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Abstract—A key task in Wireless Sensor Networks (WSNs)
is to deliver specific information about a spatial phenomenon
of interest. To this end, a few Sensor Nodes (SNs) sample
the phenomenon and transmit the acquired samples, typically
multihop, to the application through a gateway called sink.
Many applications require the spatial sampling to be accurate
and the delivery to be reliable. However, providing a higher
accuracy/reliability comes at the cost of higher energy overhead
as additional messages are required: increasing the number of
samples to increase the accuracy of sampling and increasing the
number of retransmissions to increase the transport reliability.
Existing design approaches overlook optimized spatial sampling
accuracy and transport reliability in combination for minimizing
energy consumption. This work aims in providing the optimized
solution for sampling accuracy and transport reliability in
composition for a maximized efficiency. Our approach features a
message efficiency that optimally meets application requirements
with the online adaptation and appropriate tradeoff between
accuracy and reliability. The sampling and transport co-design
proceeds by finding optimal number of SNs for the accuracy of
the spatial sampling with the effect of reducing the number of
retransmissions and still satisfying the application requirements.
We validate the approach viability through analytical modeling
and extensive simulations for a wide range of requirements.

Keywords-Wireless Sensor Networks, Sampling, Transport,
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I. INTRODUCTION

In Wireless Sensor Networks (WSNs) delivering the gath-
ered information with the application required quality is the
main concern. To satisfy the required quality, it is crucial to
carefully design the core functional blocks, such as (a) the
sampling scheme in order to accurately represent the physical
phenomena, and (b) the transport scheme in order to reliably
deliver the information to the sink. In our work, we focus on
the key operations of spatial sampling and transport along their
quality attributes, i.e., accuracy and reliability respectively.

The user/application view considering the spatial phenom-
ena of interest requires a certain sensing task (e.g., perimeter
of the phenomenon area [17] on the spatial distribution of
the phenomena [9]). Moreover, the perceived sensing accuracy
should satisfy the application requirements (e.g., accurate form
and location of the event perimeter). In addition, future WSN
deployments should allow for varied concurrent applications.
Usually, these applications need varied information and have
evolvable requirements.
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Moreover, achieving the best possible sampling accuracy
and transport reliability is related to a large resource overhead,
particularly, because Sensor Nodes (SNs) rely on batteries. A
higher quality level is often related with higher deployment
costs and higher resource overhead. A higher accuracy of
spatial sampling of a spatial physical phenomenon of inter-
est is usually achieved through a higher number of active
sampling SNs in the area of the physical phenomenon re-
sulting in a higher energy/bandwidth overhead. On the other
hand, the transport reliability usually is achieved through a
higher number of retransmissions. Hence, besides attaining
the required quality levels, it is indispensable to maximize
energy/bandwidth efficiency. Considering the design view, the
sampling accuracy can be tuned by injecting some redun-
dancy (e.g., activating more SNs on the perimeter for higher
accuracy) and using sampling protocols that allow for over-
sampling such as [9]. Generally, transport reliability is tunable
through the number of transmissions.

The state-of-the-art on Quality of Information (QoI) [25]
and Quality of Service (QoS) [1][12] in WSN lacks the
online composite adaptation of sampling accuracy and trans-
port reliability to the network conditions and application re-
quirements. In fact, available approaches usually target single
functional blocks [8][9], assuming that other functional blocks
are perfect. The performed sampling accuracy satisfies the
application requirements only if the information transport is
perfect, which is not true in WSNs. On the other hand, the
transport reliability assumes the sampling block to be perfect
while addressing the application requirements. The optimized
co-design of sampling and transport that maximizes the energy
efficiency while satisfying the requirements is lacking in avail-
able approaches. In particular, there are no efforts in WSNs
addressing the composite tunability of sampling accuracy and
transport reliability.

Usually, the sensing application (users, services, feedback
controller, etc.) has a specific requirement on the sensing
accuracy. The sensing accuracy experienced at the sink fun-
damentally depends on the transport reliability. The key chal-
lenge consequently is to tune transport reliability and sampling
accuracy in composition so that the requirement is met. The
naive approach of massive over-sampling and allowing an
arbitrary number of retransmissions might indeed result in
high sensing accuracy. However, such a solution would be
highly ineffective as it is not required to provide higher quality
than the application requirements. On the other hand, this



naive solution results in unacceptable energy overhead. Our
work emphasizes that sampling accuracy can not be considered
without transport reliability for an optimized efficiency.

Common to all these observations is that the application
requirement have to be exactly satisfied by considering the
holistic view of functional blocks. In addition, the right trade-
off between sampling accuracy and transport reliability should
be considered in all real-world applications to ensure satisfied
applications. The challenge in finding methods for combining
these attributes and localized algorithms for implementing the
co-design efficiently.

Achieving both sampling accuracy and transport reliability
while maximizing efficiency requires a sophisticated tradeoff
technique, which is the main contribution of this paper. In
our solution, we aim to find an optimal tradeoff between
sampling accuracy and transport reliability. The same user
experience could be achieved by different combination of both
attributes. For example, providing higher sampling accuracy
would allow for lower transport reliability. As it is complex
to provide the optimized solution, we progress stepwise to
master the complexity. Our solution considers energy in terms
of retransmissions and sampling accuracy in terms of samples
needed at the sink. Using probabilistic analytical expressions
for relating sampling accuracy, transport reliability and effi-
ciency, the desired outcome is a composition of the number
of retransmissions per hop and the number of nodes to sample
the phenomenon. The key challenge relies on minimizing the
overall number of retransmissions given the number of hops,
samples required, the user-required sampling accuracy and the
link quality.

In summary our contributions are as follows:
• We provide a mathematical model for composite investi-

gation of accuracy, reliability and efficiency.
• We formulate and solve a constrained optimization prob-

lem to determine the optimal combination of sampling
accuracy and transport reliability that maximizes effi-
ciency. Our solution relies on the proposed analytical
model and considers varied levels of fidelity w.r.t. exactly
meeting the application requirements on achieving a
certain sensing accuracy.

• Through extensive simulations, we confirm the tunability
and optimized performance of our sampling and transport
co-design approach.

The structure of the paper is as follows. In Section II we
present the related work. Section III describes the preliminaries
with system model, terminology and the problem statement.
In Section IV we detail our approach on sampling accuracy
and reliable information transport co-design, i.e., interlinking
sampling accuracy and transport reliability for developing
the optimal solution. We provide the performance evaluation
results in Section V.

II. RELATED WORK

Providing the optimized co-design of sampling and transport
is not straightforward due to the dynamic requirements and
operational conditions. Traditional network design investigates

the sampling and communication co-design from the simplistic
view that the application data rate usually exceeds the capacity
of the network and therefore the rate should be adapted ac-
cordingly. The additive increase/multiplicative decrease of the
Transmission Control Protocol (TCP) is a renowned example
of these efforts. Further efforts focus on varied application
requirements and provide a QoS based design of network
transport that allocates varied data rates to varied users. Also
in WSN, QoS provisioning [1][12][13][5][10] are focused on
network capacity and consider simplistic model of sampling.
In networked process control community, a co-design of
sampling and transport has been addressed. This co-design has
been driven by the limited capacity of the network. In WSN,
in addition to the network capacity constraint, the co-design
should take into consideration the energy constraint, which is
of higher priority.

The state-of-the-art in WSN focus either on the sampling
accuracy (e.g., [6][9][23][7]) or transport reliability (e.g.,
[11][2][4][8]). However, there is no prior work addressing
a co-design of sampling and transport in composition along
online adaptation to satisfy user evolvable requirements while
maximizing energy efficiency.

In [6], the authors address the node selection for optimizing
accuracy in WSN. However, the information transport is
assumed to be reliable. In [9], the authors propose an adaptive
sampling approach to achieve user required accuracy and to
avoid over-/under-sampling. While this poses an efficient and
adaptive approach to model sampling accuracy, reliable trans-
port is not considered in this work and reliability is implicitly
assumed to be perfect. In [23], the authors address the spatial
correlation based on MAC protocol called Correlation based
Collaborative Medium Access Control (CC-MAC). However,
though the authors address the optimized solution for accuracy,
the transport reliability and timeliness are neglected.

In [7], the sampling for convergecast applications is ad-
dressed. However, adapting the sampling rate is independent
of the application requirements. In [11], the authors focus
on bursty convergecast where the key challenges are reli-
able and real-time error control and the resulting contention
control. However, [11] does not offer mechanisms to adapt
to changing application requirements and neglect the aspect
of sampling accuracy. In [2], probabilistic techniques are
applied for service differentiation. However, the solution aims
at providing strict conditions for messages. In [4], the authors
propose multi-path forwarding to ensure end-to-end delays.
Also [4] is not adaptable to fluctuating network conditions
to make routing decisions. However, optimizing accuracy and
reliability for maximizing efficiency are missing in [2][4]. In
[19], the authors propose metrics to measure the quality of a
path. However, they do not address tunability. GIT [8], aims at
satisfying the end-to-end reliability by dividing the reliability
per hop. The proposed transport protocol is tunable regarding
the achievable reliability. Providing a solid basis for reliability,
[8] yet has to be extended to consider sampling accuracy.

Considering accuracy and reliability, mutual dependencies
are not as straightforward. Hence, for a co-design it is not



sufficient to just superpose a tunable sampling scheme with
another tunable transport scheme. The challenge is still to pro-
vide efficient composite tunability of both data operations. In
[3], the authors propose accuracy-aware context data collection
and queries for heterogeneous mobile ubiquitous computing
environments. However, the approach overlooks the transport
reliability. The authors in [18] present a transport protocol
with tunable timeliness and reliability. However, the work is
optimized for a specific domain, i.e., real-time control and
ignore the sampling quality. In [14], we consider the tuning of
transport reliability and timeliness in composition, but without
addressing the sampling accuracy. In [20], the authors present
a co-design of data aggregation and data transport in WSN,
ignoring the sampling operation. Summarizing, to the best
of our knowledge there is no prior work on sampling and
transport co-design for providing application required quality
with optimized tradeoffs spanning accuracy, reliability and
energy efficiency in WSNs. In this work, we build first steps
to fill this research gap.

III. PRELIMINARIES

In this section, we discuss the system model and we
provide the terminology as the preliminary requirement for
next sections. We also formulate the problem as a constrained
optimization problem.

A. System Model
Our system model consists of a homogeneous WSN with

static SNs and one sink. We focus on WSNs with network
sizes ranging from dozens to hundreds. Typically, each SN is
equipped with short range radio, and shows limited processing,
storage and energy capabilities. We allow the sink to be
adequate in power, memory and processing capabilities. SNs
communicate with each other and the sink via bi-directional
(multihop) wireless links.

We consider a physical phenomenon of interest that spans
a specific small sub area of the WSN field. In general, the
application is interested in one specific information about
this spatial phenomenon, e.g., the perimeter of its area. We
consider the communication disruptions constitute the most
frequent failures. Collisions, contention and congestion consti-
tute the major causes of message loss and hinder information
transport in WSNs and altogether result in the Rlink. We
assume that network conditions are dynamic and application
requirements are evolvable. We assume that the most strict
application requirements do not exceed the maximal capacity
of the WSN [22]. We assume a default Carrier Sense Multiple
Access (CSMA)-based MAC and an underlying link state
routing protocol, which provides a path for all SN towards
the sink. Each SN knows its direct neighbors, e.g., through
beaconing and the number of hops from the source to the sink.
The basic exchange of messages from the source to the sink
and vice versa is reliable. We assume that our mechanism starts
after any SN detected the phenomenon. In [24], inspired from
the current basic model we are extending the model with more
complexity and less assumptions by formulating the problem
in a more intuitive way.

TABLE I: Important notations and their meanings

Rlink The achieved success probability of one message transmis-
sion on one link

Rhop The achieved success probability of message transmissions
on one Hop after specific number of retransmissions

Rpath Reliability of one path
Rinf The achieved success probability of the information (Smin

samples) to reach the sink
Fiacc The sensing accuracy fidelity, i.e., is the expectation that

the perceived sensing accuracy is equal to the desired
sensing accuracy

Smin The application desired number of samples from the phe-
nomenon area

Stx The number of samples transmitted from the phenomenon
area

Srx The number of samples received at the sink
h Number of hops from sampling nodes to the sink
#reth Total number of retransmissions on one hop
#rettotal Total number of retransmissions induced by the transport

of Stx samples

A minimum number of spatial samples Smin is required
to reconstruct the information on the sink. To this end, Stx

SNs sample this spatial phenomenon and transmit the samples
towards the sink. We assume that the Stx sampling SNs
have the same number of hops h to the sink. The hops
are considered as the average hop count from all the active
sources to the sink. On the other hand, as we are interested
in the small sub area of the phenomenon, variations of 1 or
2 hops do not affect the model and the end result. This is the
case if the phenomenon area is small compared to the WSN
field which is often the case for event-driven applications.
The application requirements can be distributed to the SNs
via a standard dissemination mechanism. We consider that
the number of sampling SNs Stx can be controlled, e.g.,
through an existing duty cycling algorithm that interacts with
the sampling scheme, e.g., [9] to decide on which nodes to
keep active.

B. Terminology

In the following we define important terms. An overview
on the used notations is in Table I.

1) Transport Reliability (Rpath): We define the end-to-
end transport reliability as the success rate of one sample
from one specific sampling node to reach the sink.
Moreover, considering Rlink on the lowest level, varying
number of retransmissions affects Rpath directly.

2) Sensing Accuracy (AccSensing): The sensing accuracy
is the accuracy of sampling as perceived by the appli-
cation/user/sink. Accordingly, AccSensing is the ratio of
the number of samples received at the sink Srx to the
minimum required number of samples Smin. AccSensing

= Srx

Smin
. The sensing accuracy depends on the optimized

combination of transport reliability Rpath and activating
the right number of SNs Stx for sampling accuracy.

C. Problem Formulation and Objectives

Providing a specific requirement of Smin samples, the
application actually expects exactly Srx = Smin samples to
be delivered. However, this guarantee is hard to be satisfied



in WSNs. Therefore, we assume the application requires to
meet the requirements with certain fidelity Fiacc ∈ [0, 1].
Furthermore, generating only Smin samples and delivering
all of them to the sink would require a large number of
retransmissions.

Preliminary investigations have shown that by slightly in-
creasing the number of generated samples Stx we can sig-
nificantly reduce the total number of transmissions needed to
deliver Smin samples to the application. However, sending too
many additional samples will finally result in unnecessary high
number of retransmissions. Hence, we aim to find the optimal
number of additional samples and the optimal path reliability
that result in a minimal number of total retransmissions. Such
an optimization allows to co-design sampling and transport
for a maximized message efficiency, which transforms into
maximized energy efficiency, as usually radio is the most
energy consuming module on a SN.

Summarizing, we formulate the problem as follows:

Minimize{#rettotal : P (Srx ≥ Smin) ≥ Fiacc}

More precisely, #rettotal can be expressed depending on
the network characteristics and the application requirements
as we will elaborate in the next section. The expected result
is to determine the optimal (Stx, Rpath) tuples for given
network conditions (link reliability Rlink, hop distance h) and
application requirements (Smin).

IV. SAMPLING AND TRANSPORT CO-DESIGN

Fig. 1 illustrates the two operations spatial sampling and
transport. For readability, we emphasize one sample (S1) and
one path towards the sink. The main reasoning behind the
targeted sampling and transport co-design is to online tune
both operations using optimized Stx and Rpath values. To
this end, we first solve the formulated optimization problem.
This requires to analytically express the total number of re-
transmissions #rettotal as a function of the sampling accuracy
Smin and transport reliability Rp and to select those pairs that
globally minimize the #rettotal.
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Fig. 1: A holistic view of sampling transport, and application
interactions.

A. Computing the Total Number of Retransmissions as a
Function of Sampling Accuracy and Transport Reliability

The total number of retransmissions occurring for a certain
number of samples transmitted for the phenomenon area is
the sum of all retransmissions on all traversed hops. Then, the
expected maximum #rettotal can be computed as:

#rettotal = Stx ∗ h ∗#reth (1)

The number of retransmissions per hop is determined by the
achieved hop reliability Rhop and the underlying link quality
Rlink as shown in Fig. 1. The #reth is then computed as:

Rhop = 1− (1−Rlink)
#reth

#reth =
log(1−Rhop)

log(1−Rlink)
(2)

Deriving Eq. (2) was the basic first step towards calculating
the number of retransmissions per path. The achieved path
reliability Rpath depends on the achieved reliability at its hops
as follows:

Rpath = Rh
hop

Rhop = R
1
h

path (3)
In its turn, the achieved reliability Rinf depends on the

achieved reliabilities of the paths the information (Stx sam-
ples) traverses:

Rinf = 1− (1−Rpath)
Stx

Rpath = 1− (1−Rinf )
1

Stx (4)

Now we can express #reth as a function of h, Stx, Rinf

and Rlink by substituting (4) in (3) and the resulting equation
in (2):

1− (1−Rlink)
#reth = R

1
h

path

1− (1−Rlink)
#reth = (1− (1−Rinf )

1
Stx )

1
h

(1−Rlink)
#reth = 1− (1− (1−Rinf )

1
Stx )

1
h

#reth ∗ log(1−Rlink) = log(1− (1− (1−Rinf )
1

Stx )
1
h )

#reth =
log(1− (1− (1−Rinf )

1
Stx )

1
h )

log(1−Rlink)
(5)

In Eq. (5) only Rinf is still not determined. As we have
pointed out before, the combined accuracy and reliability
application requirement consists of the number of samples
Smin that have to be delivered to the sink. Our approach is to
allow for a controlled degree of over-sampling and transport
reliability that minimizes the total number of retransmissions
while delivering the required Smin samples. In this work, we
assume that any Smin samples from the generated Stx sam-
ples fulfill the application requirement. The relation between
reliability and the number of samples received at the sink
accordingly can be defined as:

Rinf =
Srx

Stx

which can be modeled as the expectation value of a
Bernoulli process with Stx trials and a success probability
of Rinf . Hence, Eq. (5) becomes:



#reth =
log(1− (1− (1− Smin

Stx
)

1
Stx )

1
h )

log(1−Rlink)
(6)

Substituting (6) in (1), we obtain the total number of re-
transmissions as a function of sampling accuracy and transport
reliability. This represents a fundamental basis for solving a
crucial optimization problem.

B. Determining the Optimal Sampling Accuracy and Trans-
port Reliability

Using the example of a Bernoulli process, the equation for
Rinf can also be written as:

1−
((

Stx

0

)
R0

path(1−Rp)
Stx−0

)
= Rinf

and can be described as
P (at least 1 out of Stx samples is received) or accord-
ing to the original notion as 1−P (all Stx samples are lost).
It is obvious that no information about the expected number
of samples or the probability of receiving them can be given.

In order to be more flexible and to meet the application
requirements we need to express the probability that at least
Smin samples are received, which should be greater than or
equal to the fidelity requirement Fiacc. We describe it as the
complementary probability of the event, where up to Smin−1
samples are lost:

1−

(
Smin−1∑

i=0

(
Stx

i

)
Ri

path(1−Rp)
Stx−i

)
≥ Fiacc (7)

Using this equation, the user can specify the reliability re-
quirements more intuitively and precisely by providing Fiacc.
In order to use the above equation to derive our reliability
requirements from the accuracy requirements, we need to solve
it for Rpath.

In the following we solve this by using the incomplete
Beta function [15]. Obviously, the equation above describes
the cumulative distribution function:

1− F (Smin − 1) ≥ Fiacc

With the following relation of the distribution function to the
Beta distribution:

k∑
i=0

(
n

i

)
· Si

tx · (1− Stx)
n−i = I1−Stx(n− k, k + 1)

where Ix(a, b) is the regularized incomplete Beta function

IStx(a, b) = 1− I1−Stx(b, a)

we get the following derivation for Rpath:

1−

(
Smin−1∑

i=0

(
Stx

i

)
Ri

path(1−Rp)
Stx−i

)
≥ Fiacc

1− F (Smin − 1) ≥ Fiacc

1− I1−Rpath
(1 + Stx − bSminc, bSminc) ≥ Fiacc

IRpath
(bSminc, 1 + Stx − bSminc) ≥ Fiacc

I−1
Fiacc

(Smin, 1 + Stx − Smin) = Rpath

Therefore, the new expression for the number of retrans-
missions per hop, depending on the accuracy requirements is:

1− (1−Rlink)
#reth = R

1
h

path

1− (1−Rlink)
#reth = I−1

Fiacc
(Smin, 1 + Stx − Smin)

1
h

#reth =
log(1− (I−1

Fiacc
(Smin, 1 + Stx − Smin))

1
h )

log(1−Rlink)
(8)

The optimal number of samples Stx for a certain parameter
setting can be found at the local minimum of f(Stx) =
#rettotal, hence, the optimal number of active SNs is:

#rettotal = min{f(Stx) : Stx ∈ N}
= min{h · Stx·⌈ log(1− (I−1

Fiacc
(Smin, 1 + Stx − Smin))

1
h )

log(1−Rlink)

⌉
: Stx ∈ N}

(9)

Note that #rettotal will always be an integer value due to
the ceiling function applied to the number of retransmissions
per hop (Eq. (8)), since non-integer values obviously can not
be applied in practice.

C. Analytical Evaluation of the Sampling Accuracy and Trans-
port Reliability

Based on the design goal, the objective function is to satisfy
the application requirement given by the minimum number
of samples Smin and a fidelity value Fiacc, as indicated in
the problem formulation and Eq. (9). Optimization and visu-
alization of analytical results was conducted using Wolfram
Mathematica [21]. Eq. (9) is plotted for selected settings in
Fig. 2. Each graph consists of several linear segments resulting
from the corresponding #reth value, which is highest for
Stx = Smin and lowest as soon as so many samples have been
added that retransmissions per hop are reduced to one (see
Table II for examples of #reth). Jumps from one segment to
the next occur as soon as the reliability has been increased by
redundant samples that much that Fiacc is still satisfied when
decreasing #reth by one. Note that there is always a small
range where providing reliability using additional samples is
more effective than using more retransmissions.

The main impact of the minimal number of samples required
Smin is that at least Smin SNs need to sample the phe-
nomenon. Furthermore, by increasing Smin the steps become
larger until the #reth can be reduced. Higher requirements on
Fiacc obviously need high sampling/transmission redundancy.
Hence, the threshold to reduce the #reth is higher for stronger
requirements.

Furthermore, a higher requirement on Fiacc generally de-
creases the potential gain in efficiency by activating more
nodes. Besides the linear impact on #reth, determination
of the slope of the graph and of the initial number of
retransmissions, the number of hops per path h also impacts
how fast the next lower #reth can be achieved. Finally, the
link quality has a significant impact especially on the #reth,
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since the low reliability has to be compensated by either more
retransmissions or more samples. For a limited selection of
WSN settings, we show the optimization results in Table II.

XXXXXFiacc

Smin 10 25

0.8

HHHh
RL 0.4 0.6 0.4 0.6

10 (Stx|#reth|) (Stx|#reth|) (Stx|#reth|) (Stx|#reth|)
14 | 7 14 | 4 35 | 7 34 | 4

15 14 | 8 14 | 5 31 | 9 31 | 5

0.95
10 14 | 8 16 | 4 33 | 8 37 | 4
15 14 | 9 14 | 5 33 | 9 33 | 5

TABLE II: Optimal tuples of the number of samples (Stx) and
the number of retransmissions per hop (#reth) for a selection
of parameter settings.

D. Integrated Sampling and Transport

So far, we determined the optimal accuracy and reliability
settings using global view. In the following, we present on
preliminary efforts towards a localized integrated sampling and
transport in generalized WSNs and its practicality.

After the phenomenon detection and notification from the
source to the sink, the sink immediately knows about the
important properties such as link reliability and hop count.
Fidelity and accuracy requirements are provided by the user or
the application and always accessible to the sink. Having this
information the sink can then solve Eq. (9) for the phenomenon
area. The attained optimal values (Stx and #reth) are reliably

transmitted to the sources in the phenomenon area. The
overhead induced by the reliable communication is negligible
since only a single message has to be transported reliable.
After the source has received the values for the sampling
and transport co-design, it can use the existing duty-cycling
algorithm to a) activate the right number of SNs and b)
to notify them about the number of retransmissions for the
information transport. As soon as a SN is activated the user
required sample is transported towards the sink with optimal
number of retransmissions. As for the information transport
each SN forwards the optimal number of retransmissions to
upstream nodes by appending the number to the actual sample.

V. PERFORMANCE EVALUATION

In order to evaluate our work, we first describe the simu-
lation environment, simulation settings and the performance
metrics. Next, we present our simulation results.

A. Simulation Settings and Performance Metrics

We simulate 100 SNs deployed in an area of 10×10 unit2.
The sink is located at one corner. The spatial samples are
generated from one corner and transported towards the sink.
We run the simulations in TOSSIM [16]. Simulation results
are compared with the analytical benchmarks in order to verify
if an analytical optimal solution indeed corresponds to an
optimal solution in practice.
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Fig. 3: Impact of varying fidelity requirement (Fiacc) on sensing accuracy
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Fig. 4: Impact of varying link reliability (Rlink) on sensing accuracy
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Fig. 5: Impact of varying samples application requirements (Smin) on sensing accuracy

The performance of our protocol is measured in terms
of accuracy (samples received at the sink) and efficiency
(average number of transmissions). Any of these combinations,
computable by using optimal solution for the #reth are
valid, i.e., they guarantee the delivery of Smin samples with
a probability greater than or equal to Fiacc. To show the
online adaptation of our work, we first vary the application
constraint Fiacc keeping the number samples Smin and link
reliability Rlink constant. Later, we vary the link reliability
Rlink, keeping Fiacc and Smin as constant. Finally, we vary
Smin while keeping Fiacc and Rlink as constant. In all figures
the optimal tuple is highlighted with a square box and have
considered the median.

B. Simulation Results

In order to verify the analytical optimal solutions complying
to optimal solutions in simulations, we selected combinations

around the optimal combination, i.e., combinations with less
samples and more #reth as well as combinations with more
samples and less #reth. Hence, regarding the total number
of transmissions, if simulations for all combinations yield
worse results than for the optimal ones, it is a strong in-
dicator that this combination indeed is optimal. As for the
samples received, we expect very similar results throughout
all variations as an indicator for the tunability of our model.
In some cases, when an optimal solution existed for more than
one combination, the first one, i.e. using less active SNs, was
chosen. Furthermore, in practice the number of transmissions
is very likely to be less than the computed values, as it is
dependent on whether delivery was successful or not.

Representative results of the simulations for varying the
constraint Fiacc are shown in Fig. 3. As expected, the choice
of Fiacc has influence on the delivery of Smin samples, as all
combinations denote valid options to satisfy the requirements.
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Fig. 6: Efficiency for varying Smin, Fiacc and Rlink

Furthermore, the delivery rate has been slightly higher for the
simulations with higher requirements for Fiacc, completely
conforming to our expectations.

The impact of varying link reliability Rlink, is shown in
Fig. 4. In all the cases of varying Rlink we achieve the desired
number of Smin samples to reach the sink.

Representative results of the simulations for varying the
Smin samples are shown in Fig. 5. The results are very close to
our analytical solution. The impact of varying Smin samples
does not affect the application requirements and completely
satisfies the probability of satisfying the Fiacc and Smin.

One more important aspect for the assessment of the validity
of our model regarding optimal energy efficiency is the total
number of transmissions (Fig. 6). Accordingly, we have varied
Fiacc, Rlink and Smin. In all the cases, we achieve a desired
optimal result that satisfies our requirement and conforms
to our analytical model and solution. Finally, it remains to
observe that the variations in hop length and link reliability
introduced in simulations in contrast to the analytical model
result in a noticeable noise throughout simulations, blurring
the differences between the different variations.

VI. CONCLUSION

Through this paper we have achieved important steps to-
wards the co-design of sampling and transport as per the
application requirements. We have developed an analytical
model for the case that no differences between sensor readings
have to be regarded. This simplifies the problem of finding a
specific subset of nodes to the problem of merely finding the
optimal number of nodes that have to send a sample. Our
analytical model gives the optimal number of SNs, so that the
specific application requirements are satisfied. The optimized
solution provided depending on the application requirements,
reduces the total number of retransmissions by adding re-
dundancy and sending more samples than required. This is
the first instance of real time adaptation when an integrated
sampling and transport solution is implemented. The present
work is just focusing on the accuracy and reliability attributes
and is further being extended for additionally considering the
timeliness attribute.
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