The Customizable Fault/Error Model for Dependable Distributed
Systems*

C.J. Walter N. Suri
WW Technology Group Chalmers University
4519 Mustering Drum Dept. of Computer Engineering
Ellicott City, MD 21042 Goteborg, S 41296, Sweden
cwalter@cs.jhu. edu suri@ce.chalmers.se

Abstract

Dependability is a qualitative term referring to a system’s ability to meet its service requirements in
the presence of faults. The types and numbers of faults covered by a system play a primary role in
determining the level of dependability which that system can provide. Given the variety and multiplicity
of fault types, to simplify the design process, the system algorithm design often focuses on specific fault
types, resulting in either over-optimistic (all fault permanent) or over-pessimistic (all faults malicious)
dependable system designs.

A more practical and realistic approach is to recognize that faults of varied severity levels and of
differing occurrence probabilities may appear as combinations rather than the assumed single fault type
occurrences. Allowing the user to select/customize a particular combination of fault types of varied
severity characterizes the proposed Customizable Fault/Error Model (CFEM). The CFEM organizes
diverse fault categories into a cohesive framework by classifying faults by the effect they have on the
required system services rather than targeting the source of the fault condition. In this paper, we develop
(a) the complete framework for the CFEM fault classification, (b) the voting functions applicable under
the CFEM, and (c) the fundamental distributed services of consensus and convergence under the CFEM
on which dependable distributed functionality can be supported.

Keywords: fault modeling, error classification, dependability

1 Introduction

Dependability is a qualitative term describing the confidence that can be placed in a computing system’s
ability to deliver the expected service, even in the presence of faults [9], where the term expected service
also includes the notion of timeliness. Dependability comprises the issues and techniques most commonly
used to identify, implement, and measure system fault-tolerance and real-time performance.

The effectiveness of a fault-tolerance method always relies on the realism and accuracy of the assumed
underlying fault and error models. The faults tolerated by a system play a primary role in the level of
dependability that a system can achieve, as quantified, for example, by the reliability metric. Typically,

*Supported in part by ONR Grant #N00014-91-C-0014

a fault is defined as an anomalous physical condition, the identified or hypothesized cause of an error,
which may eventually lead to a loss of service i.e., failure.

The fault models used in designing and analyzing dependable distributed systems typically make
simplifying assumptions about the natures of faults' in the system. Often, the fault tolerance algorithms
employed by a system treat all faults identically, ignoring the effects of any fault types the algorithm
is not designed to distinguish or to tolerate. Such overly-optimistic single fault-type models assume a
fixed number of benign permanent faults and perfect fault coverage. Or, the system model employs
complex protocols that assume all faults to be malicious, even though only a small portion of the faults
may actually require such protection. These more pessimistic Byzantine models assume all faults to be
arbitrary. By distinguishing different fault types and considering varying probabilities of occurrence of
each fault type, we can develop more realistic system models to design algorithms capable of handing
the various fault types. In this paper, we utilize the rationale of [2, 13, 15, 16, 19] and develop the
Customizable Fault/Error Model(CFEM), which considers mixed fault types (as selected/customized
by the user) along with the algorithms needed to tolerate such faults.

Under the CFEM, the set of all faults is partitioned into three disjoint classes based on fault effects:
non-malicious, malicious symmetric, and malicious asymmetric. Then, the type of algorithm required
to detect or mask the subset of faults that is assumed to occur is indicated as a function of the fault
type. This matching of fault type to algorithm is important in ensuring adequate, yet cost effective,
system fault coverage. If the fault tolerance techniques implemented do not support segregation and
handling of mixed faults, then the CFEM reverts to the single fault-type models, with no improvement.
Thus, existing fault tolerance methods must be extended to properly utilize the proposed CFEM. The
main difference between our CFEM based algorithms and existing fault models based algorithms is
our use of dynamic fault tolerance, based on the ability to detect certain types of faults locally. We
combine the benefits of the models assuming perfect fault detection with the increased coverage of the
more realistic models. An important contribution is the development algorithms that achieve consensus
(exact agreement) and convergence (approximate agreement) without the classically required condition
that all participants have the same number of values on which to vote.

The CFEM provides a framework which can be used to enhance the dependability of processes and
systems. The CFEM philosophy takes a practical view of faults and their effects on system operations,
recognizing that a system cannot tolerate unlimited set of faults, and that the fault tolerance techniques
implemented in a system play a large role in determining the covered fault-effects. Variations in the
probabilities of occurrence of different faults, the severity of their effects, and the number of faulty
units which can be tolerated during different phases of system operation are exploited to improve the
coverage provided by CFEM. The classical single fault-type instantiation is replaced by a fault-tuple,
chosen (or customized) by the user, representing the set of fault-effects of varied severity which may
exist concurrently in the system, and are chosen to be protected against. The fault resiliency of critical
system functions such as synchronization, data voting, and other consensus-based operations is also
improved through the consideration of CFEM.

Contributions

The contributions of this paper are developed over the following Sections. In Section 2, we present the
distributed system models, review existing fault taxonomies, and present the basis for the CFEM based
fault /error classification. Sections 3 and 4 focus on developing the theoretical framework to support
CFEM. Section 3 develops the varied fault scenarios valid under CFEM and also presents a comparative

YA fault is the identified or hypothesized cause of an error. An error is the manifestation of a fault, an undesired
state either at the boundary or at an internal point in the system or process. A failure is the inability of the system or
component to provide the specified service caused by an error.

analysis of the CFEM enhanced fault handling capabilities compared to classical fault models. In
Section 4, the requisite fault tolerant voting functions supporting CFEM are developed. In Section 5 we
present the formal framework and analysis in CFEM’s providing the fundamental distributed services
of consensus and convergence. We summarize and discuss the impact of our contributions in Section 6.

2 Fault/Error Models in Distributed Systems

System Models

For simplicity of discussion, we adopt a generalized system model, although the CFEM and the
other fault models are applicable to a variety of system models such as synchronous, asynchronous,
full/partial connectivity etc.. A system is comprised of a set of nodes. Nodes communicate by exchanging
information (messages) across links, with a bounded delay assumed for message generation, delivery and
processing. We use the terms “system,” “nodes,” “links,” and “messages” in an abstract sense, because
some type of information exchange often exists between a node and its components, or between a process
and its subprocesses.

We assume a fully connected system consisting of nodes which communicate using synchronous
message passing, with an upper bound on the time required for a node to generate and send a message.
Individual nodes make decisions and compute values based on information received in messages from
other nodes. The status of a node, faulty or good, is discerned by other nodes through the contents of
messages originating from the target node, or through the lack of an expected message from that node,
i.e., nodes monitor the messages from other nodes to infer the presence of a fault-effect. As in [16]
and [8], a non-faulty node can always identify the sender of a message it receives and can detect the
absence of an expected message. The system fails when consistent decisions or computations across the
system are no longer possible.

In our assumed system model the “fault floor” is at the node level. That is, regardless of how many
failed components exist in a given node, only the node’s fault status, as viewed by other nodes, is of
interest in determining the system fault resiliency.? Since the system design objective is to provide
continual correct service, we focus on faults which may affect distributed computation of critical system
functions. As described in subsequent sections, the CFEM framework is based on classification of faults
based on each node’s analysis of inter-node communications. Membership in the fault-effect classes is
determined by the system topology and by the fault tolerance methods implemented in a specific system.
This linking of fault-effects to the methods implemented (or required) to tolerate them is unique to the
CFEM.

2.1 Existing Fault Classifications

A fault is classically defined as the cause, real or perceived, of errors which can lead to failure. Much
effort has been expended and many taxonomies have been proposed to capture the important attributes
of faults. Laprie [9] classifies faults according to the attributes of nature (accidental or intentional); cause
(physical or human-made); location (internal or external); phase of creation (design or operational); and
persistence (permanent or temporary). The fault attributes of Laprie have been augmented to include
activity (active or dormant) and wvalue (stationary, non-stationary) [1]. This taxonomy is useful in
identifying faults to be removed during the design and testing process.

2Link failures are not directly addressed in this model, but are ascribed to the perceived sender of the message. However,
the fault floor could be extended to node and link failures if desired.

Arbitrary

Timing

Omission

Crash
| Fail-Stop

Figure 1 Onion Fault Model

While these are classifications and attributes are important and commonly used in the literature, they
do not furnish all the information about faults that is required by the designers or assessors of a system.
They provide insufficient indication of the types of faults that can occur in a given system, or how to
avoid, detect, or tolerate the faults. It is assumed that the classes within each attribute are disjoint; so,
for a given attribute, a specific fault in a specific system can belong to exactly one class. However, if the
same type of fault occurs in two different systems, it is possible for the fault to be classified differently in
the two systems with respect to a given attribute. Such fault classification ambiguity can arise because
the systems in which the fault occurs can have vastly different requirements. For example, a fault lasting
a few seconds might be sufficient for a fault handler in one system to diagnose a permanent fault and a
temporary fault in another. Differences can also occur due to the location of the fault in the systems,
how long the fault is active relative to the time scale (mission time) for each system, the technology
used to construct each system, the assumed system environment, and other related factors.

A different approach based on the use of failure semantics for dependable systems with real-time
constraints and responsive systems[12] is the onion model [4, 3]. Figure 1, taken from [4], shows the
relationships among the five potential failure modes of the onion model, given in increasing order of
severity: fail-stop, crash, omission, timing and arbitrary. Under the fail-stop assumption, a component?
fails by ceasing execution; no incorrect state transition occurs, and all other good components can
detect this failure. A crash or fail-silent mode is identical to fail-stop, except that detection by all
good components is not guaranteed. An omission mode occurs when a component fails to respond
to an input, perhaps undetectably to some components. A functionally correct, but untimely response
corresponds to a timing fault. Any other mode of behavior is classified as an arbitrary fault. The
more restricted the assumed fault mode, the stronger the assumed failure semantics. Thus, weak failure
semantics correspond to little restriction of the behavior of a faulty component. Note also in Figure 1
that the containment relationship among the different classes is such that limiting the failure semantics
of a host to, say, timing, means that the host can fail in any of the modes subsumed: fail-stop, crash, or
omission. The onion fault model fails to capture the notion of a system comprised of nodes, and does
not aid in ensuring that correct system operations are sustained in the presence of a node failure. The
focus of this model on abstract and high level faults limits its coverage of data faults. It is to address
such limitations of exiting fault models that we propose the CFEM.

3In this context, the term component may refer to hardware, software, or a combination of the two.

2.2 The Customizable Fault/Error Model Taxonomy

The CFEM is a model that focuses on runtime fault-effects and the methods associated with tolerating
them. We do not attempt to deal with all possible fault occurrences specifically but rather form classes
determined by the potential fault effects. Faults classified using other taxonomies can be mapped into
the classes of the CFEM framework. The CFEM fault classes are determined by the fault-tolerance
techniques (detection and masking) implemented in the system and the system topology. Under the
CFEM, node faults are classified according to the ability of the system to tolerate their effects. At the
highest level, the set of all faults is partitioned into tolerable and intolerable faults according to their
effects.

Intolerable fault-effects are faults whose effects cannot be detected, masked, or otherwise tolerated
by the system quickly enough to prevent them from causing a loss of service or improper service with
consequences greatly exceeding the benefits of proper system service. Design faults, generic faults,
common mode faults, physical damage faults and other catastrophic faults that immediately render
much of a system useless would be categorized as intolerable. In some applications, it may be necessary
to distinguish among different types of intolerable faults. Some fault effects are intolerable because no
technique could possibly mask or detect them; faults that destroy substantial portions of the system fall
into this category. Other fault effects are intolerable because they are uncovered by design or attrition.
That is, the system fault model incorrectly assumes that such faults will not occur and the chosen system
fault handling functions do not cover that type of fault; or, an otherwise covered fault is not handled
because enough system resources are not available to mask or detect it. Since it is impossible to model
or predict the occurrence of such faults, perfect fault coverage to a few non-coincident non-catastrophic
faults is assumed, with the probability of catastrophic faults assumed to be very small.

Tolerable fault effects, or covered fault effects are the ones of direct interest to us in establishing
the CFEM. We first present the detection setup in a node on which the CFEM is based. As shown in
Figure 2, when an error from a faulty node is detected by some non-faulty node, the sending node is
identified locally as potentially benign. All good nodes must agree on this local judgment for the fault
effects to be classified as benign. The instantaneous classification of all faults requires the globally om-
niscient view in Figure 2. In practice, distributed information distribution and dissemination techniques
are used to approximate the global view in the presence of potentially malicious faults [18, 19].

In the CFEM, all fault classification is based on (1) Local-Classification of fault-effects to the extent
permitted by the fault-detection mechanisms built in at the node level, and (2) Global-Classification
based on nodes exchanging their local-classification with other system nodes to develop a global opinion
on the fault-effect. We now describe in greater detail the rationale behind the individual classifications.

The CFEM classification[19] begins with the examination of the possible fault states created by the
dispersal of information. In the abstract, we can assume that when a node transmits information,
two general cases are possible as illustrated in Figure 3: (a) all receivers obtain the same information
i.e., mess; (symmetric dispersal), or (b) receivers obtain different information i.e., mess; and mess}
(asymmetric dispersal). This abstraction is sufficient since we are primarily concerned with maintaining
consistency and these two possibilities reflect whether it is preserved or not.

The second aspect of the CFEM is based on extent of the fault-effect as created by the faulty source
and the way in which it has propagated its effects. If an individual node is sufficient to detect the
error from an incoming message, we classify this case as a benign sender fault since the fault-effect is
locally detectable at the receiver. On the other hand, there are situations that require multiple nodes to
exchange their syndrome information with each other in order to provide accurate diagnosis, i.e., globally
detectable. For these cases, the values in a message appear to be plausible locally at a node; however,
they can only be verified with a multiple exchange of information. After the exchange is completed, the

Local Fault Perspective (Receiver Node Forms Opinion About Sender’s Fault Status)

Incoming Message from SENDER
Receiver NODE 9
Detection
Mechanisms
Locally Detected Faults Correct and/or
(potentially benign Sender fault) Potentially Malicious Values
- range violations |
- early/late/missing msg !
- bit garbling !
|
I

Requires global exchange with other nodes
to obtain determination on fault intent (benign or malicious)
and on fault scope (symmetric or asymmetric)

Figure 2 CFEM Fault Classification Basis

node_i node_i
mess j mess j mess j mess |’
node j node _k node_j node_k
(a) symmetric communication (b) asymmetric communication

locally detectable globally detectable

symmetric Benign Value
communication

asymmetric Benign Value
communication (arbitrary faulty)

Figure 3: CFEM Fault Space (communication symmetry vs. detectability)

plausible value may be determined to be value-faulty.

As an example, consider the acceptable range of the value contained in a message to be [0,100], with
the expected correct value of 50 in a message. A node accepts a message without registering any fault
as long as the value is within [0,100]. If a faulty node sends values 30 and 70 as values in the messages
(instead of the correct value of 50) to the other two nodes, both of these messages are within the
acceptable range [0,100], thus these erroneous values are not locally detectable at the receiving nodes.
Only when the two receiving nodes exchange (or distribute) their received message values of 30 and 70
respectively with each other, does the asymmetric nature of the faulty values comes across i.e., global
detectability of value-faults.

Figure 3 summarizes the specific cases covered by the CFEM. The vertical axis reflects the pos-
sibilities for information dispersal and the horizontal axis represents the types of detectability. The
fault-effects are represented by the table entries and consists of two major types covered in each vertical
column: benign and value faults. The benign faults can be dispersed in a symmetric or asymmetric
manner; however, these faults are detectable by all non-faulty nodes with fault detection mechanisms
implemented locally. Any detectable fault in a message will result in the sender being classified as locally
benign faulty (B), by the receiver. The rightmost vertical column of the table covers wvalue faults which
are the locally undetectable class of faults. Messages which pass all data validity and range deviance
checks, but provide a valid but #ncorrect value constitute value faults. Since the effect of these faults are
dependent on the type of information dispersal, we have the sub-cases of symmetric-value faults, (S),
and asymmetric-value faults, (A),. The asymmetric-value fault is equivalent to the case of a Byzantine
fault and is also referred to as the arbitrary fault case.

The set of all tolerable faults, F', can be written as the union of three disjoint sets, giving BUS U A,
with the symbols corresponding respectively to benign, symmetric and asymmetric malicious faults.
To accurately represent the single fault-type models, the set of benign faults, B, can be split into two
disjoint subsets: benign symmetric faults (Bs), and benign asymmetric faults (B4).*

The CFEM reflects the behavior of the system in the presence of different node faults, when used
in the system analysis phases, with each fault type mapped into one of the four disjoint classes. A
fault effect classification captures the set of fault effects handled by the fault tolerance techniques
implemented in the system. In the system design phase, the CFEM thus facilitates the selection of
the fault tolerance methods to be used in the system. The potential fault effect classes are derived
from alternative repartitionings of the total fault set, achieved by changing the set of fault detection
and masking methods implemented in the system. The process of classifying a specific fault into a
distinctive fault-effects category is termed as fault transformation, and it can enhance the system fault
coverage by transforming initially intolerable faults into tolerable faults, or arbitrary faults into benign
faults. The fault effect classification is then re-evaluated following the implementation of additional
fault detection or masking techniques.

As mentioned earlier, the classification of non-catastrophic faults in the CFEM is a function of the
fault tolerance techniques implemented in the system. If sufficient fault coverage and system reliability
cannot be demonstrated by a given design, additional fault tolerance techniques can be used to increase
the covered fault set or system reliability. For example, in a simplex system with no node or information
redundancy, all faults are catastrophic. If information redundancy in the form of error detection and
correction codes is used, then formerly catastrophic faults that cause errors which can be masked or
detected by these coding procedures are transformed into benign faults.

“While crash faults are most often benign symmetric, with all non-faulty nodes able to detect that a node has
crashed,range faults can be either symmetric or asymmetric. So, they are not included explicitly in this partitioning,
but are restored when all benign faults are considered as a single class.

Similar transformations are also possible among the more severe fault types. For example, in a system
of N nodes in which the hybrid symmetric scenario applies, suppose that the only benign faults which
can be detected are checksum and missing messages. If a faulty node sends different values to different
nodes, where each value is out of the range of correct values, the initial system may fail due to an
uncovered asymmetric value fault, which is a catastrophic fault. However, if a range check is added to
the fault detection techniques implemented in the node, that potentially uncovered catastrophic fault is
converted to a benign fault. Thus, the covered fault set for any of the scenarios can often be extended by
implementing additional fault detection methods which transform potentially catastrophic faults into
benign ones. The addition of extra system nodes can also be used to transform some catastrophic faults
into hybrid faults, in the case where the system fails due to resource exhaustion. The benefits of fault
transformation are addressed in further detail in the next section.

3 CFEM: Implications and Comparisons With Classical Fixed Sever-
ity Fault Models

We demonstrate the benefits of the CFEM approach by examining possible solutions to a given design
problem. We will present results for the general case, and then apply them to the following example.
As discussed in the previous section, a system using only active redundancy techniques is capable of
detecting benign faults from set B.

However, if an (uncovered) malicious value fault from set AUS occurs, system failure is likely to occur.
When only non-iterative passive redundancy techniques, such as majority or fault-tolerant midpoint
votes, are implemented, symmetric faults from the set § = Bs U S are masked, but the occurrence of
asymmetric foults from set A = B4 U A can cause the system to fail. The use of interactive consistency
and interactive convergence algorithms ensures all non-catastrophic fault types are covered, since such
algorithms mask arbitrary faults, i.e. all faults in F.

We continue to assume a synchronous message passing system of IV identical components or processes,
called nodes, where the only evidence of a faulty node is an error in a message from that node. A good
node is expected to collect information from other nodes and to arrive at a local decision that is
consistent with the decisions of all other good nodes. A good node may also need to compute a local
value within a prespecified range of the values of other good nodes. We address the issue of usage of
the consistent local values computed by good nodes in the next section.

Based on the assumed system fault model, the fault handling techniques implemented in the system,
and the resulting fault resiliency, we derive characteristics of system consensus operations. We discuss
variations in the assumed fault models, coverage parameters, and the fault resiliency We assume a system
of N nodes capable of sustaining f faults. The number of faults, f, can be written as f = f4+ fg+ fs
where f4 is the number of faults from A, fs is the number of faults from S, and fz is the number of
faults from B; any of these parameters can be fixed at zero by the assumed system fault model.

A system required to be Fail Op/Fail Op/Fail Safe, should remain operational after two non-
coincident faults of any type, and should degrade to a predefined safe state following the third fault.
Implicit in this specification is that the fourth fault, regardless of its scope, symmetry, or malice, leads
to immediate system failure. While “perfect fault coverage” refers to coverage of non-catastrophic or
hybrid faults, if a working (not failed) system contains too many faulty nodes, the next fault might
cause system failure, no matter what effects it may have had in a system with fewer faulty nodes. So,
the class of catastrophic faults also includes faults which cause system failure by exceeding the system
fault resiliency. The hybrid fault model scenarios provide limits on the number and types of faults that
can be tolerated by a given node set according to the fault tolerance techniques implemented in the

system. As mentioned earlier, if the available resources are not adequate to meet the system depend-
ability requirements, additional fault tolerance techniques and resources can be used transform faults
from one class of the CFEM to another, potentially improving the system reliability and fault coverage.

3.1 CFEM and Classical Fault Models: Fault Scenarios, Fault Coverage and Fault
Resiliency Comparisons

Many system design approaches assume perfect coverage to a given fault set. Then, an algorithm is
chosen which tolerates the worst case faults in that set. As we shall see, this results in either overly
optimistic or pessimistic models when the perfect fault assumption is relaxed, as it must be when the
system implementation is completed. Since anecdotal evidence suggests that faults in B are the most
common, with faults in S less common than those in B, and faults in A the least common of all, the fault
assumptions made in a given system can be used to evaluate the impact of implementing the different
CFEM fault scenarios presented below.

The key to the usage of the CFEM is to be able associate the proper CFEM supported algorithm with
the assumed system or node fault set. For example, if the node set to be covered contains asymmetric
faults, then a CFEM consensus or convergence algorithm should be implemented. The fault tolerance
algorithms required by the CFEM along with the supporting voting functions are those developed in
Sections 4 and 5. We do emphasize that the main difference between these scenarios and the single fault-
type models is their treatment of benign faults. Unlike earlier models, the CFEM and its algorithms
take advantage of a good node’s ability to recognize missing or garbled messages, message tampering
and other crash or range faulty behavior. The notation CFEMy is used to indicate that the scenario
assumes that the worst case faults are in set X', where X € {B,S,A}. The total number of faults
which can be present in the system simultaneously is given by f = f4 + fs+ fs. The faults could have
been sequential, near coincident, or coincident, but under static redundancy management, all the faulty
nodes remain in the system. For the system to maintain correct operation, the number of nodes, IV,
and the number of faults f, must satisfy the conditions specified in the scenario below that corresponds
to the system implementation. If the number of faults exceeds the limit of f, then the fault scenario
in which f is exceeded is a catastrophic fault. Thus, the set of catastrophic faults includes those faults
that cause system failure because they exceed the fault resiliency of the system.

We next present a brief overview of the classic single fault-type model scenarios, and the CFEM
scenarios which supersede them. We present the resiliency of these scenarios in terms of the total number
of faults, ¢, concurrently in the system. We do not address the various combinations of sequential and
coincident node faults that could result in ¢ faulty nodes. For simplicity, we present a limited version of
the CFEM. The full CFEM scenarios are more flexible than those described below, because they also
permit the minimum number of good nodes required for system operation to be specified. For example,
as described below, both benign fault scenarios require N > ¢ + 1 nodes to tolerate ¢t benign faults. A
more detailed treatment of the CFEM scenarios gives N > ¢t + 73+ 1, where 75 is fixed according to the
minimum number of nodes permitted in an operating system. Comparable parameters 75 and 74 are
defined for CFEMg and CFEM 4. However, the minimum values of these parameters are adopted in
the remainder of this section. Having defined single fault-type and CFEM scenarios, we next compare
the numbers and types of faults tolerated by each®. Since the classification of faults under the CFEM
scenarios depends on the fault detection and masking methods implemented in the system, the potential
for improved system reliability using fault transformation. Fault transformation can be done by adding
detection methods, as well as by the addition of extra nodes. The minimum number of nodes required

®The combined results appear in Table 5

fs |0 1 2 3 4 5
Ns || 23456 | 7,809 10|11, 12

Table 1 Fault Resiliency Under the Symmetric Fault Scenario Cs

to maintain correct operation in the presence of a given number of faults is called the resiliency of
the system. The fault set and detection algorithms corresponding to CF EMp of the hybrid model are
identical to those of the benign fault set B; therefore, they share the same resiliency. However, both
CFEMgs and CFEM 4 differ in resiliency from Cgs and C 4, because their covered fault sets differ.

Classic Benign (Cz) and CFEM Benign (CFEMp) Fault Scenarios

In these scenarios, the only fault-tolerance functions implemented are fault detection mechanisms. Thus,
under the CFEM, the set of covered faults is B, i.e., the set of faults which can be detected by each
nodes. Any faults which can not be detected by those algorithms are, by definition, intolerable. Suppose
all good nodes either detect an error in a message sent by a faulty node, or fail to receive an expected
message. All nodes adopt the predefined default value as their local value for that node, and will thus
agree on the fault status of the sender, without any further exchange of information. In this case, the
fault is benign, because all good nodes can detect its occurrence. Thus, all local views are consistent
with the global view. This is the behavior assumed in both the classic single fault-type scenario, Cg,
and the CFEM benign scenario, C’F'EMpg. Both scenarios assume perfect coverage to all faults in B,
with N > ¢ + 1 nodes required to detect ¢ faults in B. The only difference between these scenarios
is in the default value adopted when a faulty node is detected. Under C'F'EMpg, the adoption of a
default value, &, distinguishable from a correct value, when a message error is detected, allows that
value to be ignored in future computations. The potentially correct or boundary default value adopted
under Ci may skew future computations. Note that system failure may occur if a malicious value or a
catastrophic fault occurs.

Under CFEMgpg, all faults in B are covered. CFEM based active redundancy algorithms and at least
Np nodes are required to tolerate fiz benign faults, where Ng = fz + (75 + 1). The parameter 75 is a
fixed index, dependent upon the desired fault coverage, where (1 + 73) is the minimum number of nodes
required for the system to remain operational.

Classic Symmetric (Cs) and CFEM Symmetric (CFEMg) Scenarios

To handle symmetric malicious faults in Cg, the established results appearing in literature necessitate
Ng = 2fs + 1 as the minimum number of nodes required to tolerate fs symmetric faults. So, the
resiliency of a system using this fault model (and an appropriate non-iterative passive redundancy
algorithm) is given by Ng, with all faults treated as if they were symmetric malicious faults. A system
with three or four nodes can tolerate at most a single fault. A system with five or six nodes can tolerate
at most two faults. Table 1 summarizes the resiliency for different values of Ng.

For the CFEM, faults in B|J S are covered using hybrid non-iterative passive redundancy algorithms.
At least Ns = (fs+ fs) + (1s + 1) nodes are needed to tolerate (fz + fs) faults, where Spax = LNSQ_IJ
and fs < Smax- If operation in the presence of only one non-faulty node is possible, then 76 = Spax-
Otherwise, Ts > Spax if at least (75 + 1) good nodes are required.

Under CFEMg, not all faults are assumed to be the worst case symmetric malicious faults; so, a
system using this model and the appropriate CFEM fault-tolerant voting functions (Sec. 4) will tolerate
more faults than the previous model. We have Ng, is given by Ng = 2fs+ fg+ 1. A set of three nodes

10

FsTo[il2 3] 4
f5
0 3 5 7 9
1 214 6 8 10
2 315 7 9 11
3 4 |6 8 10 | 12
4 5|7 9 11 | 13
5 6 |8 10| 12| 14

Table 2 Fault Resiliency Under CFEMs.
Unlike Table 1, the combination of fz and fs tolerated by a given N (table entries) are indicated.

Lr [fa] Na |
I 3
1] 1 45,6
2 | 2 73,9
3 3 | 10,11,12

Table 3 Fault Resiliency Under Arbitrary Fault Model (C4)

can now tolerate either two benign faults or a single symmetric malicious fault. Four nodes can tolerate
three benign faults or one symmetric malicious fault and one benign fault. The resiliency Ng is given
in Table 2, with the entry corresponding to row fz and column fg giving the number of nodes (Ng)
needed to tolerate fs symmetric malicious and fz benign faults.

Classic Arbitrary (C4) and CFEM Arbitrary (CFEM 4) Fault Scenarios

Under the assumption of all arbitrary faults in Ca, we have N4 = 3f4 + 1 as the resiliency for f4
faults in A. A minimum of four nodes is required to tolerate a single fault with a single rebroadcast
round (r = 1). Seven nodes and an additional round of rebroadcast (r = 2) are required to tolerate two
faults, and so on. Thus, there is no benefit under this model to adding an additional node above the
minimum, because no more faults can be tolerated by adding only one node. In fact, the overall system
reliability will decrease, because there are more nodes which can fail. Increasing r increases the number
of messages which need to be exchanged exponentially. Table 3 depicts the number of faults tolerated
by a given number of nodes for given values of r.

For the CFEM, the fault set is BJS |J A; so, all possible CFEM faults are covered. A minimum of
Ny = (2fa+2fs+ fs+ 74+ 1) nodes is sufficient to tolerate (f4 + fg + fs) faults. The maximum
number of faults in A that can be tolerated is Amax = LEQLIJ with f4 < Amax, T4 > Amax, and at
least (74 + 1) good nodes assumed to be necessary for the system to remain operational. If a consensus
algorithm with r rounds of rebroadcast is used, then the further restriction of f4 < r is also necessary.
For interactive convergence, 74 = f4, i.e., T4 relates to r correspondingly.

Under the CFEM for CFEM 4, using a CFEM based interactive consistency algorithm such as
HOM(r), we have Ng = 2f4 + 2fs + fg + r + 1, as demonstrated in Table 4, with N4 for different
values of fz, fs and f4 given by the corresponding table entry. Increasing the number of processors
without increasing r thus permits more benign and symmetric malicious faults to be tolerated.

For interactive convergence algorithms, the resiliency under the usual arbitrary fault model is identical
to that shown in Table 3. Under CF EM 4 of the CFEM model, the resiliency for interactive convergence
algorithms is that shown in Table 4 for » = 1. Tables 5 and 6 summarize the composite fault-set resilience

11

r=1
| fa=0 I fa=1
| [fs=0]fs=1]fs=2]fs=3] fs=0]fs=1]fs=2]fs=3]
f5=0 4 6 8 4 6 8 10
f5=1 3 5 7 9 5 7 9 11
f5 =2 4 6 8 10 6 8 10 12
f5=3 5 7 9 11 7 9 11 13
f5 =4 6 8 10 12 8 10 12 14
fs=5 7 9 11 13 9 11 13 15
fs=6 8 10 12 14 10 12 14 16

Table 4 Fault Resiliency of a CFEM System Under CFEM 4
For a given node size N (table entries), the X and Y co-ordinates combine to depict the combination of fg + fs + fa
tolerated under CFEM

| Nodes: N || 2 | 3 | 4 | 5 | 6 7 8 |
Cs 1 3 4 5 6 7
Cs 1 1 2 2 3 3
Ca 1 1 1 2 2
CFEMs (<2,0,0) | (<£3,0,0) [(£4,0,0) [(<5,0,0) [(<6,0,0) [(<7,0,0)
(0,1,0) (1,1,0) | (£2,1,0) | (£3,1,0) | (£4,1,0) | (£5,1,0)
(0,1,0) | (0,<2,0) | (1,2,0) (2,2,0) | (£3,2,0)
(1,2,0) (1,3,0)
(0,<3,0)
CFEM4 (<2,0,0) | (<3,0,0) [(£4,0,0) [(<4,0,0) [(<5,0,0)
(0,0,1) (1,1,0) 1 (£2,1,0) | (£2,1,0) | (<3,1,0)
(0,1,0) (1,0,1) 1 (£2,0,1) | (£2,0,1) | (<£3,0,1)
(0,1,0) | (0,<2,0) | (0,<2,0) | (1,2,0)
(0,0,1) (0,1,1) (0,1,1) (1,1,1)
(0,<2,0)
(0,1,1)
(0,0,< 2)

Table 5 Classical and CFEM Covered Faults (The fault tuples are represented as (fg, fs, fa))

offered by the CFEM for the various fault scenarios.

Unlike many existing fault models, the fault model scenarios presented in this chapter explicitly define
the type and number of faults that can be tolerated by a system satisfying a specific scenario, as well
as the class of algorithms needed to tolerate those faults. The main difference between the CFEM and
other fault models is the inclusion of implementation information in designing a system’s fault handling
resources. A fault may be manifested benignly in one system implementation, while another system
would view the fault as an asymmetric value fault. As we shall see subsequently, the increased precision
of the mixed fault-type view over the single fault-type view helps provide a more realistic estimate of
systems reliability.

4 Utilizing CFEM: (a) Fault Tolerant Voting Functions

So far, we have shown the flexibility of the CFEM in being able to handle sets of fault-effects of varying
fault severity as compared to existing fixed fault-severity models. However, before we can actually
utilize the CFEM facets in the system operations, we need to systematically develop voting functions

12

Scenario Assumed Redundancy Caveat
Coverage
Cs B N>fs+1 f € (AUS) not covered.
Cs SUBs N >2fs+1 f € (B4 UA) not covered.
Ca AUSUB | N>3fa+1 Multiple rounds of mes-
sages needed.
CFEMp || B N>fs+1 f € (SU A) not covered.
CFEMs || BUS N> fs+2fs+1 f € A not covered.
CFEMa || AUSUB | N > fe+2fs +3fa+1 | Multiple rounds of mes-
sages needed.

Table 6 Attributes of N-Node Systems Under Classic and CFEM Assumptions

and algorithms which can support the CFEM. Fortunately, most of the existing techniques developed
to mask or to detect faults in redundant resources or components can be directly modified to take
advantage of CFEM. We focus on forward-recovery methods which are designed to ensure continual
service in the presence of a limited number of faulty nodes. When combined with the appropriate
system assumptions, each of the techniques described below can be the basis for some consistency or
convergence operation.

Under the CFEM, each incoming message received by a node is examined for potential faults by
some set of detection mechanisms. Such mechanisms include sanity checks, formatting checks, and
error detection and/or correction codes. If no discrepancies are detected in a message, the message
contents may be correct or a malicious fault-effect may be present, or an intolerable (uncovered) fault-
effect may have occurred. At the local node level, no further fault type discrimination is possible.

If an error is detected, such as a framing, parity, or encoding fault, a missing message, or a range
violation, then we adopt a default error or status value, £, as the sending node’s value. Under no
circumstances can £ be an acceptable value, and it may differ based on the data types of correct values
or on the type of algorithm in which the information is to be used. Without loss of generality, we
assume that the value £ is greater than any permitted numerical data value.

Since each node performs local detection only, the adoption of £ as a value means that a faulty
node with locally benign effects was detected. The detected fault could be a benign fault, with all good
nodes adopting £ for that sender’s message. Or, it could be an asymmetric malicious fault that sent
detectably erroneous messages to some, but not all, good nodes. Since the number of £ values adopted
by two good nodes can legitimately differ, standard fault masking algorithms must be extended. If no
nodes adopt the default error value, £, then the redundancy algorithms revert to the classic single fault
models.

4.1 Fault Handling Under the CFEM: Voting Functions

Voting functions which support CFEM have the generic structure of filtering specified numbers of error-
status values, £, to yield a consistent voted value. Thus, standard fault tolerant voting functions, such
as the majority or median, are extended to accommodate Customizable Fault/Error by applying an
exclusion function to the data value set prior to voting. We do mention that our intent here is to detail
the CFEM variations of the voting functions; the application of these voting functions is discussed in
the section of hybrid algorithms.

We first define the filtering function ezclude(V'), which takes a set V' of N elements, {vi,vs,...,vn},
removes any error values, £, from V, and returns the set (V — &), containing (N — Ng) elements. Ng
represents the number of discerned £ values. In the absence of benign faults (fz = 0), no elements are

13

excluded from the vote. The subsequent CFEM voting functions are based on the ezclude() function.
Note that the functions in these sections are not sufficient to mask faults in A which require iterative
algorithms such as the approximate agreement functions described later in Section 5. If an (uncovered)
asymmetric malicious fault occurs, all good nodes might not compute consistent values, and system
failure could result.

CFEM Majority Vote

A majority vote is typically used by each good node to compute a common final value for bimodal
values received from other nodes or input sources. For N, defined as (N — N¢), the CFEM_majority(V)
is given by:

v, if more than | Ye=L| of the v; = v.

magority (exclude(V')) :{ £ otherwise. 2

The default value, £, returned when no majority exists, must be defined a priori and must be a
potentially correct value, to avoid introducing a fault into a fault-free scenario. Since the majority

function ignores LN°271J elements, the composite function will be able to tolerate up to f faults, where

f=fot 59,

CFEM Mean and Midpoint

The functions mean and midpoint are commonly used to average numerical data. The mean of n values
v, eV, forie{l,...,n}, is mean(V) = % v

The midpoint of n values v; € V', for i € {1,...,n}, is the mean of extrema, with

midpoint (V) = 3(min;—y ,(v;) + max;—1,,(v;)), often called the mean of medial extremes or MME. Since
these functions are sensitive to extremal values, fault-tolerant versions are defined using the reduce
function, where, if V' is a set of values to be voted on, ¢ extremal values need to be removed [5], i.e.,

reduce(V,t) = {V} — {the t largest and ¢ smallest v;}.

The CFEM fault_tolerant_mean and CFEM fault_tolerant_ MME functions apply the mean and mid-
point functions to restricted subsets of values, where the restriction first removes the £ values from
detected benign faults, then eliminates the extrema from the remaining elements using the reduce func-
tion, as defined in [5]. The number of extrema eliminated now depends on N, = N — Ng, the number
of elements remaining after removing the f benign fault values €.

CFEM _fault_tolerant_mean (V') = mean(reduce(exclude(V'), f(N,)))
CFEM _fault_tolerant_MME (V') = midpoint (reduce(exclude(V'), f(N,))),

with f(N,) = L%J Each function tolerates a total of f = fz+ f(N,) faulty elements. However,
since ng varies with the particular fault-set instantiation®, the value of the t assumed by the reduce
functions is not fixed. Thus, the number of items to be reduced by the reduce function is a based on a

run-time calculation of N.

6i.e., # of faults fz is not fixed

14

CFEM Median

The CFEM_median consists of the median() applied after the ezclude() function. For a set V of m
ordered values {v1,va,...,v,}, where vy < vgy1,

CFEM _median(V) = median(ezclude(V)) = w,
where it =1+k, j =mg—k, and k = LWJ Since vy < & by definition, the excluded values £ will
be the fz largest values. So, the elements remaining in Vg after application of the ezclude function will

be {vi,v2,..., UN_N; }-

5 Utilizing CFEM: Convergence and Consensus Functions

At this stage we have developed the CFEM fault scenarios and the associated primitives of fault tolerant
voting functions that are supported under the CFEM. We now switch to developing the functions of
distributed consensus and convergence that are essentially utilized in providing for dependable services in
generic synchronous distributed systems. Our intent here is to demonstrate that the CFEM can directly
provide for consensus and convergence operations which are flexible in terms of (a) covering combinations
of fault types, and (b) are not restricted by the classical assumptions of each node possessing identical
number of data elements. The latter property allows for these functions to provide additional flexibility
of fault handling in real, multiple fault scenarios.

When the system is required to tolerate at least one arbitrary node fault, interactive versions of the
previous fault masking algorithms are required. In this section CFEM versions of iterative algorithms
needed to assure consensus or convergence under the assumption of arbitrary fault effects are derived.
In these algorithms, each node has an initial value which it transmits to all other nodes. Each node
adopts a final value based on the values of all other nodes.

To ensure dependability, fault-free nodes are expected to make decisions and compute values consis-
tent with those of other good nodes, based on information received in the messages from other nodes.
Intuitively, the only condition necessary for the system to operate correctly is for good nodes to make
consistent decisions or to compute the same value (or values guaranteed to be arbitrarily close). The
system fails when consistent decisions or computations across the system are no longer possible. That
is, some type of consensus conditions, similar to those given in Table 7, must be satisfied to guarantee
that good nodes will make consistent decisions or compute consistent values. While there are many
variations possible in stating the conditions needed to achieve exact agreement or approximate agree-
ment among distributed nodes [2, 5, 8, 10, 11, 13, 14, 16, 17, 19], the requirements for consensus (CS)
and convergence (CV) given in Table 7 are sufficiently general for our purposes.

Critical system functions must employ algorithms that achieve specified agreement conditions in all
good nodes in the presence of faulty resources. Fault detection and masking techniques developed for
other fault assumptions are integrated with the CFEM in this section to enhance their resilience to
faults. System reliability estimates are then based on the relative occurrence probabilities of different
fault effects and their impact on the consensus operation. Note that the behavior of a faulty node is
not constrained by this definition. Furthermore, if the sending node is faulty, it does not matter what
decision is reached by the good nodes regarding the faulty node’s value, as long as they all agree. Third,
good nodes are not required to recognize which nodes are faulty.

15

CS: Consensus Conditions

EA (Exact Agreement): All good nodes will agree on the value received from the sending node.

EV (Validity): If the sending node is non-faulty, then the value used by the receiving node corresponds to the
sending node’s value.

CV: Convergence Conditions

AA (Approximate Agreement): All good nodes’ final values will be within a predefined range of each other.

AV (Validity): The final value of any non-faulty node is in the range of the initial values of all other good nodes.
value used by the receiving node corresponds to the sending nodes value.

Table 7 Consensus and Convergence Conditions

(Hybrid Oral Messages) HOM(r):

S1: The Transmitter sends its personal value, v, to all receivers.

S2: For each 4, let v; denote the value that Receiver ¢ gets from the Transmitter.
If r = 0, and either no value or an obviously incorrect value (out of range, failed check sum, etc.) is received,
Receiver ¢ adopts €.
Otherwise, Receiver i adopts v;. The algorithm then terminates.
If » > 0, each Receiver adopts R(E), if an obviously incorrect or no value is received, and R(v;) otherwise. Each
receiver then acts as the Transmitter in Algorithm HOM(r — 1) sending its personal value to the other N — 2 nodes.

S3: For each ¢ and j, with i # j, let v; denote the value Receiver i gets from sender j in S2 of HOM(r — 1). If no message
is received or v; is obviously incorrect (If the value R¥(£) is received, where k > r — [in $2 HOM(r —), then that
too is recognized as an error, and £ should be adopted). Receiver i adopts & for v;; otherwise, v; is used.

Since all Receivers act as senders in HOM(r — 1), each Receiver will have a vector containing (N-1) values at the
end of HOM(r — 1). Receiver i adopts v = HOM_maj(vi,v2,...vn—1) as the Transmitter’s value.

Table 8 Algorithm HOM

Consensus under CFEM

The Hybrid Oral Messages (HOM) algorithm”, presented in Table 8 is an extension the oral messages
(OM) algorithm of Lamport, et.al. [8], which can be proven to satisfy the consensus conditions EA
and EV from Table 2.2.7 when certain conditions regarding the number and types of faults are met.
Algorithm HOM differs from OM algorithm, as it must deal with values corresponding to detected node
faults.

Algorithm HOM(r) assumes a fixed number of rebroadcast rounds, r, with f4 < r. While detected
node faults will yield £ values, a malicious fault can take on any value in W, where W is the set of
potentially correct values, without violating a range check. The function HOM_maj(V'), employed by
HOM(r), computes a consistent value from set of V' The values in V' can be a combination of correct
values from W, incorrect values from W, and values from the default error value set.

Within the algorithm, the value £ is adopted when an obviously incorrect value or no value is
received from some node, say i, by another node, k. A node participating in HOM(r) may then need

"Variants of this algorithm have appeared earlier in [10, 19]

16

to indicate to node j that it recognized a fault in the original sender. However, since £ is defined such
that no good node can send it as a correct value, the second receiving node will assume that node k
is faulty if it receives £ from it, even though the £ value is due to node ¢ begin faulty. To remove this
ambiguity, the value R(£) is sent when a node recognizes an error in a message it receives. When r > 1
and a > 0, R?(§) = R(R(E)) is adopted and sent when a node receives R(E) from the transmitter,
R3(€) = R(R(R(E))) is adopted and sent upon receipt of R%(£) from the transmitter, and so on. If the
power k of RF(E) received by an node exceeds r, then the value is erroneous, and £ should be substituted.
The use of the R() operator to enclose £ also prevents information from good nodes from being ignored
when the £ values are excluded in HOM_maj below. Thus, the default error set is extended to include
(r) distinct error values, {€, R(E), R%(£),... R"(£)}, where R () = &, R*(€) = R(R()), etc. The
operator R() applied to a value, such as £, indicates that the sender of R(E) detected a locally benign
fault in a message it received, and adopted R(E) For any value z € W, R(x) = z. The inverse of the
R operator, R~! is also defined, with R~'(R(E)) = &£, R~Y(R*(&)) = RF"(£), and R™!(z) = = for
x € W. These additional values are needed to prevent a good node from being viewed as faulty for
passing on a message from a faulty transmitting node.

The function HOM_maj is similar to the CFEM_majority function defined earlier, except that it
recognizes elements from the extended error value set set {R(E),... R"(€)} as acceptable values. Given
a set V of k values, vj,...,v,, HOM_maj(V') is given by

g, if all of the v; satisfy v; = &.
HOM_maj (V) ={ R '(ve), if ve = majority(exclude(V')) exists, otherwise
Vg, where vy is a functionally determined value.

The provision which assumes £ if all the v; are £ can’t occur on a good node. It is included to provide
a fail safe default value should that case occur on a partially faulty node. In [18], we prove that for
any r > 0, any fq4 < r, any fs > 0, and any fz > 0, Algorithm HOM(r) satisfies EA and EV for
>2fa+2fs+ fa+r+18

Convergence under CFEM

As discussed previously, interactive convergence has been achieved if conditions AA and AV in Table 7
are satisfied. In Table 9 we now describe the (non-terminating) synchronous? convergence algorithm
applicable under CFEM.'?.

Before addressing the convergence properties of the CFEM convergence algorithm, we point out
major differences between this algorithm and the corresponding algorithms in [5, 20]. Nodes p and
q may receive different values from asymmetrically faulty nodes. Thus, they may identify different
numbers of faults as being in B, and the sizes of the sets U, and U, need not be identical. The values
of f, fn, fs, and f4 are fixed globally for a given execution of the algorithm. However, the non-faulty
nodes p and ¢ are only required to compute consistent values in the presence of ¢ faults, at most Amax
of which are in A. They are not required to agree on the global diagnosis of different numbers and types
of faults.

Also, while ¢ is fixed in other algorithms, the number of faults tolerated by Algorithm CV varies
with the numbers of faults of different types. Once the values of nmax and 74 have been chosen for the
scenario, all combinations of f4, fs, and fg faults that satisfy the scenario CFEM 4 assumptions of
Nmax > 2f4 + 2fs + [+ 74 + 1, with f4 < Apax, must be accommodated.

8 A similar, mechanically verified, proof of this algorithm appears in [10].
An asynchronous algorithm appears in [2]
"9The discussion of termination in [5] can then be applied under this framework, using the HOM algorithm.

17

Let f = fa + fs + fs be the number of faulty nodes present during a round of algorithm execution, with N > 2f4 +
2fs + fs + Tal, where fa < Amax, fa € A, fs € S, fs € B, and Amax = |%52]. Let the function g be either
ga = CFEM _fault_tolerant_mean or gnr = CFEM _fault _tolerant_MME. At each round, each non-faulty node p performs
the following steps.

S1: Node p broadcasts its current value v, to all nodes, including itself.

S2: Node p collects all values sent to it during that round into the extended multiset V,,. If p does not receive a feasible
value v, from each node g, or receives no value from node g, it adopts the value £.

S3: Node p excludes all error values £ from V,, giving U, = ezclude(V}).

S4: Node p computes its new value, v' = g(Up).

Table 9 A CFEM Algorithm CV for Achieving Convergence

The following theorem states the convergence properties of Algorithm CV'.

Theorem 1 Let nmax > 2fa+2fs+ fe+74+ 1, where Amax = LM“‘T"_IJ, fa < Amax, and 74 > Amax-
Let P be a synchronous approzimation protocol in which each node executes Algorithm CV. Suppose
that T C S is a set of nodes, with |T'| > nmax — t, and t = f4 + fs + fr is the number of faulty nodes
present during the execution of round k of Algorithm CV.

Let C' be a sequence of iterations or rounds of P, and let k be a round number. Let U be the multiset
of values held by nodes in T immediately before round k in C, and let U' be the multiset of values held
by nodes in T immediately after round k in C. Then,

1. If g = gu, then 6(U)Y < 6(U)/2.
2. If g=ga, then 6(U") < t6(U)/(nmax — 2t).
3. If g =ga or g =gum, p(U")"* C p(U).

The complete proof of this theorem is provided in the Appendix section. Basically the theorem
demonstrates that the range of values of non-faulty nodes decreases in each round by a factor dependent
upon the function g employed in the CFEM convergence algorithm. Thus, the algorithm will eventually
converge, proving AA, with AV applying at the end of each round. The termination properties of this
algorithm, discussed in [5], remain unchanged, except that a CFEM interactive consistency algorithm
needs to be employed to achieve consistent agreement on termination. Existing interactive convergence
algorithms, such as those in Welch and Lynch [20] and MAFT [7], can also incorporate the CFEM fault
taxonomy. A similar result has been derived for the asynchronous interactive convergence algorithm|[2].

These interactive methods represent but a subset of the algorithms that need to be reexamined
under the assumption of CFEM faults. The exclusion of error (£) values prior to application of a
value selection function is relatively straightforward for non-iterative passive redundancy techniques.
However, the impact of exclusion upon interactive consistency and convergence algorithms is more
subtle, as evidenced by the difficulties experienced in devising a correct CFEM algorithm that can
achieve the consensus conditions. The ability of asymmetric malicious faults to appear as locally benign
faults makes many of the interactive single-fault algorithms invalid because the exclusion of £ values
may result in different nodes having different numbers of values to vote on to achieve the final value.

U5 = max(U') — min(U")
2p(U") = [min(U"), maz(U")]

18

6 Summary

In this chapter, we have presented the CFEM, in which faults are classified based on their effects upon the
system and upon the fault handling techniques implemented in the system. Extending beyond the fixed
fault severity models (time-domain and data-domain, s-a-X, Byzantine faults), the CFEM framework
permits handling a continuum of fault types as groups of faults of varying fault manifestations under a
single algorithmic paradigm.

The difficulties in classifying faults by attributes, independent of the system implementation, appli-
cation and environment, demonstrated the need for a fault taxonomy that captured system-dependent
effects. The fault effects taxonomy (CFEM), which partitions all faults into tolerable and intolerable
faults, addresses the need for a different type of fault classification. Having provided the CFEM and
algorithms, hybrid fault model scenarios were defined, to combine the covered hybrid fault classes with
the algorithms needed to tolerate them. The potential for fault transformation by adding more detec-
tion mechanisms, modifying the specified fault scenario, or increasing the node redundancy was also
explored.

An important consideration in achieving the full benefit of our hybrid CFEM fault theory to real
systems is the lack of existing experience in identifying and tolerating mixed fault types and fault
combinations. Many researchers have stated that benign faults are more probable than symmetric
value faults, which are more probable than asymmetric or Byzantine value faults. While anecdotal
evidence of the presence of arbitrarily malicious failures exists, there is still disagreement regarding how
best to protect against them, if at all. As the statistics of probability of occurrence of various fault
types are better documented, the utility of the CFEM increases correspondingly.

The CFEM approach discussed here is currently being applied to a new architecture solving a real
world problem. The architecture for a ship control system is being developed using these concepts. The
results have been very encouraging and have demonstrated effectiveness to date during the development
stage. The full utility of the approach will continue to be explored as the project progresses. The
ability to clearly formulate and test relationships, both of dependence and independence, has been very
useful in verifying and validating aspects of the architecture. A current research goal is to continue
to compile existing digital system experience and to develop new error extraction guidelines and fault
analysis techniques. This includes assessment of the effectiveness of existing fault detection and error
logging methods.

Overall we have shown that a more precise dependability model can be constructed, supported by on-
line diagnosis algorithms under a generalized hybrid fault model. We believe the integration of hybrid
CFEM fault theory into digital system design and validation will provide a greater understanding of
fault effects and the risks associated with uncovered faults.

Acknowledgment: We extend our acknowledgment to M. M. Hugue for the valuable inputs and
extensive discussions over this work.

References

[1] A. Avizienis and J.-C. Laprie, “Dependable computing: From concepts to design diversity,” Proceedings of the
IEEE, vol. T4, pp. 629-638, May 1986.

[2] M. H. Azadmanesh and R. Kieckhafer, “New hybrid fault models for asynchronous approximate agreement,” Trans.
on Computers, vol. 45, #4, pp. 439-449, April 1996.

[3] M. Barborak, M. Malek and A. Dahburra, “The Consensus problem in FT computing,” ACM Computing Surveys,
vol. 25, pp. 171-220, July 1993.

19

[4]
[5]

7

F. Cristian, “Understanding fault-tolerant distributed systems,” Commn. of the ACM, vol. 34, pp. 57-78, Feb. 1991.

D. Dolev et al., “Reaching approximate agreement in the presence of faults,” in Proc. Reliable Distributed Systems,
pp- 145-154, Oct. 1983.

L. Gong and P. Lincoln, “Byzantine agreement and authentication: Observations and applications in tolerating
hybrid and link faults,” Proc. of DCCA-5, 1995.

R. Kieckhafer et al., “The MAFT architecture for distributed fault tolerance,” Trans. on Computers, vol. C-37,
pp. 398-405, April 1988.

L. Lamport et al., “The Byzantine generals problem,” ACM Trans. on Programming Languages and Systems, vol. 4,
pp- 382401, July 1982.

J. Laprie, Dependability: Basic Concepts and Terminology. Springer-Verlag, 1992.

P. Lincoln and J. Rushby, “A formally verified algorithm for interactive consistency under a hybrid fault model,” in
Proc. FTCS 23, pp. 402-411, June 1993.

N. Lynch et al., “A simple and efficient Byzantine generals algorithm,” in Symp. on Reliability in Distributed
Software and Database Systems, pp. 46-52, July 1982.

M. Malek, “A consensus-based framework for responsive computer system design,” in Proceedings, NATO Advanced
Study Institute on Real-Time Systems, Springer-Verlag, October 1992.

F. Meyer and D. Pradhan, “Consensus with dual failure modes,” Trans. on Parallel and Distributed Systems, vol. 2,
pp- 214-222, April 1991.

M. Pease et al., “Reaching agreement in the presence of faults,” JACM, vol. 27, pp. 228-234, April 1980.

N. Suri, M. M. Hugue, and C. Walter, “Reliability modeling of large fault-tolerant systems,” in Proc. FTCS-22,
pp- 212-220, July 1992.

P. Thambidurai and Y. Park, “Interactive consistency with multiple failure modes,” in Proc. Reliable Distributed
Systems, pp. 93-100, 1988.

R. Turpin and B. Coan, “Extending binary Byzantine agreement to multivalued Byzantine agreement,” Info. Proc.
Letters, vol. 18, pp. 73—76, February 84.

C. J. Walter, N. Suri and M. Hugue, “Continual on-line diagnosis of hybrid faults,” Proc. DCCA-4, January 1993.

C. J. Walter, P. Lincoln and N. Suri, “Formally verified on-line diagnosis,” Trans. on Software Engg., vol. 23, #11,
pp. 684-721, Nov. 1997.

J. Welch and N. Lynch, “A fault tolerant algorithm for fault tolerant clock synchronization,” Information and

computation, vol. 77, no. 1, pp. 1-36, 1988.

Appendix

The proof of Theorem 1 is detailed below. We first present the multiset terminology and subsequently
develop the proof.

20

7.1 Terminology

Our notation and definitions are similar to those used in [5]'®. Let the finite multiset U of real
numbers be a function U : R — N, which is nonzero on at most finitely many r € R. The function U
assigns a finite multiplicity to each value r € R. The cardinality of multiset U is given by Y- ..z U(r),
and denoted by |U|. A multiset is empty if its cardinality is zero. The difference of multisets, V' — U, is
a multiset W, defined by

N R

The intersection U NV of multisets U and V is the multiset W defined by
W (r) = min(U(r), V(r)).
The minimum of a non-empty multiset U, min(U) is defined by
min(U) = min{r € R|U(r) # 0},

with the mazimum, max(U), defined similarly. We denote the closed interval [min(U), max(U)] by
p(U), and let §(U) be the length of that interval, with

d(U) = max(U) — min(U).

The mean of the multiset U is defined by mean(U) = >, cpr - U(r)/|U|. The midpoint of the multiset
U is defined by mid(U) = [max(U) + min(U)]/2. If U is a nonempty multiset, we define the multiset
s(U), obtained by removing one occurrence of the smallest value in U, to be the multiset W (r) defined
by
) U(r), if r # min(U)
wir) = { U(r) —1 otherwise.

The multiset {(U), in which one occurrence of the largest value in U is removed, is defined similarly. If
we assume ¢ is a fixed, non-negative integer, then if |U| > 2¢, we can compute reduce(U,t) = s'(I{(U)).
We next formally define the hybrid midpoint and hybrid mean functions in forms appropriate for this
discussion. Let U be a finite multiset, and W be a finite multiset over a set Q disjoint from the reals (
RN Q =0), with W(q) = 0 everywhere in Q except at vz € Q. The extended multiset V is then
given by V= U | W. We define the fault-tolerant midpoint function gps to be

gr (U) = mid(reduce (U, t)). Similarly, the fault mean or averaging function g4 is given by

gA(U) = mean(reduce(U,t)). Then, the hybrid fault-tolerant midpoint or hybrid MME is defined by

hf 3 (V) = gur(exclude(V)) = g (U).
Similarly, we define the hybrid fault-tolerant mean as

hf 4(V) = ga(ezclude(V)) = ga(U).

13The notation and concepts used in [20] are also developed from [5]
4The default error value vs should be treated as if it were not a real number, as it must be distinguishable from all
potentially correct values.

21

7.2 Essential Lemmas

The proof of Theorem requires the following lemmas, adapted from [5], under the assumption that not
all nodes vote on the same number of values. For completeness, all lemmas are stated, but proofs are
provided only when they differ vastly from those in [5].

The first lemma shows that the number of elements common to two non-empty multisets is reduced by
at most 1 when either the smallest or the largest element is removed from each.

Lemma 1 Suppose that V and W are non-empty multisets. Then,
1. [VnW|—|s(V)ns(W)| < 1.
2. [VAW| = I(V)NI(W)| < 1.

The next lemma extends Lemma 1 to removing different numbers of extremal values from two
multisets of potentially different sizes. We adopt the notation ¢, = t(V'), where

ty < min(Apax, Ln“—_;"‘—_lj), the maximum number of faults not in B that can be tolerated by n, = |V
nodes under our assumptions, as derived for the reliability results in [15].

Lemma 2 Suppose V and W are two multisets with |V| > 2t, and |W| > 2t,,, where t, <t and
tw <t. Then,
[V NW| — |reduce(V, t,) N reduce(V,ty)| < 2max(ty, ty).

Proof: Applying Lemma 1, we have
[V NW|— |reduce(V, min(t,, t,)) U reduce (W, min(t,, t,))| < 2(min(ty,, tw).

Without loss of generality, assume ¢, > t,,. Then, by Lemma 1, removal of the remaining ¢, — %,
smallest and largest values from V' completes the result. O

The proofs in [5] apply to the next pair of lemmas, except that we use ¢, to indicate that the lemmas
do not assume the global ¢ value of the algorithm. Instead, the lemmas are valid for the maximum
number of faults in S U A that the (local) multiset of size |V'| can tolerate under our assumptions.

Lemma 3 Suppose that k is a nonnegative integer, and U and V are non-empty multisets with
|V —U| < kty, and |V| > 2kt,. Then,

plreducet(V,1,)) C p(U).

Lemma 4 Suppose that U and V are nonempty multisets such that U — V| < t, and |V| > 2t,.
Then, gu (V) € p(U).

Lemma 5 illustrates the value of the midpoint function in approximation. While the proof is identical
to that in [5], the implications of this lemma differ because the multisets M and N need not have the
same cardinality.

Lemma 5 Let U, M, and N be non-empty multisets with |M N N| > 0, p(M) C p(U), and
p(N) C p(U). Then,
|mid(M) — mid(N)| < §(U)/2.

The following lemma provides the main result for the midpoint function.

22

Lemma 6 Let U, V, and W be non-empty multisets, with |V —U| < t,, |W — U| < ty, and
|V NW| > 2max(ty,ty). Then,
lgm (V) — g (W) < 6(U) /2.

Proof: Let M = reduce(V,t,) and N = reduce(W, t,). By Lemma 2,
IM NN|>|VNW|—2max(ty,ty),

and, by hypothesis, |[M N N| > 0. By Lemma 3, with £ =1, p(M) C p(U) and p(N) C p(U). Applying
Lemma 5 yields the result. O
The next three lemmas provide results for the mean function comparable to those for the midpoint.

Lemma 7 Let U and V' be non-empty multisets such that |V —U| <t and |V| > 2t,. Then
g9a(V) € p(U).

Lemma 8 Let U, M, and N be nonempty multisets, and m, n, and © be nonnegative integers such
that |M| =m, |[N| =n, M NN| >i, p(M) C p(U), and p(N) C p(U). Then,

max(m,n) — i

|mean(N) — mean(M)| < 6(U) (1)

max(m,n)

Proof: The result holds when m = n by Lemma 8 of [5]. It remains to prove for m # n.
Let L=MNN, M'"=M — L, and N' = N — L. Then, we have

_ >rer™™ -~ >rer™N
m n

|mean (M) — mean(N)|

If equation (2) is zero, we're finished. Without loss of generality, assume that

>rer™™M _ >rer™N
m n

>0 (3)

and that n > m. Then we can rewrite the left hand side of expression (3) as

(n—m)Y,crrM + >rer™™ -~ >rer™N
nm n n

Since n — m > 0, expression (4) is less than or equal to

(m —n)max(M) Y ,cr | M| N Sper™M' =3 crrN'
n m n

which is at most
max(M)(n —m) N max(M)(m — |L|) — min(N)(n — |L|)

n n

;From expression (5), we can derive

max(M)(n — |L|) — min(N)(n - |L|)

By hypothesis, we have expression (6) less than or equal to

n—1

3(U)

n

23

Since we have n > m, expression (7) is equivalent to the desired result. The argument for n < m is
similar, and the proofs when
>rer™™M _ >rer™N

m n

<0

are symmetric.O]

Lemma 9 Let U, V, and W be non-empty multisets, with |V | = n,, |W| = ny,
[V AW]| > i+ 2max(ty, ty), |V —U| < t,, and |W —U| < ty. Then,

max(m,n) — i

l9A(V) — ga(W)] < 0(U) (8)

max(m, n)

Proof: Let M = reduce(V,t,), m = n, — 2t,, N = reduce(W,t,) and n = n,, — 2t,,. By Lemmas 2
and 3, the hypotheses of Lemma 8 are satisfied, yielding the result.O
Using these lemmas, we can now verify our main theorem.

7.3 Proof of Theorem 1
Let p and ¢ be any two nodes in T. Let V), be the initial multiset of values held by p after the

. . — -1
exclusion of nyax — n, default error values vg, where |V,| = n, and ¢, = min(Apax, L%%J)

Similarly, V; is initial multiset of values held by ¢ after the exclusion of nmax — ng values vp, where

|Vq| = ng and t; = min(Amax, L%%A_IJ) Since there are at most ¢ faulty nodes, we have

Vo Ul <tp <t
V, —U| <t, <t.
Furthermore, since V), and V; contain identical entries from non-faulty nodes, we have
Vo N V4| > n—t > 2t > 2max(ty, ty).
1. Sets U, V), and Vj satisfy the hypothesis of Lemma 6. Therefore,
l9a (Vo) — g (V)| < 6(U) /2.

Since p and g were arbitrary, we’re done.

2. By definition (maxser ng) < Nmax and (maxgerty) < t. Let i = npmax — 3t and m = npmax — 2t.
Then, U, V), and V, satisfy the hypotheses of Lemma 9, and we conclude that

194(Vp) = 9a(Vy)| < t6(U)/(nmax — 21). (9)
Since p and g were arbitrary, the result follows.
3. Multisets U and V,, satisfy the hypotheses of Lemma 4 and Lemma 7. Therefore, gas(V),) € p(U)

and ga(V,) € p(U). Thus, p’s value after round & is in p(U). Since p was arbitrary, all elements
of U' are in p(U).

O
Theorem 2 Algorithm CV achieves Approximate Agreement

Proof: Theorem 1 shows that the range of values of non-faulty processes decreases in each round by a
factor dependent upon the function g employed in Algorithm CV. Thus, the algorithm will eventually
converge, proving Agreement. Part 3 of Theorem 1 applies at the end of each round, ensuring that the
Validity condition is satisfied. O

As mentioned previously, the termination properties discussed in [5] remain unchanged.

24

