
The Customizable Fault/Error Model for Dependable Distributed

Systems�

C.J. Walter N. Suri

WW Technology Group Chalmers University

4519 Mustering Drum Dept. of Computer Engineering

Ellicott City, MD 21042 Goteborg, S 41296, Sweden

cwalter@cs.jhu.edu suri@ce.chalmers.se

Abstract

Dependability is a qualitative term referring to a system's ability to meet its service requirements in

the presence of faults. The types and numbers of faults covered by a system play a primary role in

determining the level of dependability which that system can provide. Given the variety and multiplicity

of fault types, to simplify the design process, the system algorithm design often focuses on speci�c fault

types, resulting in either over-optimistic (all fault permanent) or over-pessimistic (all faults malicious)

dependable system designs.

A more practical and realistic approach is to recognize that faults of varied severity levels and of

di�ering occurrence probabilities may appear as combinations rather than the assumed single fault type

occurrences. Allowing the user to select/customize a particular combination of fault types of varied

severity characterizes the proposed Customizable Fault/Error Model (CFEM). The CFEM organizes

diverse fault categories into a cohesive framework by classifying faults by the e�ect they have on the

required system services rather than targeting the source of the fault condition. In this paper, we develop

(a) the complete framework for the CFEM fault classi�cation, (b) the voting functions applicable under

the CFEM, and (c) the fundamental distributed services of consensus and convergence under the CFEM

on which dependable distributed functionality can be supported.

Keywords: fault modeling, error classi�cation, dependability

1 Introduction

Dependability is a qualitative term describing the con�dence that can be placed in a computing system's

ability to deliver the expected service, even in the presence of faults [9], where the term expected service

also includes the notion of timeliness. Dependability comprises the issues and techniques most commonly

used to identify, implement, and measure system fault-tolerance and real-time performance.

The e�ectiveness of a fault-tolerance method always relies on the realism and accuracy of the assumed

underlying fault and error models. The faults tolerated by a system play a primary role in the level of

dependability that a system can achieve, as quanti�ed, for example, by the reliability metric. Typically,

�Supported in part by ONR Grant #N00014-91-C-0014

1

a fault is de�ned as an anomalous physical condition, the identi�ed or hypothesized cause of an error,

which may eventually lead to a loss of service i.e., failure.

The fault models used in designing and analyzing dependable distributed systems typically make

simplifying assumptions about the natures of faults
1
in the system. Often, the fault tolerance algorithms

employed by a system treat all faults identically, ignoring the e�ects of any fault types the algorithm

is not designed to distinguish or to tolerate. Such overly-optimistic single fault-type models assume a

�xed number of benign permanent faults and perfect fault coverage. Or, the system model employs

complex protocols that assume all faults to be malicious, even though only a small portion of the faults

may actually require such protection. These more pessimistic Byzantine models assume all faults to be

arbitrary. By distinguishing di�erent fault types and considering varying probabilities of occurrence of

each fault type, we can develop more realistic system models to design algorithms capable of handing

the various fault types. In this paper, we utilize the rationale of [2, 13, 15, 16, 19] and develop the

Customizable Fault/Error Model(CFEM), which considers mixed fault types (as selected/customized

by the user) along with the algorithms needed to tolerate such faults.

Under the CFEM, the set of all faults is partitioned into three disjoint classes based on fault e�ects:

non-malicious, malicious symmetric, and malicious asymmetric. Then, the type of algorithm required

to detect or mask the subset of faults that is assumed to occur is indicated as a function of the fault

type. This matching of fault type to algorithm is important in ensuring adequate, yet cost e�ective,

system fault coverage. If the fault tolerance techniques implemented do not support segregation and

handling of mixed faults, then the CFEM reverts to the single fault-type models, with no improvement.

Thus, existing fault tolerance methods must be extended to properly utilize the proposed CFEM. The

main di�erence between our CFEM based algorithms and existing fault models based algorithms is

our use of dynamic fault tolerance, based on the ability to detect certain types of faults locally. We

combine the bene�ts of the models assuming perfect fault detection with the increased coverage of the

more realistic models. An important contribution is the development algorithms that achieve consensus

(exact agreement) and convergence (approximate agreement) without the classically required condition

that all participants have the same number of values on which to vote.

The CFEM provides a framework which can be used to enhance the dependability of processes and

systems. The CFEM philosophy takes a practical view of faults and their e�ects on system operations,

recognizing that a system cannot tolerate unlimited set of faults, and that the fault tolerance techniques

implemented in a system play a large role in determining the covered fault-e�ects. Variations in the

probabilities of occurrence of di�erent faults, the severity of their e�ects, and the number of faulty

units which can be tolerated during di�erent phases of system operation are exploited to improve the

coverage provided by CFEM. The classical single fault-type instantiation is replaced by a fault-tuple,

chosen (or customized) by the user, representing the set of fault-e�ects of varied severity which may

exist concurrently in the system, and are chosen to be protected against. The fault resiliency of critical

system functions such as synchronization, data voting, and other consensus-based operations is also

improved through the consideration of CFEM.

Contributions

The contributions of this paper are developed over the following Sections. In Section 2, we present the

distributed system models, review existing fault taxonomies, and present the basis for the CFEM based

fault/error classi�cation. Sections 3 and 4 focus on developing the theoretical framework to support

CFEM. Section 3 develops the varied fault scenarios valid under CFEM and also presents a comparative

1A fault is the identi�ed or hypothesized cause of an error. An error is the manifestation of a fault, an undesired

state either at the boundary or at an internal point in the system or process. A failure is the inability of the system or

component to provide the speci�ed service caused by an error.

2

analysis of the CFEM enhanced fault handling capabilities compared to classical fault models. In

Section 4, the requisite fault tolerant voting functions supporting CFEM are developed. In Section 5 we

present the formal framework and analysis in CFEM's providing the fundamental distributed services

of consensus and convergence. We summarize and discuss the impact of our contributions in Section 6.

2 Fault/Error Models in Distributed Systems

System Models

For simplicity of discussion, we adopt a generalized system model, although the CFEM and the

other fault models are applicable to a variety of system models such as synchronous, asynchronous,

full/partial connectivity etc.. A system is comprised of a set of nodes. Nodes communicate by exchanging

information (messages) across links, with a bounded delay assumed for message generation, delivery and

processing. We use the terms \system," \nodes," \links," and \messages" in an abstract sense, because

some type of information exchange often exists between a node and its components, or between a process

and its subprocesses.

We assume a fully connected system consisting of nodes which communicate using synchronous

message passing, with an upper bound on the time required for a node to generate and send a message.

Individual nodes make decisions and compute values based on information received in messages from

other nodes. The status of a node, faulty or good, is discerned by other nodes through the contents of

messages originating from the target node, or through the lack of an expected message from that node,

i.e., nodes monitor the messages from other nodes to infer the presence of a fault-e�ect. As in [16]

and [8], a non-faulty node can always identify the sender of a message it receives and can detect the

absence of an expected message. The system fails when consistent decisions or computations across the

system are no longer possible.

In our assumed system model the \fault
oor" is at the node level. That is, regardless of how many

failed components exist in a given node, only the node's fault status, as viewed by other nodes, is of

interest in determining the system fault resiliency.
2

Since the system design objective is to provide

continual correct service, we focus on faults which may a�ect distributed computation of critical system

functions. As described in subsequent sections, the CFEM framework is based on classi�cation of faults

based on each node's analysis of inter-node communications. Membership in the fault-e�ect classes is

determined by the system topology and by the fault tolerance methods implemented in a speci�c system.

This linking of fault-e�ects to the methods implemented (or required) to tolerate them is unique to the

CFEM.

2.1 Existing Fault Classi�cations

A fault is classically de�ned as the cause, real or perceived, of errors which can lead to failure. Much

e�ort has been expended and many taxonomies have been proposed to capture the important attributes

of faults. Laprie [9] classi�es faults according to the attributes of nature (accidental or intentional); cause

(physical or human-made); location (internal or external); phase of creation (design or operational); and

persistence (permanent or temporary). The fault attributes of Laprie have been augmented to include

activity (active or dormant) and value (stationary, non-stationary) [1]. This taxonomy is useful in

identifying faults to be removed during the design and testing process.

2Link failures are not directly addressed in this model, but are ascribed to the perceived sender of the message. However,

the fault
oor could be extended to node and link failures if desired.

3

Arbitrary

Timing

Omission

Crash

Fail-Stop

Figure 1 Onion Fault Model

While these are classi�cations and attributes are important and commonly used in the literature, they

do not furnish all the information about faults that is required by the designers or assessors of a system.

They provide insuÆcient indication of the types of faults that can occur in a given system, or how to

avoid, detect, or tolerate the faults. It is assumed that the classes within each attribute are disjoint; so,

for a given attribute, a speci�c fault in a speci�c system can belong to exactly one class. However, if the

same type of fault occurs in two di�erent systems, it is possible for the fault to be classi�ed di�erently in

the two systems with respect to a given attribute. Such fault classi�cation ambiguity can arise because

the systems in which the fault occurs can have vastly di�erent requirements. For example, a fault lasting

a few seconds might be suÆcient for a fault handler in one system to diagnose a permanent fault and a

temporary fault in another. Di�erences can also occur due to the location of the fault in the systems,

how long the fault is active relative to the time scale (mission time) for each system, the technology

used to construct each system, the assumed system environment, and other related factors.

A di�erent approach based on the use of failure semantics for dependable systems with real-time

constraints and responsive systems[12] is the onion model [4, 3]. Figure 1, taken from [4], shows the

relationships among the �ve potential failure modes of the onion model, given in increasing order of

severity: fail-stop, crash, omission, timing and arbitrary. Under the fail-stop assumption, a component
3

fails by ceasing execution; no incorrect state transition occurs, and all other good components can

detect this failure. A crash or fail-silent mode is identical to fail-stop, except that detection by all

good components is not guaranteed. An omission mode occurs when a component fails to respond

to an input, perhaps undetectably to some components. A functionally correct, but untimely response

corresponds to a timing fault. Any other mode of behavior is classi�ed as an arbitrary fault. The

more restricted the assumed fault mode, the stronger the assumed failure semantics. Thus, weak failure

semantics correspond to little restriction of the behavior of a faulty component. Note also in Figure 1

that the containment relationship among the di�erent classes is such that limiting the failure semantics

of a host to, say, timing, means that the host can fail in any of the modes subsumed: fail-stop, crash, or

omission. The onion fault model fails to capture the notion of a system comprised of nodes, and does

not aid in ensuring that correct system operations are sustained in the presence of a node failure. The

focus of this model on abstract and high level faults limits its coverage of data faults. It is to address

such limitations of exiting fault models that we propose the CFEM.

3In this context, the term component may refer to hardware, software, or a combination of the two.

4

2.2 The Customizable Fault/Error Model Taxonomy

The CFEM is a model that focuses on runtime fault-e�ects and the methods associated with tolerating

them. We do not attempt to deal with all possible fault occurrences speci�cally but rather form classes

determined by the potential fault e�ects. Faults classi�ed using other taxonomies can be mapped into

the classes of the CFEM framework. The CFEM fault classes are determined by the fault-tolerance

techniques (detection and masking) implemented in the system and the system topology. Under the

CFEM, node faults are classi�ed according to the ability of the system to tolerate their e�ects. At the

highest level, the set of all faults is partitioned into tolerable and intolerable faults according to their

e�ects.

Intolerable fault-e�ects are faults whose e�ects cannot be detected, masked, or otherwise tolerated

by the system quickly enough to prevent them from causing a loss of service or improper service with

consequences greatly exceeding the bene�ts of proper system service. Design faults, generic faults,

common mode faults, physical damage faults and other catastrophic faults that immediately render

much of a system useless would be categorized as intolerable. In some applications, it may be necessary

to distinguish among di�erent types of intolerable faults. Some fault e�ects are intolerable because no

technique could possibly mask or detect them; faults that destroy substantial portions of the system fall

into this category. Other fault e�ects are intolerable because they are uncovered by design or attrition.

That is, the system fault model incorrectly assumes that such faults will not occur and the chosen system

fault handling functions do not cover that type of fault; or, an otherwise covered fault is not handled

because enough system resources are not available to mask or detect it. Since it is impossible to model

or predict the occurrence of such faults, perfect fault coverage to a few non-coincident non-catastrophic

faults is assumed, with the probability of catastrophic faults assumed to be very small.

Tolerable fault e�ects, or covered fault e�ects are the ones of direct interest to us in establishing

the CFEM. We �rst present the detection setup in a node on which the CFEM is based. As shown in

Figure 2, when an error from a faulty node is detected by some non-faulty node, the sending node is

identi�ed locally as potentially benign. All good nodes must agree on this local judgment for the fault

e�ects to be classi�ed as benign. The instantaneous classi�cation of all faults requires the globally om-

niscient view in Figure 2. In practice, distributed information distribution and dissemination techniques

are used to approximate the global view in the presence of potentially malicious faults [18, 19].

In the CFEM, all fault classi�cation is based on (1) Local-Classi�cation of fault-e�ects to the extent

permitted by the fault-detection mechanisms built in at the node level, and (2) Global-Classi�cation

based on nodes exchanging their local-classi�cation with other system nodes to develop a global opinion

on the fault-e�ect. We now describe in greater detail the rationale behind the individual classi�cations.

The CFEM classi�cation[19] begins with the examination of the possible fault states created by the

dispersal of information. In the abstract, we can assume that when a node transmits information,

two general cases are possible as illustrated in Figure 3: (a) all receivers obtain the same information

i.e., messj (symmetric dispersal), or (b) receivers obtain di�erent information i.e., messj and mess
0

j

(asymmetric dispersal). This abstraction is suÆcient since we are primarily concerned with maintaining

consistency and these two possibilities re
ect whether it is preserved or not.

The second aspect of the CFEM is based on extent of the fault-e�ect as created by the faulty source

and the way in which it has propagated its e�ects. If an individual node is suÆcient to detect the

error from an incoming message, we classify this case as a benign sender fault since the fault-e�ect is

locally detectable at the receiver. On the other hand, there are situations that require multiple nodes to

exchange their syndrome information with each other in order to provide accurate diagnosis, i.e., globally

detectable. For these cases, the values in a message appear to be plausible locally at a node; however,

they can only be veri�ed with a multiple exchange of information. After the exchange is completed, the

5

Mechanisms
Detection

Receiver NODE
Incoming Message from SENDER

to obtain determination on fault intent (benign or malicious)
and on fault scope (symmetric or asymmetric)

Requires global exchange with other nodes

Correct and/or
Potentially Malicious Values

Locally Detected Faults
(potentially benign Sender fault)

- range violations
- early/late/missing msg
- bit garbling

Local Fault Perspective (Receiver Node Forms Opinion About Sender’s Fault Status)

Figure 2 CFEM Fault Classi�cation Basis

node_i

node_j node_k

node_i

node_j node_k

mess_j mess_j mess_j mess_j’

globally detectablelocally detectable

Benign

Benign Value

Value
(arbitrary faulty)

(a) symmetric communication (b) asymmetric communication

symmetric
communication

asymmetric
communication

Figure 3: CFEM Fault Space (communication symmetry vs. detectability)

6

plausible value may be determined to be value-faulty.

As an example, consider the acceptable range of the value contained in a message to be [0,100], with

the expected correct value of 50 in a message. A node accepts a message without registering any fault

as long as the value is within [0,100]. If a faulty node sends values 30 and 70 as values in the messages

(instead of the correct value of 50) to the other two nodes, both of these messages are within the

acceptable range [0,100], thus these erroneous values are not locally detectable at the receiving nodes.

Only when the two receiving nodes exchange (or distribute) their received message values of 30 and 70

respectively with each other, does the asymmetric nature of the faulty values comes across i.e., global

detectability of value-faults.

Figure 3 summarizes the speci�c cases covered by the CFEM. The vertical axis re
ects the pos-

sibilities for information dispersal and the horizontal axis represents the types of detectability. The

fault-e�ects are represented by the table entries and consists of two major types covered in each vertical

column: benign and value faults. The benign faults can be dispersed in a symmetric or asymmetric

manner; however, these faults are detectable by all non-faulty nodes with fault detection mechanisms

implemented locally. Any detectable fault in a message will result in the sender being classi�ed as locally

benign faulty (B), by the receiver. The rightmost vertical column of the table covers value faults which

are the locally undetectable class of faults. Messages which pass all data validity and range deviance

checks, but provide a valid but incorrect value constitute value faults. Since the e�ect of these faults are

dependent on the type of information dispersal, we have the sub-cases of symmetric-value faults, (S),

and asymmetric-value faults, (A),. The asymmetric-value fault is equivalent to the case of a Byzantine

fault and is also referred to as the arbitrary fault case.

The set of all tolerable faults, F , can be written as the union of three disjoint sets, giving B [S [A,

with the symbols corresponding respectively to benign, symmetric and asymmetric malicious faults.

To accurately represent the single fault-type models, the set of benign faults, B, can be split into two

disjoint subsets: benign symmetric faults (BS), and benign asymmetric faults (BA).
4

The CFEM re
ects the behavior of the system in the presence of di�erent node faults, when used

in the system analysis phases, with each fault type mapped into one of the four disjoint classes. A

fault e�ect classi�cation captures the set of fault e�ects handled by the fault tolerance techniques

implemented in the system. In the system design phase, the CFEM thus facilitates the selection of

the fault tolerance methods to be used in the system. The potential fault e�ect classes are derived

from alternative repartitionings of the total fault set, achieved by changing the set of fault detection

and masking methods implemented in the system. The process of classifying a speci�c fault into a

distinctive fault-e�ects category is termed as fault transformation, and it can enhance the system fault

coverage by transforming initially intolerable faults into tolerable faults, or arbitrary faults into benign

faults. The fault e�ect classi�cation is then re-evaluated following the implementation of additional

fault detection or masking techniques.

As mentioned earlier, the classi�cation of non-catastrophic faults in the CFEM is a function of the

fault tolerance techniques implemented in the system. If suÆcient fault coverage and system reliability

cannot be demonstrated by a given design, additional fault tolerance techniques can be used to increase

the covered fault set or system reliability. For example, in a simplex system with no node or information

redundancy, all faults are catastrophic. If information redundancy in the form of error detection and

correction codes is used, then formerly catastrophic faults that cause errors which can be masked or

detected by these coding procedures are transformed into benign faults.

4While crash faults are most often benign symmetric, with all non-faulty nodes able to detect that a node has

crashed,range faults can be either symmetric or asymmetric. So, they are not included explicitly in this partitioning,

but are restored when all benign faults are considered as a single class.

7

Similar transformations are also possible among the more severe fault types. For example, in a system

of N nodes in which the hybrid symmetric scenario applies, suppose that the only benign faults which

can be detected are checksum and missing messages. If a faulty node sends di�erent values to di�erent

nodes, where each value is out of the range of correct values, the initial system may fail due to an

uncovered asymmetric value fault, which is a catastrophic fault. However, if a range check is added to

the fault detection techniques implemented in the node, that potentially uncovered catastrophic fault is

converted to a benign fault. Thus, the covered fault set for any of the scenarios can often be extended by

implementing additional fault detection methods which transform potentially catastrophic faults into

benign ones. The addition of extra system nodes can also be used to transform some catastrophic faults

into hybrid faults, in the case where the system fails due to resource exhaustion. The bene�ts of fault

transformation are addressed in further detail in the next section.

3 CFEM: Implications and Comparisons With Classical Fixed Sever-

ity Fault Models

We demonstrate the bene�ts of the CFEM approach by examining possible solutions to a given design

problem. We will present results for the general case, and then apply them to the following example.

As discussed in the previous section, a system using only active redundancy techniques is capable of

detecting benign faults from set B.

However, if an (uncovered) malicious value fault from set A[S occurs, system failure is likely to occur.

When only non-iterative passive redundancy techniques, such as majority or fault-tolerant midpoint

votes, are implemented, symmetric faults from the set S = BS [S are masked, but the occurrence of

asymmetric faults from set A = BA [A can cause the system to fail. The use of interactive consistency

and interactive convergence algorithms ensures all non-catastrophic fault types are covered, since such

algorithms mask arbitrary faults, i.e. all faults in F .

We continue to assume a synchronous message passing system of N identical components or processes,

called nodes, where the only evidence of a faulty node is an error in a message from that node. A good

node is expected to collect information from other nodes and to arrive at a local decision that is

consistent with the decisions of all other good nodes. A good node may also need to compute a local

value within a prespeci�ed range of the values of other good nodes. We address the issue of usage of

the consistent local values computed by good nodes in the next section.

Based on the assumed system fault model, the fault handling techniques implemented in the system,

and the resulting fault resiliency, we derive characteristics of system consensus operations. We discuss

variations in the assumed fault models, coverage parameters, and the fault resiliencyWe assume a system

of N nodes capable of sustaining f faults. The number of faults, f , can be written as f = fA+ fB + fS

where fA is the number of faults from A, fS is the number of faults from S, and fB is the number of

faults from B; any of these parameters can be �xed at zero by the assumed system fault model.

A system required to be Fail Op/Fail Op/Fail Safe, should remain operational after two non-

coincident faults of any type, and should degrade to a prede�ned safe state following the third fault.

Implicit in this speci�cation is that the fourth fault, regardless of its scope, symmetry, or malice, leads

to immediate system failure. While \perfect fault coverage" refers to coverage of non-catastrophic or

hybrid faults, if a working (not failed) system contains too many faulty nodes, the next fault might

cause system failure, no matter what e�ects it may have had in a system with fewer faulty nodes. So,

the class of catastrophic faults also includes faults which cause system failure by exceeding the system

fault resiliency. The hybrid fault model scenarios provide limits on the number and types of faults that

can be tolerated by a given node set according to the fault tolerance techniques implemented in the

8

system. As mentioned earlier, if the available resources are not adequate to meet the system depend-

ability requirements, additional fault tolerance techniques and resources can be used transform faults

from one class of the CFEM to another, potentially improving the system reliability and fault coverage.

3.1 CFEM and Classical Fault Models: Fault Scenarios, Fault Coverage and Fault
Resiliency Comparisons

Many system design approaches assume perfect coverage to a given fault set. Then, an algorithm is

chosen which tolerates the worst case faults in that set. As we shall see, this results in either overly

optimistic or pessimistic models when the perfect fault assumption is relaxed, as it must be when the

system implementation is completed. Since anecdotal evidence suggests that faults in B are the most

common, with faults in S less common than those in B, and faults in A the least common of all, the fault

assumptions made in a given system can be used to evaluate the impact of implementing the di�erent

CFEM fault scenarios presented below.

The key to the usage of the CFEM is to be able associate the proper CFEM supported algorithm with

the assumed system or node fault set. For example, if the node set to be covered contains asymmetric

faults, then a CFEM consensus or convergence algorithm should be implemented. The fault tolerance

algorithms required by the CFEM along with the supporting voting functions are those developed in

Sections 4 and 5. We do emphasize that the main di�erence between these scenarios and the single fault-

type models is their treatment of benign faults. Unlike earlier models, the CFEM and its algorithms

take advantage of a good node's ability to recognize missing or garbled messages, message tampering

and other crash or range faulty behavior. The notation CFEMX is used to indicate that the scenario

assumes that the worst case faults are in set X , where X 2 fB;S;Ag. The total number of faults

which can be present in the system simultaneously is given by f = fA+ fS + fB. The faults could have

been sequential, near coincident, or coincident, but under static redundancy management, all the faulty

nodes remain in the system. For the system to maintain correct operation, the number of nodes, N ,

and the number of faults f , must satisfy the conditions speci�ed in the scenario below that corresponds

to the system implementation. If the number of faults exceeds the limit of f , then the fault scenario

in which f is exceeded is a catastrophic fault. Thus, the set of catastrophic faults includes those faults

that cause system failure because they exceed the fault resiliency of the system.

We next present a brief overview of the classic single fault-type model scenarios, and the CFEM

scenarios which supersede them. We present the resiliency of these scenarios in terms of the total number

of faults, t, concurrently in the system. We do not address the various combinations of sequential and

coincident node faults that could result in t faulty nodes. For simplicity, we present a limited version of

the CFEM. The full CFEM scenarios are more
exible than those described below, because they also

permit the minimum number of good nodes required for system operation to be speci�ed. For example,

as described below, both benign fault scenarios require N � t+ 1 nodes to tolerate t benign faults. A

more detailed treatment of the CFEM scenarios gives N � t+ �B+1, where �B is �xed according to the

minimum number of nodes permitted in an operating system. Comparable parameters �S and �A are

de�ned for CFEMS and CFEMA. However, the minimum values of these parameters are adopted in

the remainder of this section. Having de�ned single fault-type and CFEM scenarios, we next compare

the numbers and types of faults tolerated by each
5
. Since the classi�cation of faults under the CFEM

scenarios depends on the fault detection and masking methods implemented in the system, the potential

for improved system reliability using fault transformation. Fault transformation can be done by adding

detection methods, as well as by the addition of extra nodes. The minimum number of nodes required

5The combined results appear in Table 5

9

fS 0 1 2 3 4 5

NS 2 3,4 5,6 7,8 9, 10 11, 12

Table 1 Fault Resiliency Under the Symmetric Fault Scenario CS

to maintain correct operation in the presence of a given number of faults is called the resiliency of

the system. The fault set and detection algorithms corresponding to CFEMB of the hybrid model are

identical to those of the benign fault set B; therefore, they share the same resiliency. However, both

CFEMS and CFEMA di�er in resiliency from CS and CA, because their covered fault sets di�er.

Classic Benign (CB) and CFEM Benign (CFEMB) Fault Scenarios

In these scenarios, the only fault-tolerance functions implemented are fault detection mechanisms. Thus,

under the CFEM, the set of covered faults is B, i.e., the set of faults which can be detected by each

nodes. Any faults which can not be detected by those algorithms are, by de�nition, intolerable. Suppose

all good nodes either detect an error in a message sent by a faulty node, or fail to receive an expected

message. All nodes adopt the prede�ned default value as their local value for that node, and will thus

agree on the fault status of the sender, without any further exchange of information. In this case, the

fault is benign, because all good nodes can detect its occurrence. Thus, all local views are consistent

with the global view. This is the behavior assumed in both the classic single fault-type scenario, CB,

and the CFEM benign scenario, CFEMB. Both scenarios assume perfect coverage to all faults in B,

with N � t + 1 nodes required to detect t faults in B. The only di�erence between these scenarios

is in the default value adopted when a faulty node is detected. Under CFEMB, the adoption of a

default value, E , distinguishable from a correct value, when a message error is detected, allows that

value to be ignored in future computations. The potentially correct or boundary default value adopted

under CB may skew future computations. Note that system failure may occur if a malicious value or a

catastrophic fault occurs.

Under CFEMB, all faults in B are covered. CFEM based active redundancy algorithms and at least

NB nodes are required to tolerate fB benign faults, where NB = fB + (�B + 1). The parameter �B is a

�xed index, dependent upon the desired fault coverage, where (1+�B) is the minimum number of nodes

required for the system to remain operational.

Classic Symmetric (CS) and CFEM Symmetric (CFEMS) Scenarios

To handle symmetric malicious faults in CS , the established results appearing in literature necessitate

NS = 2fS + 1 as the minimum number of nodes required to tolerate fS symmetric faults. So, the

resiliency of a system using this fault model (and an appropriate non-iterative passive redundancy

algorithm) is given by NS , with all faults treated as if they were symmetric malicious faults. A system

with three or four nodes can tolerate at most a single fault. A system with �ve or six nodes can tolerate

at most two faults. Table 1 summarizes the resiliency for di�erent values of NS .

For the CFEM, faults in B
S
S are covered using hybrid non-iterative passive redundancy algorithms.

At least NS = (fB + fS) + (�S +1) nodes are needed to tolerate (fB + fS) faults, where Smax = bNS�1
2

c

and fS � Smax. If operation in the presence of only one non-faulty node is possible, then �S = Smax.

Otherwise, �S � Smax if at least (�S + 1) good nodes are required.

Under CFEMS , not all faults are assumed to be the worst case symmetric malicious faults; so, a

system using this model and the appropriate CFEM fault-tolerant voting functions (Sec. 4) will tolerate

more faults than the previous model. We have NS , is given by NS = 2fS + fB+1. A set of three nodes

10

fS 0 1 2 3 4

fB

0 3 5 7 9

1 2 4 6 8 10

2 3 5 7 9 11

3 4 6 8 10 12

4 5 7 9 11 13

5 6 8 10 12 14

Table 2 Fault Resiliency Under CFEMS .

Unlike Table 1, the combination of fB and fS tolerated by a given N (table entries) are indicated.

r fA NA

1 0 3

1 1 4,5,6

2 2 7,8,9

3 3 10,11,12

Table 3 Fault Resiliency Under Arbitrary Fault Model (CA)

can now tolerate either two benign faults or a single symmetric malicious fault. Four nodes can tolerate

three benign faults or one symmetric malicious fault and one benign fault. The resiliency NS is given

in Table 2, with the entry corresponding to row fB and column fS giving the number of nodes (NS)

needed to tolerate fS symmetric malicious and fB benign faults.

Classic Arbitrary (CA) and CFEM Arbitrary (CFEMA) Fault Scenarios

Under the assumption of all arbitrary faults in CA, we have NA = 3fA + 1 as the resiliency for fA

faults in A. A minimum of four nodes is required to tolerate a single fault with a single rebroadcast

round (r = 1). Seven nodes and an additional round of rebroadcast (r = 2) are required to tolerate two

faults, and so on. Thus, there is no bene�t under this model to adding an additional node above the

minimum, because no more faults can be tolerated by adding only one node. In fact, the overall system

reliability will decrease, because there are more nodes which can fail. Increasing r increases the number

of messages which need to be exchanged exponentially. Table 3 depicts the number of faults tolerated

by a given number of nodes for given values of r.

For the CFEM, the fault set is B
S
S
S
A; so, all possible CFEM faults are covered. A minimum of

NA = (2fA + 2fS + fB + �A + 1) nodes is suÆcient to tolerate (fA + fB + fS) faults. The maximum

number of faults in A that can be tolerated is Amax = bNA�1
3

c with fA � Amax, �A � Amax, and at

least (�A+1) good nodes assumed to be necessary for the system to remain operational. If a consensus

algorithm with r rounds of rebroadcast is used, then the further restriction of fA � r is also necessary.

For interactive convergence, �A = fA, i.e., �A relates to r correspondingly.

Under the CFEM for CFEMA, using a CFEM based interactive consistency algorithm such as

HOM(r), we have NA = 2fA + 2fS + fB + r + 1, as demonstrated in Table 4, with NA for di�erent

values of fB, fS and fA given by the corresponding table entry. Increasing the number of processors

without increasing r thus permits more benign and symmetric malicious faults to be tolerated.

For interactive convergence algorithms, the resiliency under the usual arbitrary fault model is identical

to that shown in Table 3. Under CFEMA of the CFEM model, the resiliency for interactive convergence

algorithms is that shown in Table 4 for r = 1. Tables 5 and 6 summarize the composite fault-set resilience

11

r = 1

fA = 0 fA = 1

fS = 0 fS = 1 fS = 2 fS = 3 fS = 0 fS = 1 fS = 2 fS = 3

fB = 0 4 6 8 4 6 8 10

fB = 1 3 5 7 9 5 7 9 11

fB = 2 4 6 8 10 6 8 10 12

fB = 3 5 7 9 11 7 9 11 13

fB = 4 6 8 10 12 8 10 12 14

fB = 5 7 9 11 13 9 11 13 15

fB = 6 8 10 12 14 10 12 14 16

Table 4 Fault Resiliency of a CFEM System Under CFEMA

For a given node size N (table entries), the X and Y co-ordinates combine to depict the combination of fB + fS + fA
tolerated under CFEM

Nodes: N 2 3 4 5 6 7 8

CB 1 2 3 4 5 6 7

CS 1 1 2 2 3 3

CA 1 1 1 2 2

CFEMS (� 2; 0; 0) (� 3; 0; 0) (� 4; 0; 0) (� 5; 0; 0) (� 6; 0; 0) (� 7; 0; 0)

(0; 1; 0) (1; 1; 0) (� 2; 1; 0) (� 3; 1; 0) (� 4; 1; 0) (� 5; 1; 0)

(0; 1; 0) (0;� 2; 0) (1; 2; 0) (2; 2; 0) (� 3; 2; 0)

(1; 2; 0) (1; 3; 0)

(0;� 3; 0)

CFEMA (� 2; 0; 0) (� 3; 0; 0) (� 4; 0; 0) (� 4; 0; 0) (� 5; 0; 0)

(0; 0; 1) (1; 1; 0) (� 2; 1; 0) (� 2; 1; 0) (� 3; 1; 0)

(0; 1; 0) (1; 0; 1) (� 2; 0; 1) (� 2; 0; 1) (� 3; 0; 1)

(0; 1; 0) (0;� 2; 0) (0;� 2; 0) (1; 2; 0)

(0; 0; 1) (0; 1; 1) (0; 1; 1) (1; 1; 1)

(0;� 2; 0)

(0; 1; 1)

(0; 0;� 2)

Table 5 Classical and CFEM Covered Faults (The fault tuples are represented as (fB; fS ; fA))

o�ered by the CFEM for the various fault scenarios.

Unlike many existing fault models, the fault model scenarios presented in this chapter explicitly de�ne

the type and number of faults that can be tolerated by a system satisfying a speci�c scenario, as well

as the class of algorithms needed to tolerate those faults. The main di�erence between the CFEM and

other fault models is the inclusion of implementation information in designing a system's fault handling

resources. A fault may be manifested benignly in one system implementation, while another system

would view the fault as an asymmetric value fault. As we shall see subsequently, the increased precision

of the mixed fault-type view over the single fault-type view helps provide a more realistic estimate of

systems reliability.

4 Utilizing CFEM: (a) Fault Tolerant Voting Functions

So far, we have shown the
exibility of the CFEM in being able to handle sets of fault-e�ects of varying

fault severity as compared to existing �xed fault-severity models. However, before we can actually

utilize the CFEM facets in the system operations, we need to systematically develop voting functions

12

Scenario Assumed Redundancy Caveat

Coverage

CB B N � fB + 1 f 2 (A [S) not covered.

CS S [BS N � 2fS + 1 f 2 (BA [A) not covered.

CA A [S [B N � 3fA + 1 Multiple rounds of mes-

sages needed.

CFEMB B N � fB + 1 f 2 (S [A) not covered.

CFEMS B [S N � fB + 2fS + 1 f 2 A not covered.

CFEMA A [S [B N � fB + 2fS + 3fA + 1 Multiple rounds of mes-

sages needed.

Table 6 Attributes of N-Node Systems Under Classic and CFEM Assumptions

and algorithms which can support the CFEM. Fortunately, most of the existing techniques developed

to mask or to detect faults in redundant resources or components can be directly modi�ed to take

advantage of CFEM. We focus on forward-recovery methods which are designed to ensure continual

service in the presence of a limited number of faulty nodes. When combined with the appropriate

system assumptions, each of the techniques described below can be the basis for some consistency or

convergence operation.

Under the CFEM, each incoming message received by a node is examined for potential faults by

some set of detection mechanisms. Such mechanisms include sanity checks, formatting checks, and

error detection and/or correction codes. If no discrepancies are detected in a message, the message

contents may be correct or a malicious fault-e�ect may be present, or an intolerable (uncovered) fault-

e�ect may have occurred. At the local node level, no further fault type discrimination is possible.

If an error is detected, such as a framing, parity, or encoding fault, a missing message, or a range

violation, then we adopt a default error or status value, E , as the sending node's value. Under no

circumstances can E be an acceptable value, and it may di�er based on the data types of correct values

or on the type of algorithm in which the information is to be used. Without loss of generality, we

assume that the value E is greater than any permitted numerical data value.

Since each node performs local detection only, the adoption of E as a value means that a faulty

node with locally benign e�ects was detected. The detected fault could be a benign fault, with all good

nodes adopting E for that sender's message. Or, it could be an asymmetric malicious fault that sent

detectably erroneous messages to some, but not all, good nodes. Since the number of E values adopted

by two good nodes can legitimately di�er, standard fault masking algorithms must be extended. If no

nodes adopt the default error value, E , then the redundancy algorithms revert to the classic single fault

models.

4.1 Fault Handling Under the CFEM: Voting Functions

Voting functions which support CFEM have the generic structure of �ltering speci�ed numbers of error-

status values, E , to yield a consistent voted value. Thus, standard fault tolerant voting functions, such

as the majority or median, are extended to accommodate Customizable Fault/Error by applying an

exclusion function to the data value set prior to voting. We do mention that our intent here is to detail

the CFEM variations of the voting functions; the application of these voting functions is discussed in

the section of hybrid algorithms.

We �rst de�ne the �ltering function exclude(V), which takes a set V of N elements, fv1; v2; : : : ; vNg,

removes any error values, E , from V , and returns the set (V � E), containing (N � NE) elements. NE

represents the number of discerned E values. In the absence of benign faults (fB = 0), no elements are

13

excluded from the vote. The subsequent CFEM voting functions are based on the exclude() function.

Note that the functions in these sections are not suÆcient to mask faults in A which require iterative

algorithms such as the approximate agreement functions described later in Section 5. If an (uncovered)

asymmetric malicious fault occurs, all good nodes might not compute consistent values, and system

failure could result.

CFEM Majority Vote

A majority vote is typically used by each good node to compute a common �nal value for bimodal

values received from other nodes or input sources. For N� de�ned as (N �NE), the CFEM majority(V)

is given by:

majority(exclude(V)) =

(
v; if more than bN��1

2
c of the vi = v.

E ; otherwise.

The default value, E , returned when no majority exists, must be de�ned a priori and must be a

potentially correct value, to avoid introducing a fault into a fault-free scenario. Since the majority

function ignores bN��1
2

c elements, the composite function will be able to tolerate up to f faults, where

f = fB + b
(N�NE)�1

2
c.

CFEM Mean and Midpoint

The functions mean and midpoint are commonly used to average numerical data. The mean of n values

vi 2 V , for i 2 f1; : : : ; ng, is mean(V) = 1
p

Pn
i=1 vi:

The midpoint of n values vi 2 V , for i 2 f1; : : : ; ng, is the mean of extrema, with

midpoint (V) = 1
2
(mini=1;n(vi)+maxi=1;n(vi)), often called the mean of medial extremes or MME. Since

these functions are sensitive to extremal values, fault-tolerant versions are de�ned using the reduce

function, where, if V is a set of values to be voted on, t extremal values need to be removed [5], i.e.,

reduce(V; t) = fV g � fthe t largest and t smallest vig:

The CFEM fault tolerant mean and CFEM fault tolerant MME functions apply the mean and mid-

point functions to restricted subsets of values, where the restriction �rst removes the E values from

detected benign faults, then eliminates the extrema from the remaining elements using the reduce func-

tion, as de�ned in [5]. The number of extrema eliminated now depends on N� = N �NE , the number

of elements remaining after removing the fB benign fault values E .

CFEM fault tolerant mean(V) = mean(reduce(exclude(V); f(N�)))

CFEM fault tolerant MME (V) = midpoint (reduce(exclude(V); f(N�)));

with f(N�) = b
(N�NE)�1

2
c. Each function tolerates a total of f = fB+ f(N�) faulty elements. However,

since nE varies with the particular fault-set instantiation
6
, the value of the t assumed by the reduce

functions is not �xed. Thus, the number of items to be reduced by the reduce function is a based on a

run-time calculation of N�.

6.i.e., # of faults fB is not �xed

14

CFEM Median

The CFEM median consists of the median() applied after the exclude() function. For a set V of m

ordered values fv1; v2; : : : ; vng, where vq � vq+1;

CFEM median(V) = median(exclude(V)) =
(vi + vj)

2
;

where i = 1+ k, j = mE � k, and k = bN�NE�1
2

c. Since vq � E by de�nition, the excluded values E will

be the fB largest values. So, the elements remaining in VE after application of the exclude function will

be fv1; v2; : : : ; vN�NE
g:

5 Utilizing CFEM: Convergence and Consensus Functions

At this stage we have developed the CFEM fault scenarios and the associated primitives of fault tolerant

voting functions that are supported under the CFEM. We now switch to developing the functions of

distributed consensus and convergence that are essentially utilized in providing for dependable services in

generic synchronous distributed systems. Our intent here is to demonstrate that the CFEM can directly

provide for consensus and convergence operations which are
exible in terms of (a) covering combinations

of fault types, and (b) are not restricted by the classical assumptions of each node possessing identical

number of data elements. The latter property allows for these functions to provide additional
exibility

of fault handling in real, multiple fault scenarios.

When the system is required to tolerate at least one arbitrary node fault, interactive versions of the

previous fault masking algorithms are required. In this section CFEM versions of iterative algorithms

needed to assure consensus or convergence under the assumption of arbitrary fault e�ects are derived.

In these algorithms, each node has an initial value which it transmits to all other nodes. Each node

adopts a �nal value based on the values of all other nodes.

To ensure dependability, fault-free nodes are expected to make decisions and compute values consis-

tent with those of other good nodes, based on information received in the messages from other nodes.

Intuitively, the only condition necessary for the system to operate correctly is for good nodes to make

consistent decisions or to compute the same value (or values guaranteed to be arbitrarily close). The

system fails when consistent decisions or computations across the system are no longer possible. That

is, some type of consensus conditions, similar to those given in Table 7, must be satis�ed to guarantee

that good nodes will make consistent decisions or compute consistent values. While there are many

variations possible in stating the conditions needed to achieve exact agreement or approximate agree-

ment among distributed nodes [2, 5, 8, 10, 11, 13, 14, 16, 17, 19], the requirements for consensus (CS)

and convergence (CV) given in Table 7 are suÆciently general for our purposes.

Critical system functions must employ algorithms that achieve speci�ed agreement conditions in all

good nodes in the presence of faulty resources. Fault detection and masking techniques developed for

other fault assumptions are integrated with the CFEM in this section to enhance their resilience to

faults. System reliability estimates are then based on the relative occurrence probabilities of di�erent

fault e�ects and their impact on the consensus operation. Note that the behavior of a faulty node is

not constrained by this de�nition. Furthermore, if the sending node is faulty, it does not matter what

decision is reached by the good nodes regarding the faulty node's value, as long as they all agree. Third,

good nodes are not required to recognize which nodes are faulty.

15

CS: Consensus Conditions

EA (Exact Agreement): All good nodes will agree on the value received from the sending node.

EV (Validity): If the sending node is non-faulty, then the value used by the receiving node corresponds to the

sending node's value.

CV: Convergence Conditions

AA (Approximate Agreement): All good nodes' �nal values will be within a prede�ned range of each other.

AV (Validity): The �nal value of any non-faulty node is in the range of the initial values of all other good nodes.

value used by the receiving node corresponds to the sending nodes value.

Table 7 Consensus and Convergence Conditions

(Hybrid Oral Messages) HOM(r):

S1: The Transmitter sends its personal value, v, to all receivers.

S2: For each i, let vi denote the value that Receiver i gets from the Transmitter.

If r = 0, and either no value or an obviously incorrect value (out of range, failed check sum, etc.) is received,

Receiver i adopts E .

Otherwise, Receiver i adopts vi. The algorithm then terminates.

If r > 0, each Receiver adopts R(E), if an obviously incorrect or no value is received, and R(vi) otherwise. Each

receiver then acts as the Transmitter in Algorithm HOM(r�1) sending its personal value to the other N �2 nodes.

S3: For each i and j, with i 6= j, let vj denote the value Receiver i gets from sender j in S2 of HOM(r� 1). If no message

is received or vj is obviously incorrect (If the value Rk(E) is received, where k � r� l in S2 HOM(r� l), then that

too is recognized as an error, and E should be adopted). Receiver i adopts E for vj ; otherwise, vj is used.

Since all Receivers act as senders in HOM(r � 1), each Receiver will have a vector containing (N-1) values at the

end of HOM(r� 1). Receiver i adopts v = HOM maj(v1; v2; : : : vN�1) as the Transmitter's value.

Table 8 Algorithm HOM

Consensus under CFEM

The Hybrid Oral Messages (HOM) algorithm
7
, presented in Table 8 is an extension the oral messages

(OM) algorithm of Lamport, et.al. [8], which can be proven to satisfy the consensus conditions EA

and EV from Table 2.2.7 when certain conditions regarding the number and types of faults are met.

Algorithm HOM di�ers from OM algorithm, as it must deal with values corresponding to detected node

faults.

Algorithm HOM(r) assumes a �xed number of rebroadcast rounds, r, with fA � r. While detected

node faults will yield E values, a malicious fault can take on any value in W , where W is the set of

potentially correct values, without violating a range check. The function HOM maj(V), employed by

HOM(r), computes a consistent value from set of V The values in V can be a combination of correct

values from W , incorrect values from W , and values from the default error value set.

Within the algorithm, the value E is adopted when an obviously incorrect value or no value is

received from some node, say i, by another node, k. A node participating in HOM(r) may then need

7Variants of this algorithm have appeared earlier in [10, 19]

16

to indicate to node j that it recognized a fault in the original sender. However, since E is de�ned such

that no good node can send it as a correct value, the second receiving node will assume that node k

is faulty if it receives E from it, even though the E value is due to node i begin faulty. To remove this

ambiguity, the value R(E) is sent when a node recognizes an error in a message it receives. When r > 1

and a > 0, R
2
(E) � R(R(E)) is adopted and sent when a node receives R(E) from the transmitter,

R
3
(E) � R(R(R(E))) is adopted and sent upon receipt of R

2
(E) from the transmitter, and so on. If the

power k of R
k
(E) received by an node exceeds r, then the value is erroneous, and E should be substituted.

The use of the R() operator to enclose E also prevents information from good nodes from being ignored

when the E values are excluded in HOM maj below. Thus, the default error set is extended to include

(r) distinct error values, fE ; R(E); R2
(E); : : : Rr

(E)g, where R
0
(E) � E , R2

(E) � R(R(E)), etc. The

operator R() applied to a value, such as E , indicates that the sender of R(E) detected a locally benign

fault in a message it received, and adopted R(E) For any value x 2 W , R(x) = x. The inverse of the

R operator, R
�1

is also de�ned, with R
�1
(R(E)) = E , R�1

(R
k
(E)) = R

k�1
(E), and R

�1
(x) = x for

x 2 W . These additional values are needed to prevent a good node from being viewed as faulty for

passing on a message from a faulty transmitting node.

The function HOM maj is similar to the CFEM majority function de�ned earlier, except that it

recognizes elements from the extended error value set set fR(E); : : : Rr
(E)g as acceptable values. Given

a set V of k values, vi; : : : ; vk, HOM maj(V) is given by

HOM maj (V) =

8><
>:
E ; if all of the vi satisfy vi = E .

R
�1
(vE); if vE = majority(exclude(V)) exists, otherwise

v0; where v0 is a functionally determined value.

The provision which assumes E if all the vi are E can't occur on a good node. It is included to provide

a fail safe default value should that case occur on a partially faulty node. In [18], we prove that for

any r � 0, any fA � r, any fS � 0, and any fB � 0, Algorithm HOM(r) satis�es EA and EV for

� 2fA + 2fS + fB + r + 1.
8

Convergence under CFEM

As discussed previously, interactive convergence has been achieved if conditions AA and AV in Table 7

are satis�ed. In Table 9 we now describe the (non-terminating) synchronous
9
convergence algorithm

applicable under CFEM.
10
.

Before addressing the convergence properties of the CFEM convergence algorithm, we point out

major di�erences between this algorithm and the corresponding algorithms in [5, 20]. Nodes p and

q may receive di�erent values from asymmetrically faulty nodes. Thus, they may identify di�erent

numbers of faults as being in B, and the sizes of the sets Up and Uq need not be identical. The values

of f , fB, fS , and fA are �xed globally for a given execution of the algorithm. However, the non-faulty

nodes p and q are only required to compute consistent values in the presence of t faults, at most Amax

of which are in A. They are not required to agree on the global diagnosis of di�erent numbers and types

of faults.

Also, while t is �xed in other algorithms, the number of faults tolerated by Algorithm CV varies

with the numbers of faults of di�erent types. Once the values of nmax and �A have been chosen for the

scenario, all combinations of fA, fS , and fB faults that satisfy the scenario CFEMA assumptions of

nmax � 2fA + 2fS + fB + �A + 1, with fA � Amax, must be accommodated.

8A similar, mechanically veri�ed, proof of this algorithm appears in [10].
9An asynchronous algorithm appears in [2]
10The discussion of termination in [5] can then be applied under this framework, using the HOM algorithm.

17

Let f = fA + fS + fB be the number of faulty nodes present during a round of algorithm execution, with N � 2fA +

2fS + fB + �A1, where fA � Amax, fA 2 A, fS 2 S, fB 2 B, and Amax = bN�1
3
c. Let the function g be either

gA = CFEM fault tolerant mean or gM = CFEM fault tolerant MME . At each round, each non-faulty node p performs

the following steps.

S1: Node p broadcasts its current value vp to all nodes, including itself.

S2: Node p collects all values sent to it during that round into the extended multiset Vp. If p does not receive a feasible

value vq from each node q, or receives no value from node q, it adopts the value E .

S3: Node p excludes all error values E from Vp, giving Up = exclude(Vp).

S4: Node p computes its new value, v0 = g(Up).

Table 9 A CFEM Algorithm CV for Achieving Convergence

The following theorem states the convergence properties of Algorithm CV .

Theorem 1 Let nmax � 2fA+2fS+fB+�A+1, where Amax = bnmax�1
3

c, fA � Amax, and �A � Amax.

Let P be a synchronous approximation protocol in which each node executes Algorithm CV . Suppose

that T � S is a set of nodes, with jT j � nmax � t, and t = fA + fS + fB is the number of faulty nodes

present during the execution of round k of Algorithm CV .

Let C be a sequence of iterations or rounds of P , and let k be a round number. Let U be the multiset

of values held by nodes in T immediately before round k in C, and let U 0 be the multiset of values held

by nodes in T immediately after round k in C. Then,

1. If g = gM , then Æ(U
0
)
11 � Æ(U)=2.

2. If g = gA, then Æ(U
0
) � tÆ(U)=(nmax � 2t).

3. If g = gA or g = gM , �(U 0
)
12 � �(U).

The complete proof of this theorem is provided in the Appendix section. Basically the theorem

demonstrates that the range of values of non-faulty nodes decreases in each round by a factor dependent

upon the function g employed in the CFEM convergence algorithm. Thus, the algorithm will eventually

converge, proving AA, with AV applying at the end of each round. The termination properties of this

algorithm, discussed in [5], remain unchanged, except that a CFEM interactive consistency algorithm

needs to be employed to achieve consistent agreement on termination. Existing interactive convergence

algorithms, such as those in Welch and Lynch [20] and MAFT [7], can also incorporate the CFEM fault

taxonomy. A similar result has been derived for the asynchronous interactive convergence algorithm[2].

These interactive methods represent but a subset of the algorithms that need to be reexamined

under the assumption of CFEM faults. The exclusion of error (E) values prior to application of a

value selection function is relatively straightforward for non-iterative passive redundancy techniques.

However, the impact of exclusion upon interactive consistency and convergence algorithms is more

subtle, as evidenced by the diÆculties experienced in devising a correct CFEM algorithm that can

achieve the consensus conditions. The ability of asymmetric malicious faults to appear as locally benign

faults makes many of the interactive single-fault algorithms invalid because the exclusion of E values

may result in di�erent nodes having di�erent numbers of values to vote on to achieve the �nal value.

11Æ(U 0) = max(U 0)�min(U 0)
12�(U 0) = [min(U 0);max(U 0)]

18

6 Summary

In this chapter, we have presented the CFEM, in which faults are classi�ed based on their e�ects upon the

system and upon the fault handling techniques implemented in the system. Extending beyond the �xed

fault severity models (time-domain and data-domain, s-a-X, Byzantine faults), the CFEM framework

permits handling a continuum of fault types as groups of faults of varying fault manifestations under a

single algorithmic paradigm.

The diÆculties in classifying faults by attributes, independent of the system implementation, appli-

cation and environment, demonstrated the need for a fault taxonomy that captured system-dependent

e�ects. The fault e�ects taxonomy (CFEM), which partitions all faults into tolerable and intolerable

faults, addresses the need for a di�erent type of fault classi�cation. Having provided the CFEM and

algorithms, hybrid fault model scenarios were de�ned, to combine the covered hybrid fault classes with

the algorithms needed to tolerate them. The potential for fault transformation by adding more detec-

tion mechanisms, modifying the speci�ed fault scenario, or increasing the node redundancy was also

explored.

An important consideration in achieving the full bene�t of our hybrid CFEM fault theory to real

systems is the lack of existing experience in identifying and tolerating mixed fault types and fault

combinations. Many researchers have stated that benign faults are more probable than symmetric

value faults, which are more probable than asymmetric or Byzantine value faults. While anecdotal

evidence of the presence of arbitrarily malicious failures exists, there is still disagreement regarding how

best to protect against them, if at all. As the statistics of probability of occurrence of various fault

types are better documented, the utility of the CFEM increases correspondingly.

The CFEM approach discussed here is currently being applied to a new architecture solving a real

world problem. The architecture for a ship control system is being developed using these concepts. The

results have been very encouraging and have demonstrated e�ectiveness to date during the development

stage. The full utility of the approach will continue to be explored as the project progresses. The

ability to clearly formulate and test relationships, both of dependence and independence, has been very

useful in verifying and validating aspects of the architecture. A current research goal is to continue

to compile existing digital system experience and to develop new error extraction guidelines and fault

analysis techniques. This includes assessment of the e�ectiveness of existing fault detection and error

logging methods.

Overall we have shown that a more precise dependability model can be constructed, supported by on-

line diagnosis algorithms under a generalized hybrid fault model. We believe the integration of hybrid

CFEM fault theory into digital system design and validation will provide a greater understanding of

fault e�ects and the risks associated with uncovered faults.

Acknowledgment: We extend our acknowledgment to M. M. Hugue for the valuable inputs and

extensive discussions over this work.

References

[1] A. Avizienis and J.-C. Laprie, \Dependable computing: From concepts to design diversity," Proceedings of the

IEEE, vol. 74, pp. 629{638, May 1986.

[2] M. H. Azadmanesh and R. Kieckhafer, \New hybrid fault models for asynchronous approximate agreement," Trans.

on Computers, vol. 45, #4, pp. 439{449, April 1996.

[3] M. Barborak, M. Malek and A. Dahburra, \The Consensus problem in FT computing," ACM Computing Surveys,

vol. 25, pp. 171{220, July 1993.

19

[4] F. Cristian, \Understanding fault-tolerant distributed systems," Commn. of the ACM, vol. 34, pp. 57{78, Feb. 1991.

[5] D. Dolev et al., \Reaching approximate agreement in the presence of faults," in Proc. Reliable Distributed Systems,

pp. 145{154, Oct. 1983.

[6] L. Gong and P. Lincoln, \Byzantine agreement and authentication: Observations and applications in tolerating

hybrid and link faults," Proc. of DCCA-5, 1995.

[7] R. Kieckhafer et al., \The MAFT architecture for distributed fault tolerance," Trans. on Computers, vol. C-37,

pp. 398{405, April 1988.

[8] L. Lamport et al., \The Byzantine generals problem," ACM Trans. on Programming Languages and Systems, vol. 4,

pp. 382{401, July 1982.

[9] J. Laprie, Dependability: Basic Concepts and Terminology. Springer-Verlag, 1992.

[10] P. Lincoln and J. Rushby, \A formally veri�ed algorithm for interactive consistency under a hybrid fault model," in

Proc. FTCS 23, pp. 402{411, June 1993.

[11] N. Lynch et al., \A simple and eÆcient Byzantine generals algorithm," in Symp. on Reliability in Distributed

Software and Database Systems, pp. 46{52, July 1982.

[12] M. Malek, \A consensus-based framework for responsive computer system design," in Proceedings, NATO Advanced

Study Institute on Real-Time Systems, Springer-Verlag, October 1992.

[13] F. Meyer and D. Pradhan, \Consensus with dual failure modes," Trans. on Parallel and Distributed Systems, vol. 2,

pp. 214{222, April 1991.

[14] M. Pease et al., \Reaching agreement in the presence of faults," JACM, vol. 27, pp. 228{234, April 1980.

[15] N. Suri, M. M. Hugue, and C. Walter, \Reliability modeling of large fault-tolerant systems," in Proc. FTCS-22,

pp. 212{220, July 1992.

[16] P. Thambidurai and Y. Park, \Interactive consistency with multiple failure modes," in Proc. Reliable Distributed

Systems, pp. 93{100, 1988.

[17] R. Turpin and B. Coan, \Extending binary Byzantine agreement to multivalued Byzantine agreement," Info. Proc.

Letters, vol. 18, pp. 73{76, February 84.

[18] C. J. Walter, N. Suri and M. Hugue, \Continual on-line diagnosis of hybrid faults," Proc. DCCA-4, January 1993.

[19] C. J. Walter, P. Lincoln and N. Suri, \Formally veri�ed on-line diagnosis," Trans. on Software Engg., vol. 23, #11,

pp. 684{721, Nov. 1997.

[20] J. Welch and N. Lynch, \A fault tolerant algorithm for fault tolerant clock synchronization," Information and

computation, vol. 77, no. 1, pp. 1{36, 1988.

7 Appendix

The proof of Theorem 1 is detailed below. We �rst present the multiset terminology and subsequently

develop the proof.

20

7.1 Terminology

Our notation and de�nitions are similar to those used in [5]
13
. Let the �nite multiset U of real

numbers be a function U : R! N , which is nonzero on at most �nitely many r 2 R. The function U

assigns a �nite multiplicity to each value r 2 R. The cardinality of multiset U is given by
P

r2R U(r),

and denoted by jU j. A multiset is empty if its cardinality is zero. The di�erence of multisets, V �U , is

a multiset W , de�ned by

W (r) =

(
V (r)� U(r); if U(r)� V (r) � 0

0 otherwise.

The intersection U \ V of multisets U and V is the multiset W de�ned by

W (r) = min(U(r); V (r)):

The minimum of a non-empty multiset U , min(U) is de�ned by

min(U) = minfr 2 RjU(r) 6= 0g;

with the maximum, max(U), de�ned similarly. We denote the closed interval [min(U);max(U)] by

�(U), and let Æ(U) be the length of that interval, with

Æ(U) = max(U)�min(U):

The mean of the multiset U is de�ned by mean(U) =
P

r2R r � U(r)=jU j. The midpoint of the multiset

U is de�ned by mid(U) = [max(U) + min(U)]=2. If U is a nonempty multiset, we de�ne the multiset

s(U), obtained by removing one occurrence of the smallest value in U , to be the multiset W (r) de�ned

by

W (r) =

(
U(r); if r 6= min(U)

U(r)� 1 otherwise.

The multiset l(U), in which one occurrence of the largest value in U is removed, is de�ned similarly. If

we assume t is a �xed, non-negative integer, then if jU j � 2t, we can compute reduce(U; t) = s
t
(l
t
(U)).

We next formally de�ne the hybrid midpoint and hybrid mean functions in forms appropriate for this

discussion. Let U be a �nite multiset, and W be a �nite multiset over a set Q disjoint from the reals (

R \Q = ;), with W (q) = 0 everywhere in Q except at vB 2 Q.
14

The extended multiset V is then

given by V = U
S
W . We de�ne the fault-tolerant midpoint function gM to be

gM (U) = mid(reduce(U; t)). Similarly, the fault mean or averaging function gA is given by

gA(U) = mean(reduce(U; t)). Then, the hybrid fault-tolerant midpoint or hybrid MME is de�ned by

hfM (V) � gM (exclude(V)) � gM (U):

Similarly, we de�ne the hybrid fault-tolerant mean as

hf A(V) � gA(exclude(V)) � gA(U):

13The notation and concepts used in [20] are also developed from [5]
14The default error value vB should be treated as if it were not a real number, as it must be distinguishable from all

potentially correct values.

21

7.2 Essential Lemmas

The proof of Theorem requires the following lemmas, adapted from [5], under the assumption that not

all nodes vote on the same number of values. For completeness, all lemmas are stated, but proofs are

provided only when they di�er vastly from those in [5].

The �rst lemma shows that the number of elements common to two non-empty multisets is reduced by

at most 1 when either the smallest or the largest element is removed from each.

Lemma 1 Suppose that V and W are non-empty multisets. Then,

1. jV \W j � js(V) \ s(W)j � 1.

2. jV \W j � jl(V) \ l(W)j � 1.

The next lemma extends Lemma 1 to removing di�erent numbers of extremal values from two

multisets of potentially di�erent sizes. We adopt the notation tv � t(V), where

tv � min(Amax; b
nv��A�1

2
c), the maximum number of faults not in B that can be tolerated by nv � jV j

nodes under our assumptions, as derived for the reliability results in [15].

Lemma 2 Suppose V and W are two multisets with jV j � 2tv and jW j � 2tw, where tv � t and

tw � t. Then,

jV \W j � jreduce(V; tv) \ reduce(V; tw)j � 2max(tv; tw):

Proof: Applying Lemma 1, we have

jV \W j � jreduce(V;min(tv; tw)) [reduce(W;min(tv; tw))j � 2(min(tv ; tw):

Without loss of generality, assume tv � tw. Then, by Lemma 1, removal of the remaining tv � tw

smallest and largest values from V completes the result. 2

The proofs in [5] apply to the next pair of lemmas, except that we use tv to indicate that the lemmas

do not assume the global t value of the algorithm. Instead, the lemmas are valid for the maximum

number of faults in S [A that the (local) multiset of size jV j can tolerate under our assumptions.

Lemma 3 Suppose that k is a nonnegative integer, and U and V are non-empty multisets with

jV � U j � ktv, and jV j > 2ktv. Then,

�(reducek(V; tv)) � �(U):

Lemma 4 Suppose that U and V are nonempty multisets such that jU � V j � tv and jV j > 2tv.

Then, gM (V) 2 �(U).

Lemma 5 illustrates the value of the midpoint function in approximation. While the proof is identical

to that in [5], the implications of this lemma di�er because the multisets M and N need not have the

same cardinality.

Lemma 5 Let U , M , and N be non-empty multisets with jM \N j > 0, �(M) � �(U), and

�(N) � �(U). Then,

jmid(M)�mid(N)j � Æ(U)=2:

The following lemma provides the main result for the midpoint function.

22

Lemma 6 Let U , V , and W be non-empty multisets, with jV � U j � tv, jW � U j � tw, and

jV \W j > 2max(tv; tw). Then,

jgM (V)� gM (W)j � Æ(U)=2:

Proof: Let M = reduce(V; tv) and N = reduce(W; tw). By Lemma 2,

jM \N j � jV \W j � 2max(tv; tw);

and, by hypothesis, jM \N j > 0. By Lemma 3, with k = 1, �(M) � �(U) and �(N) � �(U). Applying

Lemma 5 yields the result. 2

The next three lemmas provide results for the mean function comparable to those for the midpoint.

Lemma 7 Let U and V be non-empty multisets such that jV � U j � t and jV j > 2tv. Then

gA(V) 2 �(U).

Lemma 8 Let U , M , and N be nonempty multisets, and m, n, and i be nonnegative integers such

that jM j = m, jN j = n, jM \N j � i, �(M) � �(U), and �(N) � �(U). Then,

jmean(N)�mean(M)j � Æ(U)
max(m;n)� i

max(m;n)
(1)

Proof: The result holds when m = n by Lemma 8 of [5]. It remains to prove for m 6= n.

Let L =M \N , M
0
=M � L, and N

0
= N � L. Then, we have

jmean(M)�mean(N)j =

����
P

r2R rM

m
�

P
r2R rN

n

���� (2)

If equation (2) is zero, we're �nished. Without loss of generality, assume thatP
r2R rM

m
�

P
r2R rN

n
> 0 (3)

and that n > m. Then we can rewrite the left hand side of expression (3) as

(n�m)
P

r2R rM

nm
+

P
r2R rM

n
�

P
r2R rN

n
(4)

Since n�m > 0, expression (4) is less than or equal to

(m� n)max(M)

n

P
r2R jM j

m
+

P
r2R rM

0 �
P

r2R rN
0

n

which is at most
max(M)(n�m)

n
+

max(M)(m� jLj)�min(N)(n� jLj)

n
(5)

>From expression (5), we can derive

max(M)(n� jLj)�min(N)(n� jLj)

n
(6)

By hypothesis, we have expression (6) less than or equal to

Æ(U)
n � i

n
(7)

23

Since we have n > m, expression (7) is equivalent to the desired result. The argument for n < m is

similar, and the proofs when P
r2R rM

m
�

P
r2R rN

n
< 0

are symmetric.2

Lemma 9 Let U , V , and W be non-empty multisets, with jV j = nv, jW j = nw,

jV \W j � i+ 2max(tv; tw), jV � U j � tv, and jW � U j � tw. Then,

jgA(V)� gA(W)j � Æ(U)
max(m;n)� i

max(m;n)
(8)

Proof: Let M = reduce(V; tv), m = nv � 2tv, N = reduce(W; tw) and n = nw � 2tw. By Lemmas 2

and 3, the hypotheses of Lemma 8 are satis�ed, yielding the result.2

Using these lemmas, we can now verify our main theorem.

7.3 Proof of Theorem 1

Let p and q be any two nodes in T. Let Vp be the initial multiset of values held by p after the

exclusion of nmax � np default error values vB , where jVpj = np and tp = min(Amax; b
np��A�1

2
c):

Similarly, Vq is initial multiset of values held by q after the exclusion of nmax � nq values vB, where

jVqj = nq and tq = min(Amax; b
nq��A�1

2
c): Since there are at most t faulty nodes, we have

jVp � U j � tp � t

jVq � U j � tq � t:

Furthermore, since Vp and Vq contain identical entries from non-faulty nodes, we have

jVp \ Vqj � n� t > 2t � 2max(tp; tq):

1. Sets U , Vp and Vq satisfy the hypothesis of Lemma 6. Therefore,

jgM (Vp)� gM (Vq)j � Æ(U)=2:

Since p and q were arbitrary, we're done.

2. By de�nition (maxq2T nq) � nmax and (maxq2T tq) � t. Let i = nmax � 3t and m = nmax � 2t.

Then, U , Vp and Vq satisfy the hypotheses of Lemma 9, and we conclude that

jgA(Vp)� gA(Vq)j � tÆ(U)=(nmax � 2t): (9)

Since p and q were arbitrary, the result follows.

3. Multisets U and Vp satisfy the hypotheses of Lemma 4 and Lemma 7. Therefore, gM (Vp) 2 �(U)

and gA(Vp) 2 �(U). Thus, p's value after round k is in �(U). Since p was arbitrary, all elements

of U
0
are in �(U).

2

Theorem 2 Algorithm CV achieves Approximate Agreement

Proof: Theorem 1 shows that the range of values of non-faulty processes decreases in each round by a

factor dependent upon the function g employed in Algorithm CV . Thus, the algorithm will eventually

converge, proving Agreement. Part 3 of Theorem 1 applies at the end of each round, ensuring that the

Validity condition is satis�ed. 2

As mentioned previously, the termination properties discussed in [5] remain unchanged.

24

