported transfer date does not correlate with a change in prefix
origin for 65% of the transferred prefixes, while in 15% of the cases the buyer
advertises the prefix one year before the transfer.
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Fig. 4: Distribution of the origin inconsistencies for
ROA records covered by transferred address space.

Inconsistencies in the routing ad-
vertisements. We also investigate
the existence of RPKI invalid ad-
vertisement. To this end, we run
ziggy [36] to collect RPKI data for
January and July of each year be-
tween 2015 to 2019. We then search
in the collected data for prefixes that
match the transferred address space.
For such prefixes we further compare
for each month the origin AS with the
registered ASN in the collected RPKI object. We label as origin inconsistencies
case where we discover a mismatch between the two ASes. We collect an overall
of 15,663 ROA records that are covered by 5476 IP transferred prefixes. How-
ever, we find origin inconsistencies for only 951 of the records. Figure 4 shows the
distribution of the number of months for which we detect such inconsistencies.
Surprisingly, we find that for 40% of the prefixes such advertisements last more
than one year, while some cases last more than three years.
Measuring the deployed transferred IP space. The behavior of BGP paths
will help us interpret more accurately the observed malicious activities, nonethe-
less routed address space is not necessarily deployed and used in practice [15,
44]. To study the malicious behavior of the deployed transferred address space
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we collect Internet-wide IP scans every 3 months between 2012-01-02 and 2019-
09-01. We first collect the ICMP ECHO REQUEST scans from the USC/ISC project
LANDER [18], which sweeps the IANA allocated IP ranges, and records all
the IPs that respond with an ICMP ECHO REPLY message. We complement these
data with Internet-wide UDP and TCP scans collected by RAPID7’s project
Sonar [41, 40], which records the IPs that respond to ZMAP probes against pop-
ular UDP and TCP services.

3.2 Detection of malicious IPs and ASes

After we compile and process the IP transfers, we construct an extensive dataset
of cyber-attack sources to analyze the hygiene of the transferred address blocks
and the players within the IPv4 market.

Real-time BlackLists (RBLs) provide one of the most popular techniques to
detect networks responsible for attacks. Unfortunately, most blacklist providers
do not offer historical snapshots, but typically they only publish the blacklist
at a certain web location that is refreshed periodically – daily or even hourly
– so that firewalls can automatically update their rules. However, we were able
to find two large-scale historical blacklist datasets compiled and archived by
third-parties.

FinalBlacklist. Zhao et al. [61] compiled the FinalBlacklist dataset that
contains over 51 million blacklisting reports for 662K IPs between January 2007
and June 2017, as part of a decade-long analysis of malicious Internet activ-
ity. To construct the FinalBlacklist, the authors collected historical blacklist
snapshots through the Wayback Machine [24], which they extended using Virus-
Total [60], an API that aggregates periodic data from more than 70 Anti-Virus
and blacklist data feeds. 7.6 million (15%) of the blacklisting reports is labeled by
the original source with the type of the malicious activity, which the authors ab-
stract into six classes: Exploits, Malware, Fraudulent Services (FS), Spammers,
Phishing, and Potentially Unwanted Programs (PUP). Based on the labeled
subset they employed a random forest classifier to predict the class of the re-
maining 44M blacklisted activities with 92.4% accuracy. 90.9% of the blacklisted
IPs correspond to malware, while only (0.01%) correspond to Spammers.

RIPE Stat Abuse API. To augment the FinalBlacklist dataset with IPs
involved in the distribution of Spamming, we rely on data published by RIPE
NCC who is archiving daily snapshots since 2009-06-22 of the UCE-Protect

Network [59] blacklist1, one of the most prominent anti-spamming blacklists.
RIPE NCC provides public access to these data through the RIPE Stat RESTful
API [52], which allows querying the blacklisting reports for a specific IP prefix
(no bulk querying). If an IP range within the queried prefix is blacklisted, the
API returns the blacklisting period (start and end date), allowing us to collect
historical blacklisting reports.

1 RIPE Stat also provides access to Spamhaus DROP snapshots [55], which we do not
use because it covers only directly allocated address space
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The UCE-Protect blacklist uses three different levels of blacklisting poli-
cies, according to the severity and persistence of the observed malicious activity.
Level-1 blacklists only single IP addresses detected to deliver e-mails to spam
traps, conduct port scans or attack the UCE-Protect servers. Level-1 records
expire automatically after 7 days if there are no further attacks. Level-2 aims
to stop escalating attacks by blacklisting IP prefixes with multiple IPs that
emanate spam repeatedly for a week, implying lack of appropriate security mea-
sures or intentional misbehaviour. Level-3 blacklists all IPs within an ASN if
more than 100 IPs, but also a minimum of 0.2% of all IPs allocated to this ASN,
are Level-1 blacklisted within 7 days. This aggressive policy assumes that legit-
imate networks are unlikely to have a sustained high volume of blacklisted IPs.
Additionally, a prefix/ASN can get Level-2/3 blacklisted if a network employs
evasion techniques against blacklists, such as rotating the IPs of abusers within
a prefix, or blocking IP addresses of blacklist providers.

Detection of persistent C&C hosters. The activity of botnets is typically
coordinated by Command and Control (C&C) servers. C&C servers may only
orchestrate and not participate in attacks themselves, therefore their detection
is primarily based on honeypots. Shutting down of C&C servers is critical in
defending against botnets, an effort that may even involve security agencies such
as the FBI [31], therefore legitimate network operators tend to respond quickly in
requests for C&C take-downs in contrast to bulletproof hosters. We use data from
two distributed honeypots operated by BadPackets [10] and BinaryEdge [11] to
detect ASes that host C&C servers for over two weeks, despite notices by the
honeypot operators. We were able to detect 28 ASes that are persistent and
serial C&C hosters between February 2018 and June 2019.

AS reputation lists based on BGP misbehavior We complement the set
of malicious ASes compiled through the honeypot data with AS reputation lists
which are developed by monitoring the BGP routing system to detect ASes with
consistent patterns of malicious routing, such as traffic misdirection. We use the
list produced by Testart et al [58], which we further extend with examples of
bulletproof hosters and hijackers reported by [25, 14] resulting in a list of 922
malicious ASes.

4 Analysis and Results

Blacklisted Address Space. We first compare the malicious activity emanat-
ing from transferred and non-transferred prefixes as reflected by our IP blacklist
reports. Table 1 summarizes the blacklist records per type of malicious activity,
for transferred and non-transferred IPs and prefixes. Transferred IPs are dis-
proportionately represented in the blacklist for every type of malicious activity
except Spamming. In particular, the transferred address space represents only
16% of the total address space2, but covers 61% of the blacklisted IPs. The frac-
tion of transferred prefixes with at least one blacklisted IP is 4x to 25x larger

2 Same percentage when we take into account only routed address space
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Table 1: Analysis of blacklisted IPs. Transferred IP prefixes are disproportionately represented in all
the blacklists by a rate between 4x for Malware IPs, to 43x for Fraudulent services.

Blacklisted IPs
part of transfers

Trans Prefixes
w/ blacklisted IPs

Non-trans Prefixes
w/ blacklisted IPs

Blacklist type
All Filtered All Routed Routed

Unwanted Programs 55% 43% 3.6% 5.5% 0.95%
Exploits 30% 30% 4.7% 7.2% 0.92%
Malware 36% 29% 16.6% 25.3% 6.2%
Phising 36% 25% 7.5% 11.6% 2%
Fraudulent Services 23% 27% 3.8% 9.6% 0.22%
Spammers 12% 12% 0.6% 0.9% 0.1%

than the fraction of non-transferred prefixes for every blacklist type, with Spam
being the category with the smallest fraction of blacklisting reports per prefix.

As shown in Figure 5, 40% of the routed transferred prefixes appear at least
once in our RBLs, compared to only 6% of the non-transferred routed prefixes.
However, the blacklisting activity does not originate uniformly across the address
space. When we break down all prefixes to their covered /24 sub-prefixes we find
that the blacklisted IPs are concentrated in 6% of the transferred /24s, and in
only 1% of the non-transferred /24s (Figure 5b). This happens because some of
the less specific transferred prefixes are owned by large-scale legitimate networks,
such as Tier-1 providers, that proportionally originate a very small fraction of
blacklisting reports. For example, the prefix 50.128.0.0/9 which was transferred
by an acquisition from Comcast includes 32, 768 /24 sub-prefixes (more than all
transferred prefixes), but has only 289 blacklisting reports. Still, transferred /24
sub-prefixes are 6x more likely to be blacklisted, than the non-transferred ones.

Blacklisted ASNs. We analyze the blacklisting reports per ASN, to under-
stand how the detected malicious activity is distributed across the participants
of the IP transfer market. Almost 50% of all the ASNs that participate in the
transfer market appear at least once in the blacklist, compared to only 16% of
the ASNs that do not participate in the transfer market and appear in the BGP
table to originate prefixes (Figure 6a). Moreover, ASes in the transfer market
tend to have larger fraction of their address space blacklisted, with a median
of 0.06% compared to 0.03% for ASes not involved in any transfer, which is an
indication of more consistent malicious behaviour. This trend is even more pro-
nounced for ASes that are both sellers and buyers of IP prefixes, which for some
ASes appear to be a strategy to recycle blacklisted prefix. To study whether the

(a) Blacklist records per prefix (b) Blacklist records per /24

Fig. 5: Distribution of the volume of blacklisting reports for transferred and non-transferred prefixes.
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(a) Distribution of blacklisting reports per ASNs (b) Fraction of blacklisted address space per ASN

Fig. 6: Comparison of the blacklisted activity of the ASNs in the transfer market, compared to the
rest of the ASNs that originate BGP-routed prefixes.

higher blacklisting rate of ASNs involved in transfers may be explained by a
bias in the composition of ASNs that exchange IP space, we compare their user
population according to APNIC’s estimates [20], and we also compare their self-
reported business type in PeeringDB [2]. For both datasets the composition of
ASNs is very similar, with ASNs absent from transfers exhibiting slightly higher
median user population.

While the blacklisted prefixes are distributed across half of the ASNs involved
in transfers, there are 26 ASes with more than 10K blacklisted IPs, including
prominent cloud providers (e.g. Amazon, Microsoft, Google, OVH) and Tier-1
providers (e.g. GTT, CenturyLink, Seabone). Attackers often utilize cloud plat-
forms as a cost-effective way to host malicious software in short-lived Virtual
Machines and avoid detection [57], while large providers operate a global net-
work that covers a massive user population. These ASes account for only 0.3% of
the blacklisted prefixes, but cover 55% of all the blacklisted IPs, which explains
the the long tail of the distributions in Figure 5a. Following a filtering approach
similar to the one proposed by Testart et al. [58], we consider as non-suspicious
the 1,000 ASes with the largest customer cones according to AS-Rank [29]. How-
ever, cloud providers, CDNs and large-scale eyeballs have relatively small cus-
tomer cones. Therefore, we complement the filtered ASes with: (i) the 30 ASes
with the largest amount of traffic (hypergiants) based on the methodology by
Böttger et al. [12], and the 1000 ASes with the largest user population according
to APNIC. As shown in the column “Filtered” of Table 1, even when filtering
out these ASes, the fraction of blacklisted transferred IPs is between 2x – 3x
higher than the total fraction of transferred IPs, while the fraction of blacklisted
prefixes is virtually identical between the filtered and the non-filtered datasets.
This is an indication that a large number of ASes in the transfer market exhibit
higher affinity for malicious activity which cannot be explained by their business
model network footprint. The rest of our analysis is based on the filtered set.

Blacklisting timing. To explore the dynamics between malicious activity and
the IP transfers, we compare the timing of the blacklisting reports to the transfer
date. We use the effective transfer date, as observed by BGP routing changes (see
Section 3.1), and the reported transfer time only when the origin AS does not
change at all. As shown in figure 7, the number of blacklisted IPs peaks within
a year of the transfer date for all types of malicious activity. Such blacklist-
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Fig. 7: Blacklist reports per type of malicious activity for transferred IPs, compared to the transfer
date. The last row shows the blacklisting activity for deployed prefixes based on the Internet-wide
IP and port scans.

ing activity shortly after the transfer date may happen because the transferred
addresses were unused before the transfer.

Fig. 8: Fraction of address space in IP blacklists
per transfer region, and per type of transfer

To illuminate this possibility, in the
last row of figure 7 we plot the black-
listing reports only for prefixes with IPs
visible in our IP/port scans at least one
month before the transfer date. For de-
ployed prefixes the peak in malicious ac-
tivity also peaks after the transfer date,
but after one year. This finding indicates
that recipients of IP addresses are more
prone to abuse of the IP space, which
agrees with the difference in blacklisting
magnitude between buyers and senders
as shown in figure 6b.

Fig. 9: Density of blacklisted IPs for low-
reputation ASes that participate both as buyers
and sellers in the IPv4 market

Per-region and per-transfer type
differences We then investigate whether
the malicious activity differs between re-
gions and between transfer types. Fig-
ure 8 compares the fraction of black-
listed transferred address space between
prefixes exchanged as Merge & Acqui-
sitions and as IP sales for each region
with blacklisted IPs, and for inter-region
transfers. Prefixes exchanged within the
RIPE region as sales originate have the
highest fraction of blacklisted IPs, which
is statistically significant.

In contrast, ARIN exhibits higher malicious activity from prefixes transferred
between siblings, although the spread of values makes it difficult to generalize
this observation. For APNIC and inter-RIR transfers we observe only non-sibling
blacklisted transactions, while for AFRINIC and LACNIC we do not have any
blacklisted transferred IP (after the AS filtering step).
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Participation of low-reputation ASes in IPv4 transfers The final part of
our analysis is to check the participation rate of low-reputation ASes (hijackers,
C&C and bulletproof hosters) in IP transfers. Although 85% of the ASes visible
in the BGP routing table are not involved in IP transfers, 47% of the low-
reputation ASes have been either buyers (48%) or sellers (52%). Surprisingly,
32% of these ASes participate both as buyers and sellers. This practice may
signal an attempt to recycle “tainted” address space in order to evade blacklist
filters, since blacklist providers may remove listed IPs and prefixes when there
is a shift in ownership. Figure 9 shows that indeed the density of blacklisted IPs
for the low-reputation buyer/seller ASes dips at the transfer date and increases
shortly thereafter.

5 Conclusion

In this paper we present a first comprehensive measurement study of malicious
activities within the transferred IPv4 address space and the networks that are
involved in the IPv4 market. We first combine a wide range of control-plane and
data-plane data to process the details of the reported IP transfer reports and
and verify the ownership of the exchanged prefixes based on BGP paths and
historical WHOIS and RPKI data. We find that for more than 65% of the IP
transfers, the origin ASes and the transaction dates appear to be inconsistent
with the transfer reports, while 6% of ROAs become stale after the transfer for
many months. Our results reveal at best poor practices of resource management
that can facilitate malicious activities, such as hijacking attacks, and even lead
to connectivity issues due to the increasing deployment of RPKI-based or IRR-
based filtering mechanisms.

We then analyze the exchanged IPv4 address blocks against an extensive
dataset of malicious activities that span a decade, which includes IP blacklists,
honeypot data, and nonlegitimate ASes based on the detection of control-plane
misbehavior. Our findings show that the ASes involved in the transfer market
exhibit consistently higher malicious behavior compared to the rest of the ASes,
even when we account for factors such as business models and network span.
Our findings are likely to be a lower bound of malicious activity from within
transferred IP addresses since a number of transactions may occur without being
reported to the RIRs. As part of our future work we aim to extend our analysis
to non-reported IPv4 transfers and develop predictive techniques for blacklisting
based on the monitoring of the IPv4 transfer market.

We believe that these insights can inform the debates and development of RIR
policies regarding the regulation of IPv4 markets, and help operators and brokers
conduct better-informed due diligence to avoid misuse of the transferred address
space or unintentionally support malicious actors. Moreover, our results can pro-
vide valuable input to blacklist providers, security professionals and researchers
who can improve their cyber-threat monitoring and detection approaches, and
tackle evasion techniques that exploit IPv4 transfers.
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