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Abstract
 This paper presents a new conceptual model, the XBW-
Model. Distributed computing is becoming a cost
effective way to implement safety critical control systems.
To support the development of such systems the XBW
conceptual model was developed. The model describes
the time behavior and distribution properties of a system
in such a way that static scheduling and systematic fault
tolerance can be applied. The conceptual model also
enables the definition of an appropriate fault model. This
fault model along with the XBW-model allow efficient and
systematic use of well known software based error
detection methods. A distributed steer-by-wire control
system is described, which is developed according to the
model. The XBW-Model is developed within in the
European Brite-EuRam III project X-By-Wire.

1. Introduction

 Computer control in hard real-time systems is
becoming common in safety critical systems. At the same
time the use of distributed architectures is increasing.
This introduces new requirements on software design
regarding areas such as timing predictability and fault-
tolerance. Timing is no longer a node internal issue since
each node has to synchronize its actions with other nodes.
Fault tolerance is of course a major concern in safety
critical systems. Mechanisms for fault tolerance has to be
considered in an early stage of the design and needs to be
handled in a structured and systematic way throughout
the development process. To handle the inherent
complexity of developing a safety critical system,
systematic fault tolerance is desirable. Other important
properties of such systems are testability and reusability
which both can be addressed in a systematic way. New
application areas where the production cost is crucial, like
the automotive, favor solutions that can be implemented
with a minimum of hardware redundancy, opting for
software based solutions. Software based fault tolerance
also offers a reliability gain while using a minimum of
hardware resources.

 To support the development of safety critical hard real-
time systems in a distributed environment a new concep-
tual model for software design, called the XBW-model,
has been developed. This model has been developed with
the experience from the partners in the X-By-Wire
project. The XBW-Model is designed to support a time-
triggered architecture and to take advantage of the
inherent predictability following such a system. The
intention with this model is to obtain high reusability,
testability and maintainability without losing in efficiency
and reliability. The model is influenced by the Basement
[5] and DFR [16] concepts.

 The basic idea of software development with the XBW
model is to connect constructional elements, called BPEs
(Basic Processing Elements), to establish the functions of
the application. The interface of a BPE is input and
output messages with state semantics that are used to
communicate with other BPEs, where the communication
is restricted to the initial and final parts of the BPE. The
simple and well-defined interface increases the reusability
and testability of the BPE. To assist structuring of
functions and subsystems, the BPEs can be composed into
CPEs (Complex Process Elements). To view the timing
constraints on the functions and precedence between the
BPEs a PED (Processing Element Directed acyclic graph)
is used. The PED has exactly one trigger condition, which
is normally a time-trigger, (the XBW-Model also allows
event-trigger conditions), and a deadline associated with
it. All output messages from the BPEs in the PED have to
be sent within this deadline.

 This conceptual model is used to derive a fault model
where the constructional elements (BPEs) defines the
fault abstraction level and region of fault containment.
Based on this fault model well known software based
error detection methods are proposed. These methods will
be implemented as systematic fault tolerance mechanisms,
supported by system services such as an operating system.
This will simplify managing fault tolerance during system
design. Including these mechanisms when specifying the
system in the XBW-model will give a lucid overview of
the fault tolerance properties of the system. It may also be



 

possible to include application specific fault-tolerance in a
systematic way by using an assertion framework.

 Chapter 2 describes the XBW Conceptual model and
its different building blocks. In chapter 3 the fault model
is defined and in chapter 4 the strategy for systematic
fault tolerance which is used in conjunction with the
model is described. As a small sample implementation
using the XBW-model a Steer-by-wire function is
presented in chapter 5. Finally, chapter 6 gives a
summary of the paper.

2. Conceptual model

 The goal with this concept is to obtain a model that is
analyzable and describes the real-time behavior and also
to facilitate systematic fault tolerance. The model will
also aid in designing system parts that are highly
reusable, testable and maintainable, without losing in
efficiency and reliability. The model must also describe
the modularization and decomposition of the system.
Especially the design of time triggered systems has been
considered during the development of this model.

 It should also facilitate systematic fault tolerance such
that systematic fault tolerant mechanisms and runtime
schedules can be automatically generated. The timing
properties can then be verified using the information from
the model. Similar functionality is currently being
implemented in off-line tools for the ERCOS OS [13].

 The model has two major constructional elements, the
Basic Processing Element and the Complex Processing
Element.

2.1 Basic Processing Element

 The Basic Processing Element (BPE) is the smallest
composable software structure element and communicates
with other BPE via messages (Figure 1). The purpose of
this element is to serve as a common containment region
for processing, distribution, scheduling, and error
detection. The main reason for using the BPE for all these
purposes is the conceptual simplicity, that a single
interface can be used for the error detection and recovery
mechanisms.
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 Figure 1. A Basic Processing Element.
 Messages sent or received by a BPE have state

semantics [19, 15], i.e. all messages are non-destructive
read and destructive write.

 The internal state between executions of a BPE will be
saved internally and is referred to as history-state (H-
state). The H-state makes it easier to systematically keep
track of information that might be necessary to exchange
between redundant instances of the BPE, e.g. for
backward recovery actions.

 All received messages together with the H-state builds
what is referred to as the input vector, and all output mes-
sages together with the new history-state builds the output
vector, see Figure 2.
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 Figure 2. BPE internal structure.
 The input vector must be complete before executing

the BPE. When processing of the BPE is finished all
output messages will be sent and the new history-state
saved, i.e. all input and output of the processing are
performed prior and after the processing respectively.
This internal time precedence of the BPE is described in
the figure below.
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 Figure 3. BPE with its time precedence.
 The processing is performed non-blocking, i.e. all the

conditions for the processing are satisfied after the input,
and so describes the smallest unit of scheduling. (This im-
plies no assumption about preemption).

 This simple and well-defined interface will increase
the reusability and testability of the BPE.

 One optional attribute of the BPE is reference input
and output vectors which are used for error detection
purposes (section 4.1.2).

2.2 Complex Processing Elements

 To assist construction and structuring of functions and
subsystems the Complex Processing Element (CPE) is
introduced. The CPE will also make it possible to view
the system in different hierarchy levels.
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 Figure 4. Example of CPE composition views.
 BPEs and CPEs, which are functionally or in other

ways related to each other, can be composed together in a
CPE, see Figure 4.

 The message information flow can be one-to-one, (1:1)
like message m5 in Figure 4 or one-to-many, (1:m) like
message m2. Message information flows of the forms
many to one (n:1) and many-to-many (n:m) are not
supported.

 The CPE can be described at hierarchical levels with-
out revealing its internal structure of BPEs and CPEs (this
supports the concept of information hiding and
abstraction).

2.3 Processing Element Directed a-cyclic Graph

 In a PED (Processing Element Directed a-cyclic
Graph), which is an extension to the CPE, we can express
the precedence relation between different elements in the
graph. If there is multiple precedence relations both
conditions have to be fulfilled (AND semantics). The
precedence relation is indicated with dashed arrows as a
distinction to the messages’ continuous lined arrows.

 Different execution models like periodic or sporadic
tasks are modeled by using trigger conditions for the acti-
vation of the PED.
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 Figure 5. Example CPE behavior view.
 The PED is determined by the following

characteristics:
• The PED has exactly one trigger element that

describes the activation criteria for the PED.
• Each BPE/CPE in the PED can be reached by the

precedence edges from the trigger element.
• The PED is associated with a deadline ‘D’ that is de-

fined relative to the trigger element and the last output
message of the PED.

• The PED is further associated with a computation
time ‘C’. This in turn is based on the computation
time of the included BPEs.

• Separate PEDs can be coupled by precedence edges.
• There are no mutual precedence relations between

PEDs.
• The trigger element can be a time or an event. In the

figure above PED1 and PED2 are time triggered and
PED3 is event driven.
 Time triggers which are used for periodic activation

have the following attributes:
• a time period ‘T’ and
• a time offset ‘r’ within the period.

 Event triggers which are used for sporadic activation
have the following attributes:
• a relation to an external (physical) or internal

(symbolic) event including an optional delay r and
• a minimum interarrival interval ‘Tmin’.

2.4 Physical distribution

 The physical distribution of a system is described by
physical node attributes to the BPEs, CPEs or PEDs,
which must not be contradictory. The distribution could
also be described in a separate graphical view, but this is
currently not included in the model.



 

2.5 Mutual exclusion

 The behavior model of the BPE does not include mu-
tual exclusion between BPEs, e.g. to achieve mutually ex-
clusive access to shared resources. A way to include mu-
tual exclusion while conserving the deterministic
behavior of the model is to use the Resource mechanism
[1]. The major advantage of the resource mechanism is
that it completely avoids blocking, deadlocks, and
livelocks. This allows the analysis of the worst case
execution time. The blocking avoidance makes the
resource mechanism comply with the input/process/output
pattern of the BPE.

 Some of the proposed error detection mechanisms in
chapter 4.1 excludes the use of resources since it cannot
be guaranteed that double update operations are
idempotent. This restriction can be relaxed if the
implementation guarantees that the double access to the
resource leads to no inconsistency.

3. Fault model

 The terminology fault, error, and failure used in this
paper is based on the definitions given by Laprie [11]:
Accordingly a fault is the adjudged or hypothesized cause
of an error. An error is the part of the system state which
may cause a failure. Errors are manifestations of a fault in
the system. A failure is the deviation of the delivered
service from compliance with the service specification.
Failures are triggered by errors. They in turn may cause
faults of systems interacting with the failed systems or at
higher hierarchy levels.

 The fault model is derived from the conceptual model
where the constructional elements define the fault abstrac-
tion level and the regions of fault containment. The
different fault types are: (1) Data Processing Fault, (2)
Data Storage Fault, (3) Data Flow Fault, (4) Control
Timing Fault and (5) Control Flow Fault.

 Data Processing Faults pertain to the processing part of
the BPE, transforming the input vector to the output vec-
tor. The Data Processing Fault occurs whenever the proc-
essing within a BPE differs from the specified transforma-
tion. This means for example that in this model control
flow faults within the BPE are classified as Data Process-
ing Faults.

 Data Storage Faults pertain to the value of the input
and output vectors of a BPE. A Data Storage Fault occurs
whenever the message or H-state at the receiving BPE dif-
fers from the value of the transmitting BPE. This
definition manages transmission faults as storage faults so
distributed and non-distributed BPEs can use the same
model and detection mechanisms.

 Data Flow Faults pertain to the path of the input and
output vectors of a BPE. The data flow is static and
defined pre runtime in the CPE and PED description. It
describes when and where each schedulable unit (BPE)
shall read its input information and when and where the
result shall be written. A data flow fault has occurred if a
BPE, when executed, reads from or writes information
into a data storage that differs from the specified ones, or
if the timing differs from the specification.

 Control Timing Faults pertain to the time domain of
the PED. A control timing fault occurs when the actual
control timing of a PED is not compliant to the
specification, i.e. whenever the dead-line requirement of a
PED during run-time is not met.

 Control Flow Faults pertain to the precedence order of
the PED. A Control Flow Fault occurs whenever the exe-
cution order of the BPEs in a PED during run-time differs
from the one defined pre run-time. Note that in this
model, control flow faults within the BPE is considered as
Data Processing Faults.

4. Systematic Fault Tolerance

 This chapter presents a framework for  the
achievement of systematic fault-tolerance. Whereas
application-specific fault-tolerance uses knowledge about
the application domain to achieve fault-tolerance in an
ad-hoc way, systematic fault-tolerance uses replication of
components to detect faults and applies redundancy to
achieve continued service in the presence of faults.

 Although systematic fault-tolerance potentially incurs
higher costs than application-specific fault-tolerance it
offers a number of advantages as well, specifically [14]:
Independence of application knowledge. Broader
applicability. Less software complexity. Separation of
application and fault-tolerance functionality. Reusability
of fault-tolerance mechanisms across applications.
Reusability of application software in systems with
different degrees of fault-tolerance.

 The failure hypothesis of the BPEs is fail silence (FS)
in value and time domain. This property is also shared by
the CPE and PED. This means that the output vector of a
BPE is delivered correctly at the correct time or not at all.
Since the output vector is also subject to faults the as-
sumed behavior of the BPE including the output vectors is
extended fail-silence i.e. the BPE is considered FS even if
erroneous vectors are sent, provided this status is detected
at the receiving BPE.

 To support the FS abstraction, a variety of error detec-
tion mechanisms (EDM) must be provided. These mecha-
nisms will be described in section 4.1.

 One objective of the X-By-Wire project is to find cost
effective fault tolerant (FT) solutions. The chosen FT



 

mechanisms comply with these requirements. Solutions
that use special hardware are not employed.

 To obtain the FS property the input and output sections
of the BPE (Figure 3) are monitored by software for error
detection which is part of the System Services.

 An advantage of using the BPE as a basis for the error
detection is that the latency requirements for the error
detection within a BPE are explicit in the model. Since no
output is performed until the output section, there is no
requirement for the detection to be effective until then.

 In the following sections the EDMs and redundancy
strategy is explained and finally some implementation as-
pects are discussed.

4.1 Error Detection Methods

 To achieve a sufficiently high coverage for the fail
silence assumption [18] it is necessary to employ
extensive error detection strategies. There is a broad
variety of error detection methods available. Some of
them are hardware based (e.g. signature checking or
watchdogs), while others are software based. In the
following we are concerned with software based EDMs
with high coverage which can be applied systematically,
but also standard hardware as watchdog timers. By
systematically applicable it is meant that the error
detection strategy can be applied to a piece of software
without any knowledge of the application domain. This
for example excludes all types of plausibility and range
checks.

 Furthermore these EDMs can be applied locally to a
node so no extra inter-node communication bandwidth is
occupied. Experimental results have demonstrated a high
error detection coverage by these strategies [7]. The
EDMs will be described in the following chapters.

 The different EDMs accounting for the XBW faults is
shown in Table 1.

 
Fault Error Detection  Mechanism
Data Processing
Fault

Double Execution / Double Execution with
Reference Check

Data Storage Fault Message Validity Check: Data redundancy
coding

Data Flow Fault Message Validity Check: Message ID +
Message Time-stamp

Control Flow Fault Block level Signature Check
Control Timing Fault Watchdog timer

 Table 1: Different EDMs handling different faults
in the XBW-fault model.

4.1.1 Double Execution. For the double execution
method (DEX) [22][4][21] the processing part of the BPE
is executed twice per activation. After the second execu-
tion a generic comparison function is called to check the
individual output vectors. If the two output vectors differ

an exception is raised to treat this situation, e.g. to be fail
silent. If the results are identical then the output of the
BPE is made available.

 Since the output vectors account for all output from the
processing including the internal state of the BPE the
error coverage is expected to approach 100% for transient
or intermittent faults. Fault injection experiments [7]
where DEX were combined with Message Validity Check
indeed indicate this.

 The BPE concept is very suitable for the DEX method
since the output including the internal state is explicitly
identified in the model. This means that a code tool can
generate the test completely automatically.

 Since the processing part of the BPE is executed twice
on the same hardware resources, there is no possibility to
detect permanent hardware faults. However, detection of
transient faults is more important since their likelihood is
orders of magnitude higher than the likelihood of perma-
nent faults [22]. This is especially relevant for automotive
electronics which must operate under harsh
environmental conditions.
double execution:
  save in-vector
  exec process
  save out-vector
  restore in-vector
  exec processing
  save out-vector
  generic out-vector compare
  on error raise exception
  send messages (generate output)

 Figure 6. double execution.
 Double execution can only detect transient faults when:

(1) The persistence of the transient faults is short enough
not to affect both executions or (2) the transient fault af-
fects both executions in a different way so that the output
vector of the individual executions are different.

 A possible measure to manage long transients is to
schedule the two executions with an increased separation
in time. This is also done in the Double Execution with
Reference Check method presented in chapter 4.1.2.

 The execution sequence for double execution is given
in Figure 6. The time overhead for the DEX is at least
100%, but the absolute cost is decreasing with higher
micro processor/controller performance.

4.1.2 Double Execution with Reference Check. Double
execution (as presented above) allows for the detection of
transient faults under the assumption that the fault does
not affect both executions in the same way. Since it is
possible that a transient (or permanent) fault, such as a
latch-up, affects both executions in the same way it might
be desirable to detect this type of faults as well. This can
be facilitated by performing an additional execution of the
BPE with reference (“golden”) data between the first and



 

second execution. That is, the input vector is initialized
with a given set of reference data, the processing part is
executed and its output vector is compared against the
known correct results for the given set of reference data.
Physical fault injection experiments [7] on the MARS
system [9] have demonstrated that this EDM might be a
way to accomplish 100% coverage at least for transient
faults. For reasonably chosen reference input vectors and
moderate assumptions (like all user registers tested at
least once for 0 or 1, etc.) the coverage for permanent
faults should be at least 50%.

 The execution sequence for double execution with ref-
erence data is given in the following figure:
double execution with reference data:
  save original in-vector
  exec process
  save out-vector-1
  in-vector := reference in-vector
  exec process
  compare out-vector and reference out-vector
  on error raise exception
  restore original in-vector
  exec process
  save out-vector-2
  compare out-vector-1 and out-vector-2
  on error raise exception
  send messages (generate output)
 Figure 7. double execution with reference check.

As for the DEX EDM this method is suitable for auto-
matic generation provided the reference vectors are de-
fined for the BPE.

 The time overhead for the method is at least 200%.,
but as for the DEX this cost is of decreasing importance.

4.1.3 Message Validity Check. Since information ex-
change between BPEs is carried out exclusively by means
of message passing it is important to detect message mu-
tilation and timing faults. This can be done by allocating
redundant memory for messages. Upon sending a mes-
sage, the sent message data is stored along with a calcu-
lated error detection code. Upon receiving a message, the
message data are read and the error detection code is cal-
culated over the message data plus the expected message
ID. If there is a difference between the calculated and the
stored error detection code an exception is raised since the
message has been corrupted. Message validity checks can
be implemented for intra- as well as for inter-node com-
munication.

 There is a broad variety of error detecting codes which
can be used to detect message mutilations. However, de-
pending on the message length different error detecting
codes should be used for efficiency reasons. Typically,
many messages have a length equal to the processors
word length. For these messages it is advantageous to use
the two’s complement or exclusive-or as an error detec-
tion code. For longer messages error detection codes such

as CRC are better suited since they have a higher error
detection coverage.

 The technique described above protects against faults
in the value domain. It is possible to extend this check to
the time domain by assigning time-stamps to messages.
Upon sending a message, the activation time of the sender
is saved along with the message. Upon receiving the mes-
sage the receiver checks whether the message time-stamp
is valid. This can be done by calculating the period be-
tween the activation time of the receiver and the activa-
tion time of the sender. If this period exceeds a specified
latency then it is known that a message send operation
has been omitted. The error detection techniques for the
value and time domain can be combined by calculating
the error detection code over the actual message data and
the time-stamp.

4.1.4 Block Level Signature Check.  Signature
checking is a technique to detect control flow errors [20,
12]. At run-time, a signature is calculated as the processor
executes a block of code. For software signature checking
without user intervention (insertion of special statements)
and without special compiler support the granularity of
blocks must be selected in accordance to the granularity of
the objects managed by the operating system. The Signa-
ture Check is executed in the Input and Output sections of
the BPE to assure that the execution order of the BPE is
according to the off-line definition and that the output is
allowed.

 In this signature checking the BPE serves as the block
for which the signature is calculated and checked.

 The reason why control flow faults within the BPE
needs not be considered separately is because the double
execution check covers all output from the processing,
including the state of the BPE. Any transient control flow
fault that does not manifest itself as an error does not
need to be accounted for.

4.1.5 Watchdog Timer. The Watchdog timer EDM as-
sumes the availability of a hardware watchdog timer on
the executing node. For a hard real-time system the worst
case computation time should be known. Prior to the exe-
cution of a BPE or PED, the timer is initialized with this
value. If the watchdog timer expires prior to the termina-
tion of the BPE, an exception is raised to handle the
situation.

 For time-triggered PEDs the entire control timing is
defined pre-run-time in the PED description. Conse-
quently, the time when a certain schedulable unit (BPE) is
to be invoked and has to be finished is also determined
pre run-time.



 

4.2 Redundancy Strategy

 The Redundancy Strategy deals with the tolerance of
permanent faults and requires redundant hardware com-
ponents, i.e. processing and communication hardware
resources are replicated.

 The replication of hardware components is done at the
granularity of nodes and their peripherals— called
smallest replaceable units (SRUs). Software components
are replicated at the granularity level of subsystems, i.e.,
replicated and non-replicated BPEs may reside on the
same SRU. This differentiation between the granularity
level of replicated software and hardware components is
advantageous for economic reasons. Such a structure
makes it possible to replicate only critical software parts.
This allows the application designer to select the
necessary level of redundancy without incurring the high
hardware costs for the complete replication of SRUs.

4.2.1 Active Replication. With active replication a BPE
or an entire PED executes on different nodes in parallel in
a distributed system. All instances receive the same inputs
and generate outputs. If one node fails the remaining in-
stance of the BPE or PED are able to continue their
service on the remaining processing nodes. Examples of
systems supporting active replication are SIFT [23],
MAFT [8], and MARS [9]. The “State Machine
Approach”, as described by Schneider [19], treats this
replication method in a very detailed manner. For hard
real-time systems active replication is the technique best
suited to mask faults transparently [14] since there is no
delay for recovery actions. This means there is no
difference in the timing, regardless of whether a node
failure had occurred or not. Furthermore, with active
replication the individual nodes are not restricted in their
failure semantics since all decisions are taken strictly
distributed. Due to these advantages active replication is
supported as the basic fault tolerance strategy for
permanent faults.

The major problem with active replication is the high
effort for replica control; all the replicated BPEs must re-
ceive the same inputs and they must execute at approxi-
mately the same time to deliver the same outputs. How-
ever, there are various sources for non-deterministic be-
havior of replicated BPEs. Among them are slightly di-
verging inputs from sensors, dynamic scheduling deci-
sions, inconsistent message delivery order, slight differ-
ences in the execution timing, time-outs, and uncoordi-
nated accesses to clocks. All these sources may lead to
diverging outputs of the replicated BPEs even though all
nodes are correct. It is therefore necessary to enforce rep-
lica determinate behavior of the replicated BPEs [14].

The enforcement of replica determinism can be decom-
posed into two parts, The first (1) concerned with external
input and (2) processing of information within a node.

(1) Non-determinism of external inputs is caused by
the limited accuracy of any sensor. This may lead to a
situation where two (or more) sensors map a continuous
quantity to different discrete numbers. A divergence of at
least one bit cannot be circumvented [14]. This
divergence can occur in the value domain as well as in the
time domain. It is therefore necessary to provide the
application software with a framework that allows
replicated subsystems to achieve agreement. This can be
achieved by providing the application software with a
framework called RDA-Messages [16] (Replica
Deterministic Agreed-messages). This message
mechanism will allow replicated subsystems to reach
agreement on replica non-deterministic values before they
are used. Details of this mechanism is out of the scope of
this paper.

(2) Actively replicated BPEs can show replica non-
deterministic behavior because of slight divergence in the
execution timing. To avoid node internal non-
determinism it is necessary to achieve total agreement on
the order of message receive and send operations. In [17]
it has been shown for real-time systems that— except for
external events— no communication is necessary at all to
achieve agreement. This can be attained by means of
Timed Messages which enforces replica determinism on
send/receive behavior of replicated processes. For a more
detailed discussion the reader is referred to [17,14].

4.2.2 Implementation aspects. A weakness of the soft-
ware based EDMs described in chapter 4.1 is that the Sys-
tem Services assumed to execute the detection
mechanisms are partly unguarded. For example nothing
prevents a transient fault on the processor address register
or decoder to cause an illegal branch into the output
section of a BPE, which could cause uncontrolled output.
A countermeasure for this is to use the inherent
redundancy of a processor, for example, by adhering
Hamming Distance separation (the number of bits that
differ between two binary codes or words) between on one
hand, the addresses of the processing part of a BPE
including the error detection before any input/output
operation, and on the other hand the input/output
operation. This prevents any FS violation caused by a
single bit address fault. As indicated by physical fault
injection experiments [6] [2] single bit errors can be
assumed to account for more than 90% of all errors.

 For a distributed implementation using this model the
efficiency can be increased by using a suitable communi-
cation protocol, like the TTP protocol [10]. This way
many of the fault tolerance tasks can be done on the



 

communication layer of the system, for example: the time
tagging of messages used in chapter 4.1.3 can be omitted
in a time-triggered communication system since all
involved timing is known pre run-time.

5. A sample implementation: Steer-by-wire

 As a part of the X-By-Wire project a prototype steer-
by-wire demonstrator will be developed to evaluate the
architecture proposed within the project, and its appropri-
ateness for future X-By-Wire applications in vehicles.
Other parts that will be evaluated are the process,
methodologies and detailed solutions but this is out of the
scope of this paper.

 The demonstrator is only briefly described here. A
more detailed description can be found in [3].

5.1 Overview

 The main function of the prototype is to implement a
vehicle steering function without mechanical link between
the steering wheel and the driving wheels.

 This will be done by computing the vehicle steering
angle, starting from the driver’s input, taking into
account vehicle handling and vehicle situation, and
consequently move the road wheels. To improve the
driver’s feeling of the vehicle’s behavior, a steering wheel
feedback actuator will be used.

 The control system of this demonstrator is described in
the XBW model. An overview of the system is presented
in Figure 8.
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 Figure 8. System Control.
 The control system is implemented using commercial

off-the-shelf controller nodes based on Motorola
MC68360 communicating and synchronized via the dual
channel bus using the fault tolerant time-triggered TTP
protocol [10].

 The controller nodes work as Fail-Silent Units (FSUs)
using the principles presented in this paper. Each FSU is
replicated in two or more instances forming distributed
Fault Tolerant Units (FTUs). Each FSU communicates on
the bus via a TTP bus controller implementing the TTP
protocol.
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Dynamics 
simulated 

Sensor

VV 

Drinving Wheel 
Angle Sensor 

DER

SWA 

MDWA

RWA 

AV 

RWT 
FTV  

 Messages:                                   Properties 
AV         Angle Value                       LMVC, AF  
FTV       Feedback Torque Value       LMVC  
MDWA  Main Driving Wheel Angle     AF 
RWA     Road Wheel Angle                RDA  
RWT     Road Wheel Torque              RDA  
SWA     Steering Wheel Angle            RDA 
VV         Vehicle Velocity 

VV

Replication level all is 2; Replication level Driving Wheel Actuator is 3;

Abbreviations 
DER    Double execution with reference 
            check 
HSVC  History state validity check 
LMVC  Local message validity check 
AF       Assertion Framework 
RDA    Replica determinate agreed 
            messages 

 Figure 9. CPE composition view with fault
tolerance mechanisms.

 The system services for the execution and fault toler-
ance is supplied by the ERCOS [13] real-time operating
system and a prototype xOLT off-line tool according to
the DFR [16] concept for the systematic fault tolerant
services.

PED_B: 20 ms

PED_A: 200 ms

PED_C: 20 ms

SWAS

FSC DWA

MSC

VDSS

DWAS

Abbreviations  
VDSS   Vehicle Dynamics Simulated Sensor 
SWAS  Steering Wheel Angle Sensor 
MSC     Main Steering Control 
DWAS  Driving Wheel Angle Sensor  
FSC      Final Steering Control 
DWA     Driving Wheel Actator

 Figure 10. PEDs for Main and Final Steering
control.

 
 The required FT property of the prototype is FO/FS

(Fault Operational/Fail Safe). This means that any one
permanent fault must be tolerated and still providing
specified functions. Any additional transient fault must be
managed in a safe way. For a steering system that means
that steering function must still be functioning.



 

 Three FTUs are used, the Steering Wheel FTU, the
Main Steering Control FTU and the Driving wheel FTU.
The sensors for the angle and torque measurements are
also replicated, one sensor connected to each FSU. The
actuators are also replicated and connected to an FSU.

 Figure 9 describes the control system using the XBW
model and the real-time processing is described in the
PED view in Figure 10.

6. Summary

 This paper presents the XBW model, a conceptual
model that uses easy to understand graphical syntax, com-
bined with attributes to get a description suitable for use
with systematic fault tolerance. It further includes a fault
model that enables analysis of fault tolerance on the
system or application level. Further it proposes a
systematic application-independent framework for fault-
tolerance. It is shown how the XBW-model together with
the fault model supports the use of error detection
mechanisms such as double execution, double execution
with reference check, validity checks for messages, Block
level Signature Check and Watchdog Timer. These error
detection mechanisms are well known and combined they
give a high error detection coverage. They are necessary
to fulfill the fail-silent assumption in the model. These
mechanisms are independent of the semantics of a
specific application and can thus be applied
systematically. Each of the mechanisms can be
implemented without coupling the application software to
a specific fault-tolerance strategy.
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