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Abstract

A reconfigurable fault tolerant system achieves the attributes of dependability of operations
through fault detection, fault isolation and reconfiguration, typically referred to as the FDIR
paradigm. Fault diagnosis is a key component of this approach, requiring an accurate deter-
mination of the health and state of the system. An imprecise state assessment can lead to
catastrophic failure due to an optimistic diagnosis, or conversely, result in underutilization of
resources because of a pessimistic diagnosis. Differing from classical testing and other off-line
diagnostic approaches, we develop procedures for maximal utilization of the system state infor-
mation to provide for continual, on-line diagnosis and reconfiguration capabilities as an integral
part of the system operations. Our diagnosis approach, unlike existing techniques, does not
require administered testing to gather syndrome information but is based on monitoring the
system message traffic among redundant system functions. We present comprehensive on-line
diagnosis algorithms capable of handling a continuum of faults of varying severity at the node
and link level. Not only are the proposed algorithms on-line in nature, but are themselves toler-
ant to faults in the diagnostic process. Formal analysis is presented for all proposed algorithms.
These proofs offer both insight into the algorithm operations and facilitate a rigorous formal
verification of the developed algorithms.
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1 Introduction

The goal of an effective fault tolerant system is to provide maximal sustained system dependability
at the lowest possible cost to the user. The ability to accurately diagnose and recover from faults
constitutes an important element in achieving this goal. In general, fault diagnosis has two primary
objectives: (a) to identify a faulty unit so as to restrict the effect of faults on the system operations,
and (b) to support the fault isolation and reconfiguration process with information concerning the
state of the system resources. The better the diagnostic resolution for identifying a fault and the
corresponding system state, the more accurate is the FDIR procedure, with minimal and highly
localized resources targeted for repair. This strategy results in efficient management of the system
resources, and the enhanced diagnostic resolution can help achieve lower repair costs (time latency
of fault recovery, cost of spares and fault handling, etc.). Also, if diagnosis and fault handling can be
done quickly there will be less exposure time to faults, reducing the likelihood of fault accumulation



that could eventually overwhelm the system’s fault tolerance mechanisms. Ultimately, when FDIR
is performed in conjunction with ongoing system operations, it translates to having more resources
available to sustain system operations in the presence of faults, thus prolonging the availability and
reliability of the system.

A variety of approaches have been proposed for system diagnosis — an excellent survey appears
in Barborak, Malek and Dahbura[l]. Most classical approaches vary on the theme of the original
Preparata, Metze and Chen (PMC) model[21]; requiring processors to conduct tests on other
processors, and subsequently interpreting the accumulated test results to determine the status of
a processor. However, for response critical systems and for covering faults of unrestricted severity,
the previously proposed methods have limited applicability. First, these methods are invariably off-
line techniques due to the extensive overhead incurred in collecting and interpreting the diagnostic
information. Second, each approach is based on a particular system and fault model (data-domain
or time-domain) which influences the amount of diagnostic resolution obtainable and determines
the achievable level of system dependability. Third, diagnosis is treated as an isolated objective in
the system and not as a continual and integral phase of the system operations.

Thus, our interest lies in considering two fundamental issues in fault diagnosis in distributed
systems, namely (a) developing new diagnostic approaches for covering sets' of faults of varying
severity including the extremal (and pessimistic) cases of arbitrary (Byzantine) faults, and (b) to
develop effective and formally verified on-line fault diagnosis and recovery strategies. For a better
perspective on these issues we provide a brief commentary on each.

Considering the issue of the nature of faults, a seminal paper in the area of diagnosis is the PMC
model[21] which studied diagnosability in distributed systems using explicitly administered tests.
The PMC approach and its variants consider a class of systems which can be partitioned into units
that are capable of testing each other. Unit-to-unit testing assignments are established to obtain
test syndromes, followed by an exchange of syndrome information across all units to get a global
picture of the system status. It is assumed that there is a bound on the number of potentially faulty
units and that the test syndromes obtained from a faulty unit are unreliable. Initial development
of the PMC model focused on permanent faults so that repeatable results could be relied upon
when any fault-free unit tested a faulty unit. Derivatives and subsequent work extended the fault
model to cover transient, intermittent and link faults. However, these approaches assume failures
only for a specified and distinct fault class. A very small number handle a combination of hard and
soft failures but still rely on administered testing[39]. For a detailed discussion and completeness
of references, we refer the reader to the survey article of Barborak, Malek and Dahbura[l]

However, our interest lies in developing algorithms which are capable of handling a wide range
of faults — from easily distinguishable fail-stop or other easily detectable faults to those of an
unrestricted nature — all within a common algorithmic framework, and on an on-line basis. Our
intent is to consider real system environments where faults come as progression or combination of
various types (transients, intermittent, arbitrary faults etc.) and not as convenient (and unrealistic)
single fault instances. We are interested in covering, both, a wider range of fault types and instances
of combinations of fault types appearing together.

The challenges and benefits for achieving high resolution diagnosis can be contrasted for both
the off-line and on-line environments. Each circumstance aims to accurately assess the state of

Linstead of the limitation of considering a discrete fault class in existing approaches.



the system resources. Off-line diagnosis procedures can only support identification of faulty units
needing repair, they cannot support reconfigurable fault tolerance since the results are not available
during active operation. A second problem is that transient or intermittent faults are not easily
reproducible in an off-line environment. Actual stress placed on the system during active operation
may be required to produce the fault, since it may be difficult to anticipate a test case or may
be too expensive to simulate off-line. Also, these procedures impose a latency between the fault-
occurrence and diagnosis phases, thus restricting the applicability of the diagnosis operations to
actual system operations. Off-line techniques also leave the system susceptible to subsequently
occurring faults in the time period the diagnosis for the prior fault occurrence is being addressed.
Furthermore, off-line techniques are often invasive rather than self-contained, requiring additional
resources to inject test sequences and monitor responses. It is worthwhile to mention that a number
of response critical applications, the time to conduct an off-line fault diagnosis and recovery for
transient /intermittent faults may simply be unacceptable.

Although on-line diagnosis has some clear benefits, it also has its challenges. The major chal-
lenge is to implement a procedure with high resolution that does not severely degrade the per-
formance of the system. Approaches, such as the PMC [21] model (and variations - centralized
and distributed), which need to explicitly schedule tests for obtaining syndrome information, are
too costly in this regard and are, thus, invariably off-line procedures. Other proposed methods,
such as comparison testing [28] also have their on-line shortcomings with the reliance primarily on
comparison of test results for fault detection and not complete FDIR.

1.1 Our Diagnostic Approach

Our overall approach and contributions cover two specific areas:

e We develop on-line algorithms on a progressive basis, i.e., each developed algorithm provides
coverage to a larger set of faults. The final algorithm achieves the capability of covering a
complete range of faults from benign fault to faults of an unrestricted nature - all within
the same algorithm. Furthermore, the algorithms are designed for flexibility to be directly
customizable for a chosen fault model in an application. Unlike the assumption in classical
approaches that diagnosis is conducted in a fault-free off-line environment, our algorithms
provide on-line diagnosis and are themselves tolerant to faults in the diagnostic processes.

e We develop a formalization of the specification and verification of each of the developed
algorithms. These algorithms are based on the interactive consensus approaches which have
been demonstrated through earlier work on formal techniques to be particularly complex to
analyze and susceptible to error in analysis. Thus, to provide a formal level of rigor in the
correctness of the proposed algorithms and also to offer insights into the algorithm operations
which arise from a rigorous formal analysis, we include formal verification of the algorithms
as an integral part of our contributions.

From a fault model perspective, the classic stuck-at-X (fail-silent, fault-stop etc) model which
assumes all faults to be benign and detectable usually results in overly optimistic evaluations. In
reality, faults which exhibit less predictable manifestations are frequently present. In contrast, the
Byzantine fault model assumes worst-case, unpredictable behavior for each fault occurrence. This



is a overly conservative model and results in a pessimistic assessment of dependability. The need,
and our intent in this paper, is to find a more realistic and flexible fault model and to demonstrate
its applicability in supporting generalized fault-diagnosis.

The majority of diagnostic approaches assume permanent faults to prevent syndrome ambigui-
ties due to arbitrary test results from a node with a transient or intermittent fault. Thus, they are
unable to handle Byzantine faulty nodes, which can send conflicting information to testing nodes.
In fact, it is shown in [31] that identification of a Byzantine faulty node is impossible using a single
round of test syndrome collection among the nodes. The authors in [31] do provide an off-line
algorithm to tolerate Byzantine faults. In [35, 36], we have presented an on-line diagnosis and
fault identification model that admits Byzantine faults. In [32, 36], we showed that using a more
flexible hybrid fault-effect model(HFM) allows dependability to be more precisely and realistically
evaluated for a given fault set? instead of a single fault type.

We deviate from the conventional fixed severity (both time-domain and data-domain) fault mod-
els to develop a composite and cohesive fault classification basis. Our model handles a continuum
of fault and error types, classified according to their impact on system operations. Although this
approach is shown to provide better assessments of operational indices, its practical usage requires
an on-line FDIR process. In this paper we present diagnosis protocols, developing on our previous
work[35, 36]. In [35], we demonstrated that different error types could be detected, focusing on
local detection primitives. We presented the basis for an on-line algorithm which handles mixed
fault types. One important feature shown was that this approach could be implemented with low
overhead. It was stated that in MAFT[37] the overhead was < 6% even though the algorithm exe-
cutes continually. This method allows diagnosis to be directed to identifying the cause of detected
errors and their impact on system resources. Also, understanding the cause and effect relationship,
allows the reconfiguration process to be properly guided.

Our initial classification of detectable faults as either benign or value faulty adopts a low-level
perspective on information flow in the system. Extending beyond that approach, we provide a
higher level classification from the standpoint of how detected faults affect the global state of
the system based on the fault-effects model. This reconciling of local views to a higher-level global
view is accomplished by first executing a distributed agreement algorithm to ensure consistent error
syndrome information and penalty counts. This agreed upon information is used in the diagnosis
phase by mapping low-level syndrome bits to high-level fault manifestation groups, such as benign,
catastrophic, value, crash and Byzantine, which match the dependability model. Thus, we show
that a more precise model for dependability can be constructed with significant benefits, supported
by the requisite on-line algorithms. Our approach does not treat diagnosis as a stand-alone function
but keeps it as an integral and continually on-going phase of system operations. Thus, the algorithm
is not scheduled, but uses the system communication traffic as test stimuli. If necessary, specific
tests can be run to handle episodic faults.

We detail our approach to the on-line diagnosis problem in an incremental manner where we
successively develop algorithms which expand and generalize the applicable fault models (Section
2.2). In Section 2.2.1 we extend the fault-models further to consider diagnosis under the Hybrid
Fault-Effects Model (HFM). Section 3, introduces our diagnostic approaches starting with a basic
system model termed PP which assumes the absence of links faults and considers only benign fault
occurrences. Sections 3 and 4 presents the diagnosis algorithm, and develop the perspective on

%j.e., a combination of various fault types



analysis of a diagnosis algorithm and also the process for formal specification and verification ap-
proaches for these diagnostic algorithms. After setting the analytical and formalization framework,
we extend the diagnostic approaches for varied fault models. The PP model is enhanced in Section
5 to include considerations of arbitrary operational behavior of the nodes and also the communica-
tion links in the PLP model. Sections 5 and 6 discuss the new PLP model, the associated diagnosis
algorithm and its analysis.

After developing these preliminary models to aid in the introduction of key concepts necessary
for on-line diagnosis, we further generalize the approach to encompass the full scope of fault set
coverage under the hybrid fault-effects model (HFM). As our algorithms are based on agreement
protocols, which do not hold in the classical sense under the HFM, we need to develop modified
agreement protocols and also conduct their verification. These aspects are discussed in Section 7.
We present the progressively refined diagnosis algorithms (DD and HD) integrating consensus and
diagnosis solutions under the HFM in Sections 8 and 9. In Section 10 we introduce the issue of
the temporal behavior of faults through a notion of fault decay time and conclude the paper with
a discussion of the developed techniques.

1.2 The Role of Formal Techniques

An important contribution of this paper is to associate formal arguments for the on-line diagnosis
algorithms. For each developed algorithm, we present formal specification and associated formal
verification. We emphasize that the coverage of Byzantine faults necessitates algorithms and proofs
of considerable complexity, both obvious and subtle. Formal methods present a level of rigor and
establish confidence in such proofs which is often lacking in hand proofs [27]. The intent being to
present a composite and comprehensive solution to on-line diagnosis of arbitrary faults.

It is interesting to note that as we undertake the formal specification and verification of the
algorithms, these processes sometimes generate insights which simplify the actual algorithm (e.g.,
F-PP in Section 4), facilitate better understanding of the rationale and also simplify the analysis.

2 System and Fault Model

2.1 System Model

We consider a distributed system framework, comprised of a completely connected network of nodes
that communicate using a frame based and deterministic message passing protocol. Essentially, a
frame based communication model implies that periodically, i.e., at the frame? boundaries, messages
are sent and received by system nodes. The message delivery times are deterministic, providing
bounded delays, and individual nodes make decisions and compute values based on information
received in messages from other nodes. We consider the system communication model as:

A1l: A direct path exists from each node to all other nodes (i.e., a completely connected network).
A node issues a single message which is broadcast to all nodes connected to it.

3The terms “frames”,“rounds” and “periods” are used synonymously.



A2: A non-faulty node can identify the sender of an incoming message, and can detect the absence
or time-deviance? for an expected message. A frame based (synchronous), non-authenticated®
message passing framework is assumed.

A3: All processors execute the same workload and determine the output value V; through the use
of a voting function.

A4: Node and link faults are considered indistinguishableS. Links are considered as simple mem-
oryless interfaces between nodes.

A processor has a single transmitter which broadcasts the message to dedicated receivers. The
protocol is non-authenticated message passing; however, as distinct communication channels are
defined between processor-pairs, this results in a pseudo-authenticated paradigm where a faulty
processor is prevented from corrupting a valid message of another processor without detection.
In addition, error control checks (ECC) are performed on every message; thus, a malicious node
would need to successfully: (a) forge the appropriate processor identity associated with this link, (b)
compensate bit errors to bypass the ECC check, (c) do this at a time when the correct transmitter is
silent, and (d) within the stipulated frame boundaries. Assumption A2 prevents a faulty processor
from introducing spurious messages without detection, and from disrupting the decision process
by failing to send a message. The use of a frame-based synchronous model also aids in identifying
deviant messages received earlier or after the expected tolerance window at the frame boundary.
Assumption A2 is implemented via the continuous on-line checking performed by each node. Finally,
assumption A3 is implemented with a median select (or strict majority) voting algorithm which
guarantees that, given a majority of non-faulty inputs, the error will be masked [37].

2.2 Fault Models

Our goal is to identify faulty nodes and to prevent system failure in the presence of a specified
number of faults. The system fails when consistent decisions or computations across the system
are no longer possible. Unlike previous work, we distinguish faults by their behavior, and place no
limitations on the duration of a fault. Under this framework, the sole indicator of a faulty node
is an error in its transmitted message, as viewed by all receivers of the message. Each receiver
acquires a local view of the sending node’s health by applying fault detection mechanisms locally,
such as range and framing checks, to the incoming message. The exchange of local views among
receiving nodes is then used to acquire a global perspective of the effects of a faulty unit.

We will utilize fault models which are flexible to cover a range of fault types. This is done to
incorporate a realistic system environment where faults do not follow idealized fault conditions of
only a single specific fault occurring over system operations. Initially, we start with considering
a fault model termed PP which considers benign processor faults. Extending beyond the PP we
consider the fault models to handle arbitrary fault conditions as well as communication link failures

“messages from a processor are sent (or received) during a time window specified around the frame boundaries.

Sauthenticated techniques involve association of a signature with a message which explicitly characterizes its
identity to prevent another node forging this message. The authenticated approach involves high bit-space and time
overhead and most implemented systems choose the simpler non-authenticated approach.

6This assumption is later alleviated in Algs. PLP and HD.



within a single diagnostic approach. This model is termed as the PLP model. After introducing
the conceptual diagnostic framework under the PP and PLP models, we generalize the fault models
to a very flexible and customizable fault model termed as the Hybrid Fault-Effects Model(HFM)
which we have introduced and presented in earlier work [32, 36]. To facilitate discussions based on
the HFM, we provide a summary introduction of this fault model.

2.2.1 The Hybrid Fault-Effect Model (HFM)

Our earlier work [32, 36] details the properties of the HFM and its properties in detail; we provide
a brief introduction of the model here to facilitate discussions. In the HFM, all fault classification
is based on (1) Local-Classification of fault-effects to the extent permitted by the fault-detection
mechanisms built in at the node level, and (2) Global-Classification based on nodes exchanging
their local-classification with other system nodes to develop a global opinion on the fault-effect.
We now describe in greater detail the rationale behind the individual classifications.

node_i node_i

mess j mess j mess j

node j node k node j node _k

(a) symmetric communication (b) asymmetric communication

locally detectable globally detectable
symmetric Benign Value
communication
asymmetric Benign Value
communication (arbitrary faulty)

Figure 1: Hybrid Fault Space (communication symmetry vs. detectability)

The HFM classification begins with the examination of the possible fault states created by the
dispersal of information. In the abstract, we can assume that when a node transmits information,
two general cases are possible as illustrated in Figure 1(top): (a) all receivers obtain the same
information i.e., mess; (symmetric dispersal), or (b) receivers obtain different information i.e.,
mess; and mess; (asymmetric dispersal). This abstraction is sufficient since we are primarily
concerned with maintaining consistency and these two possibilities reflect whether it is preserved

or not.

The second aspect of the HFM is based on extent of the fault-effect as created by the faulty
source and the way in which it has propagated its effects. If an individual node is sufficient to
detect the error, we classify this case as a benign fault since the fault-effect is locally detectable.



On the other hand, there are situations that require multiple nodes to exchange their syndrome
information with each other in order to provide accurate diagnosis, i.e., globally detectable. For
these cases, the values in a message appear to be plausible locally at a node; however, they can
only be verified with a multiple exchange of information. After the exchange is completed, the
plausible value may be determined to be value-faulty.

As an example, consider the acceptable range of the value contained in a message to be [0,100],
with the expected correct value of 50 in a message. A node accepts a message without registering
any fault as long as the value is within [0,100]. If a faulty node sends values 30 and 70 as values
in the messages (instead of the correct value of 50) to the other two nodes, both of these messages
are within the acceptable range [0,100], thus these erroneous values are not locally detectable at
the receiving nodes. Only when the two receiving nodes exchange (or distribute) their received
message values of 30 and 70 respectively with each other, does the asymmetric nature of the faulty
values comes across i.e., global detectability of value-faults.

Figure 1 summarizes the specific cases covered by the Hybrid Fault Model. The vertical axis
reflects the possibilities for information dispersal and the horizontal axis represents the types of
detectability. The fault-effects are represented by the table entries and consists of two major types
covered in each vertical column: benign and value faults. The benign faults can be dispersed in
a symmetric or asymmetric manner; however, these faults are detectable by all non-faulty nodes
with fault detection mechanisms implemented locally. Any detectable fault in a message will result
in the sender being classified as locally benign faulty, (b), by the receiver. The rightmost vertical
column of the table covers value faults which are the locally undetectable class of faults. Messages
which pass all data validity and range deviance checks, but provide a valid but incorrect value
constitute value faults. Since the effect of these faults are dependent on the type of information
dispersal, we have the sub-cases of symmetric-value faults, (s), and asymmetric-value faults, (a),.
The asymmetric-value fault is equivalent to the case of a Byzantine fault and is also referred to as
the arbitrary fault case.

Diagnosis of value faults is more troublesome to handle” and the categorization of faults as
symmetric or asymmetric requires a global determination, or several rounds of message exchange.
Suppose at least one non-faulty node cannot detect a node fault, and the same fault is detected by
every other good node. The sending node is identified as locally benign by the nodes that can detect
it but the local view is not sufficiently accurate to provide correct system level diagnosis. Thus,
exchange and accumulation of global information across several time periods is often necessary to
diagnose such faults.

Byzantine agreement [11] algorithms are often implemented to ensure that distributed nodes
or processes arrive at the same decisions and computational results in the presence of arbitrary
faults. However, with simple modification of existing fault detection and masking techniques,
correct computations can also be guaranteed under the HFM. Unlike the N > 3¢ redundancy
requirement of the classical Byzantine models to sustain ¢ faults, under the HFM N nodes will
tolerate > 3a + 2s + b composite (a, b and s) faults. We extend the classical Byzantine fault
model to address mixed fault types, while ensuring correct system operation in the presence of
faults. Instead of assuming that all faults are arbitrary, we adopt the hybrid fault-effects (HFM)
taxonomy and handle faults according to the errors they produce.

"In some prior work we have used the term malicious to highlight this difficulty.



The following Table 1 summarizes our development of the diagnosis models as per the different
fault classes considered in this paper.

Table 1: Association of Developed Algorithms and Fault Models

‘ Fault Class H Associated Algorithm H Section ‘
Benign processor faults PP Sections 3 & 4
(No link faults)

Arbitrary processor faults PLP Sections 5 & 6
and Link faults

‘ —Foundation of Consensus under HF M- H OMH H Section 7 ‘
HFM Model DD Section 8
(No Temporal Aspects)

HFM Model HD Sections 9 & 10

Temporal Aspects &
Complete FDIR

2.3 Terminology

We introduce the basic terminology which will be used (and progressively expanded) throughout
the the paper. We consider NV as the number of processors in the system and mess; representing
a message sent by processor j. As the communication model is frame based i.e., messages are
sent /received by nodes at the frame boundaries. Thus, the frame (or round) number is also a
useful component in identifying a message. Let M7 (j)Vi,j define the set of all mess;, sent by
processor j over frame n, as received by processor 7. As the node communication is based on
exchange of messages, and as we categorize faults by their perceived fault-effect as seen by the
recipient of the message, we introduce fault categories for the messages based on the receiver’s
observations on these messages. Initially we consider two such fault categories: (a) The set of
missing messages, MM (j), are those messages which i believes j failed to issue during frame
n, and (b) The set of improper logical messages, ILM[(j), are those messages which are correctly
delivered but disagree with V;, the result of 2’s own voting process on inputs received. The syndrome
S7'(4), Vi, j represents the union of ILM(j) and MM (j). S'(j) is represented in vector form for
each value of 7, with vector entries corresponding to all j values from which ¢ receives messages.
The vector entry corresponding to any node j is a binary input: 0 corresponds to a fault-free input
received from j as perceived by 4, and 1 represents a fault being perceived by .

Each node maintains its perception of the system state using a system level error report in

the form of a vector, F/*(4)®, consisting of an ordered quadruple < 4,4,n,S"*(j) >. The function

tot(7) = [Uien,iz; Fi*(4)] is used to count the number of accusations on a processor j by all other
processors during frame n. Thus, F},,(j) is an integer where 0 < F2,(j) < (N —1).

For all our developed diagnosis algorithms, the underpinnings will involve variations of a two-
phase diagnostic approach.

8as received by 4 from node j over round n



Phase 1: local diagnosis syndrome formulation based on a node’s local perception of other
nodes fault status. This is established through a node’s personal analysis of incoming message
traffic from other nodes.

Phase 2: global diagnosis syndrome formulation through exchange of local diagnosis syndrome
information to all other nodes.

2.4 Comments on Approach

e For each algorithm we develop, we will highlight the fault model being considered and aspects
of the two-phase approach as they apply to the fault model. We will then present the analysis
of algorithmic properties followed by the development of the formal model of the algorithm
and associated formal analysis and verification. We will utilize this format for all algorithms.

e For the initial algorithm PP, we will present an extensive formal development to illustrate the
concepts involved. To a large extent, the formal analysis and verification of the subsequent
algorithms PLP, DD and HD will utilize the formal infrastructure developed for algorithm PP.
This highlights the aspects of re-usability of formal concepts as progressively more complex
algorithms are developed — for diagnosis and for other algorithms in general.

3 Model PP: Diagnosing Benign Faults

We now present the first diagnosis algorithm termed PP. The initial model will be referred to as
the processor - processor (PP) model since it will be assumed that all the communication links are
non-faulty and that processors are the only potentially faulty units. As stated in Section 2.3, the
two-phase diagnostic approach will characterize the operations of the algorithm.

Algorithm PP

D1.0 For all 4,5 € N, each processor ¢ monitors each mess; € M7 (j).

D1.1 If the value v; contained in mess; does not agree with V;°, then mess; € ILM} (),
D1.2 If mess; is missing, then mess; € MM (j),
D1.3 Update the syndrome information: S;*(j) = ILM*(j) U MM (j).
D2.0 At the completion of frame n, for every j, each ¢ will determine if an error report should be issued:
if §7(j) # 0 then send report F;*(j) as sourced by i to other processors, else do not send Fj*(j).
D3.0 For each j, as frame n + 1 completes, compute F/}(j).
D3.1 If F5.(5) > [IN/2] then declare j as faulty.
D3.1.1 If processor k failed to report F}'(j) # 0 then mess, € MM " (k)
D3.2 If F/%,(j) < [N/2] then
D3.2.1 If k reported Fy(j) # 0 then mess, € ILM] " (k)

D4.0 Increment frame counter n and proceed to step D1.

9V is the voted values - see assumption A3 in Section 2
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The error detection process is summarized by step D1.0. During frame n, each processor
monitors the messages received and performs error checking. The logical content errors identified
in step D1.1 are detected by voting on the inputs and then checking the inputs against the voted
value (i.e. deviance checking). Omissions of expected messages are also detected and recorded in
D1.2. In step D1.3, these errors are written into a local error log to be processed at the completion
of frame n. In step D2.0, if any errors have been logged, a system level report is issued accusing the
suspected processor. These reports are counted in step D3.0 and the accused processor is declared
faulty provided at least half of the system agrees on the accusation. The diagnostic processors
are thus also checked as part of the algorithm. In D3.1.1, if j is determined to be faulty but a
monitoring processor k failed to report an error on j, processor k will be accused as faulty in the
succeeding round of diagnosis. In D3.2.1, if only a minority of processors accused j, they will be
accused as faulty in the next round.

We stress that the number of processors, both operational and faulty, must be within the
specified fault-tolerance processor cardinality as defined for the benign fault case. In general, this
cardinality will be distinctively specified for the fault model being considered e.g., N > 3¢ for ¢
Byzantine faults.

3.1 Basic Analysis of PP

Prior to analyzing PP (or any diagnosis algorithm), it is essential to establish two specific properties
of correctness and completeness that a diagnosis algorithm is required to satisfy [31]:

P1. Correctness: every processor diagnosed to be faulty by a non-faulty processor is indeed faulty.

P2. Completeness: every faulty processor is identified.

We will now show that algorithm PP satisfies both properties under the described PP model.

Theorem 1 (Correctness) If “i” is non-faulty, then F*(j) # 0 implies that j is faulty ensuring
the diagnosis of Algorithm PP to be correct.

Proof: If the receiving node i is non-faulty and accuses j such that F*(j) # 0, then there exists
a mess; € M7 (j) which was found to be in error. Two possibilities exist: (i) either another node
k forged j’s identity or (ii) j sent an erroneous message. Case (i) is precluded by A2 and especially
since each processor-pair communicates over separate links. Thus, if F/*(j) # 0, it will be because
7 is faulty. O

Theorem 2 (Completeness) If “j” is faulty, F*(j) # 0, for every non-faulty i € N, ensuring the
completeness of diagnosis by Algorithm PP.

11



Proof: There are two cases where j is faulty: (i) j sends erroneous mess; € M7 (j), or (ii)
J fails to issue all mess;. If mess; is delivered correctly, then the value v; is compared with the
receiving processor’s voted result V;. If v; = V;, then j has computed the correct value and is not
faulty. If v; # V;, then ¢ will be able to detect the erroneous message and mess; € F;'(j). Case (ii)
is restricted by assumptions Al & A2, since an absence of a message will be detectable. Thus, for
both cases, if j is faulty then F*(j) # 0. O

After defining the additional notation to be used, it will be demonstrated that [N/2] is a suit-
able threshold for determining if j is faulty.

Definition P, is the minimum number of processors needed to guarantee correct diagnosis
of a faulty 7.

Definition P,,,; is the maximum number of processors that perform correct diagnosis of a
faulty 7. This term is better understood as P,,q, = N — t for ¢ faults.

Definition The error support threshold, E, is the threshold implemented in the diagnosis algo-
rithm to determine if processor j is faulty.

Lemma 1 If N >3 and F}},(j) > E = [N/2] then j is faulty.

Proof: Suppose that ¢ of the N processors in the system are faulty. Then, at most (N — t)
non-faulty processors will correctly accuse a faulty processor, giving Py, = N —t. To determine
the number of processors needed to outvote the faulty units in step D3, we write t = £; + £y,0n,
where ¢; is a fault in the monitored processor, Z,,,, are faults in the monitoring processors i.e.,
good processors. An interesting feature of our algorithms becomes apparent here. Unlike classical
diagnosis algorithms, we do not make any simplifying assumptions of conducting diagnosis in a
fault-free off-line environment. As our algorithms are on-line, these are themselves exposed to
system faults too. Thus, we explicitly consider our diagnosis algorithms to be tolerant to a specified
number of fault, ¢,,,, while diagnosis is ongoing.

Since j is always considered to be suspect and is not allowed to participate in the diagnosis
on itself, it is not included as one of the possible faulty monitoring units. There needs to be at
least two non-faulty processors reporting F*(j) # (0 to prevent false diagnosis (e.g. in a three
processor system, at least two processors need to agree on an accusation). Furthermore, a minority
of processors (other than j) can be faulty so that P, = maz(2,tmen + 1). The allowable range
for a correct diagnosis is therefore P, < E < Ppa.. Since the selected threshold E = [N/2]
is within this range, it suffices as a suitable threshold for diagnosing j as faulty. O

Definition A wvalid alarm is issued by processor i if F)'(j) # 0 and F}},(j) > E.

Definition A invalid alarm is issued by processor i if F*(j) # () and F}},(j) < E.
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Even though P,,;, processors are sufficient to detect an error by the sender j, it should be
expected that if error conditions are symmetric, P,,,, processors should agree with the diagnosis.
This result provides the basis for verifying correct response of the diagnostic units. The selection of
m = [N/2] provides a balance in tolerating faults in both the monitored and monitoring processors.

As an example we will assume a system containing six processors which are denoted p1, po, ..., pg
and their associated links are £1,%s, ...,¢g respectively. Let p; be faulty during frame n. If p; is
faulty, then by Theorem 2 we know that po, ps3, ps, ps, ps should all respond with valid alarms
F*(1) # 0. If pg were a faulty monitor and did not send FJ'(1) # (), then it would be accused as
faulty in step D3.2.1 and the checking process would propagate into frame n -+ 1 with F/""!(6) # (.
In the next frame, p2, p3, ps, ps would agree F**1(6) # () and conclude pg is faulty. Thus, the
property of completeness is used to guarantee that all the monitors functioned properly.

The property of correctness can also be used to check the checkers. Assume pg is a faulty
monitor and accuses p; such that FJ'(1) # 0. If py is non-faulty, then Theorem 1 guarantees that
all non-faulty monitors will not detect a fault such that Vi € N,i # 6,F(1) = (. Monitor pg
therefore issued an invalid alarm and will be accused as faulty in step D3.2.1. In frame n + 1,
non-faulty processors will respond with F""'(6) # 0. In the next frame, py,pa, ps, pa, ps would
agree F"*1(6) # 0 and conclude pg is faulty.

4 Developing a Formal Analysis for Algorithm PP

The presentation of Algorithm PP is consistent with traditional forms of hand proofs extensively
found in literature [4, 9, 10, 11, 12, 15, 20, 21, 22, 29, 31, 34, 35]. It is not, however, directly
usable for input to a theorem prover. The initial form, PP, contains supplementary information
which although of interest to the system designer, is unnecessary and distracting to the formal
proof process.

In order to facilitate formal analysis, we first rewrite algorithm PP in a simplified form, termed
F-PP, reducing the notational complexity and emphasizing the operations performed. We point
out that the informal and formal representations of the algorithms are equivalent. The basic intent
of rewriting of the algorithm is to aid in focusing on the core properties we want to incorporate and
verify in the formal specification of the diagnosis algorithm, rather than detail the data structures
involved.

Algorithm F-PP
PP(0)

1. All accusations of faults are cleared.

PP(n), n > 0

1. Each processor i executes one frame of the workload, arriving at some value or
checksum Val"(i).

2. Each processor sends Val™ (i) to all other processors.

3. Each processor ¢+ compares incoming messages to its own value:
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(a) If the value from j does not match, is missing, or is otherwise detectably
benign, or there is an accusation from the last frame of ¢ against j, record
BAD.

(b) Otherwise, ¢ records that j is GOOD.
4. Each processor sends its report on each other processor to all processors.
5. Each processor i collects all votes regarding each other processor j:

(a) If the majority of votes are BAD, then processor i declares j faulty. Further-
more, ¢ records an accusation against any processor k that voted 7 GOOD.

(b) If the majority of votes are GOOD, then 7 records an accusation against any
processor k that voted j BAD.

In this rewriting of the algorithm, the initial frame, referred to as PP(0), simply initializes
the data structures appropriately. Next, a workload frame is executed (Step 1), arriving at some
value. Processors then exchange values (Step 2). All good processors should then have exchanged
identical values. Faulty processors may have exchanged corrupted values that are locally detectable,
but we do not consider the possibility here that faulty processors deliver different values to different
receivers. All processors then compare the exchanged values with their own. Any discrepancy is
recorded as an accusation against the sending processor.

The key assumption here is that if any processor is symmetrically bad in a locally detectable
manner, then all receivers must have gotten bad messages from that processor. Therefore if the
majority of processors have seen erroneous values from 7, then j is in fact bad.

4.1 Discussion

The formal specification, F-PP, clarifies the key aspects of the original description of PP algorithm.
For example, in place of “if the majority of the votes are BAD,” the original PP uses F},(j) >
[N/2], where F}},(j) is the number of accusations from processors other than j. Since the algorithm
is not concerned with the internal behavior of faulty nodes, and good nodes never accuse themselves,
in F-PP we simply count the total number of accusations. This kind of simplification is motivated
by our desire to remove complexity from the formal specification and verification process wherever
it would entail a high cost. Accordingly, we endeavor to simplify algorithms before formal tools
and techniques are applied.

Another aspect is that the original PP separates bad messages into categories ILM and MM,
and then combines these sets. F-PP simply records GOOD or BAD. The original algorithm PP
states that processors send accusations signed by the sender. F-PP assumes the existence of private
channels between all processors, so that a message is implicitly signed by virtue of arriving on
that private channel. In both cases it is assumed that messages sent directly from one processor
to another cannot be forged. However, since messages are not forwarded from one processor to
another, neither PP nor F-PP make any assumption about the possibility of forging forwarded
messages. It is worth mentioning that the original specification of PP and the specification of
F-PP used to build the formal model amount to the same algorithm. Since the benefit of formal
verification depends on the accuracy of formal specification, it is very important to maintain fidelity
to the PP operations while formulating F-PP. This process helps in obtaining additional insight
into the overall algorithmic operations and facilitates better understanding of the algorithm.
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Algorithm PP operates effectively under the assumption that all faults are permanent within
a frame, but does not rely on the consistency of faults between frames. This kind of inconsistent
behavior within a frame is handled only by Byzantine resilient algorithms such as DD (or HD),
analyzed later in Section 8. However, a processor that fails symmetrically, say, for just one frame
and is otherwise non-faulty, would be correctly diagnosed as faulty in the frame it became bad.

For formal analysis, we split the presentation into (a) a general argument which builds up the
formal context, followed by (b) the detailed formal analysis. This paper will include the development
of the formal arguments and specification of each algorithm in the main part of the paper and defer
the details of the formal specifications to the Appendix.

4.2 Formal Analysis: Developing the Formal Argument

Formally, the requirements follow directly. First, we consider correctness, which states that if a
good processor accuses some other processor, the accused processor is indeed faulty.

Lemma 2 If “” is good, then F'(j) # 0 implies that “” is faulty.

Proof: We prove this by complete induction on the number of rounds of algorithm PP we use.
If F*(j) # 0, then some message sent from j to i was bad. If the message was simply missing or
was an improper logical message, then j is in fact bad. The two remaining reasons that ¢ would
record an accusation of j is if j failed to accuse some bad processor, or if j accused some good
processor in an earlier frame. By induction we can assume that the previous majority votes on
the fault status of other processors are correct. Since all faults are assumed to be symmetrically
dispersed, if 5 failed to accuse a bad processor k, then j is bad, as all processors including j must
have received the same bad message from k. If j accused a good processor k, then j must be bad
since no majority of good processors received a bad message from k. O

Theorem 3 (Correctness) If a good “i” declares “” faulty, “j” is indeed faulty.

Proof: We prove this by complete induction on the number of rounds used by algorithm PP.
The only place in the algorithm that a good processor could declare another processor faulty is
when FJ%,(j) > [N/2]. This can arise only if over half of all processors send an accusation to i.
Since we assume that over half of all processors are non-faulty, some good processor k must have
contributed by sending an accusation of j to . By Lemma 2, we thus know that j is indeed faulty. O

This formal argument does add some detail to the original definition of algorithm PP. Even
s0, explicit formalization of the algorithm does not follow directly. For example, there is no basis
on which to make the assertion that “by induction we can assume that the previous majority...”
as the inductive hypothesis is not about majorities. A flavor of completeness is inductively being
assumed here. It happens that full completeness is not needed in the proof of soundness, but there
is more to the formal proof than is apparent from these general proofs.

Theorem 4 (Completeness) If “j” is faulty, then all good processors diagnose “j” as faulty.
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Proof: We prove this by complete induction on the number of rounds used in PP. For round n,
we assume that for smaller number of rounds this property holds. If j is faulty in earlier rounds
then by induction we can assume that ¢ declared j faulty earlier, and thus since declarations are
monotone, ¢ declares j faulty. If 5 is faulty in this round, it must be either benign faulty, in which
case all messages are benign, or symmetric-value faulty. If the symmetric-value faulty processor
produces a good value then it is not a fault. Thus even symmetric-value faulty processors must
produce bad values. In either case all good processors will accuse j of being faulty, sending F}"(5)
to all other processors. Since we assume there are a majority of good processors, there will be a
majority of votes to condemn j, and all good processors will declare j faulty. O

Even with these additional refinements to the description of the algorithm, this level of detail
still falls short of that needed to complete full formal verification. We have formally specified the
PP algorithm and formally verified that it satisfies both of its main requirements using the PVS
verification system [17, 18, 19]. We describe this formal specification and verification in the next
sections.

4.3 Formal Analysis: Developing Formal Specification of PP

The formal specification of PP is embodied in a single PVS theory called pp. This theory takes
several parameters, the key ones of which are m, the maximum'® number of rounds, n, the number of
processors, and 7', the type values that are passed between processors. Although a few assumptions
are made about 7', it is mostly left undefined, and thus we effectively make no assumptions about
the kinds of values passed around the system. The other parameters to the theory are some
special values in the set 1. Thus, error represents values that are benign upon local receipt, such
as missing values, values failing parity check, values failing digital signature checks, and so on.
BAD and GOOD are the values of accusations sent by processors over the network. Finally, the
function Val is assumed to return the correct value for each frame of computation, and that the
correct value is never any of the special values error, BAD, or GOOD.

After some definitions of types and variables are given, some other predefined theories are
explicitly imported. The theory filters defines a function filter that returns the set of members of
a given set that satisfy a given predicate. Since predicates and sets are equivalent in higher-order
logic, this operation is the same as set intersection.!! The theory card_set provides some standard
lemmas concerning cardinality, and filters (for example, the cardinality of a set is nonzero if and
only if the set is nonempty); it takes the same arguments as finite_cardinality. The imported theory
hybridmgrty is not essential to the main development here and is described in [13].

The type statuses is defined to be an enumeration of three constants, corresponding to three
of the categories of behavior: symmetric-value faulty, benign, and good.'? In later specifications of
other algorithms, the other two formal statuses will be represented by extended statuses to include
arbitrary and/or link.

0This provides a bound on the time to actual diagnosis.

"The theory filters also provides a similar function on lists, which is rather more complex.

2Enumeration constants also generate recognizer functions in PVS. Thus, if s is a variable of type statuses, then
s = arbitrary? and arbitrary(s) are equivalent formulas. The latter form is used in this specification.
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The function status returns the status of a given processor (or fault containment unit fcu);
this implicitly enforces the notion that a processor may not change status during execution of the
agreement protocol. A processor that, in reality, is symmetric-value faulty one moment, benign the
next, and good the next must be modeled as one that is symmetric-value faulty throughout the
computation.

Some shorthands are then defined for describing statuses: s, ¢, and g are predicates recognizing
the symmetric-value faulty, benign, and good processors, respectively (¢ stands for crash-faulty,
a predominant cause of benign faults: m is not used to avoid confusion with the traditional use
of m as the number of rounds.) Similarly, given a set caucus, as(caucus) is the set of arbitrary-
faulty processors in caucus. The functions ss, cs and gs similarly select the symmetric-value faulty,
benign, and good processors, respectively. A simple lemma, fincard_all, states that the cardinality
of a set of processors is equal to the sum of the cardinalities of the subsets of its processors of each
status. This lemma follows from a property implicit in the definition of statuses as an enumeration
type: the members of the enumeration are inclusive and disjoint.

The function send captures the properties of sending values from one processor to another. This
function takes a value to be sent, a sender, and a receiver as arguments; it returns the value that
would be received if the receiver were a good processor. The result actually received is irrelevant
if the receiver is not a good processor (because the values passed on by faulty receivers are not
assumed to be related to those received). The behavior of send is axiomatized according to the
status of the sender. The first axiom simply says that a good processor sends correct values to all
(good) receivers:

g(p) D send(t,p,q) = t.

Here, and in further formal definitions, free variables are universally bound at the outermost level,
and the types of all variables are omitted for brevity. See the complete specification below for
subsidiary and variable declarations. The second axiom says that a benign faulty processor always
delivers values that are recognized as erroneous by good receivers:

c(p) D send(t,p,q) = error.

The third axiom says that a symmetric-value faulty processor sends the same value to all good re-
ceivers, although that value is otherwise unconstrained (i.e., it may be any possible value, including
those that are recognized as erroneous)

s(p) D send(t, p,q) = send(t,p, z).

Nothing is specified for the behavior of asymmetric-value faulty senders. A lemma (called send5) is
stated and proved that all receivers obtain the same value no matter what the status of the sender
(remember that in this theory the possibility of link and arbitrary faults is discounted)

send(t,p,q) = send(t,p, z).

A deficiency of this specification is that, because send is a function, even arbitrarily faulty
processors are consistent from one round to the next: the value send(t,p,q) is some fixed value,
suggesting that a faulty processor p, given the same value ¢, will always send the same (possibly
bad) value to the processor ¢, even in different rounds of the protocol. This fact is not exploited in
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the proof, but it is not self-evident that this is so. In the verification of the OM algorithm [24], the
addition of the round number as an additional argument was done to send in order to lessen this
concern. However, the only way to allay such doubts absolutely is to specify send as a relation.
In earlier work the OM algorithm was axiomatized using a relational send, and the corresponding
correctness conditions were proven. Unfortunately, the relational send complicates and obscures
the specification (since it forces other functions to become relations also), so we have chosen to
retain a functional send for the current specification.

The function HybridMajority is intended to be similar to the standard Majority function, except
that all error values are excluded. Here we give an axiomatization of this function rather than a
definition. This allows us a certain freedom in the implementation of this function. Although the
three properties are all that is required of an implementation of HybridMajority, in earlier work
a concrete implementation of HybridMajority was provided based on the Boyer-Moore MJRTY
algorithm [3], and proved that the axioms below are satisfied by this implementation [13]. Thus
the following may be considered axioms, or may be considered lemmas proven by appeal to imported
hybridmgrty theory:

HybridMajority(caucus, v): T = proj_1(Hybrid_mjrty(caucus, v, n))

HybridMajorityl: LEMMA
fincard(gs(caucus)) > fincard(ss(caucus))
AND (FORALL p : g(p) AND member(p,caucus) IMPLIES v(p) = t)
AND t /= error
AND (FORALL p : c(p) AND member(p, caucus) IMPLIES v(p)=error)
IMPLIES HybridMajority(caucus, v) = t

HybridMajority2: LEMMA
(FORALL p : member(p, caucus) IMPLIES vi(p) = v2(p))
IMPLIES HybridMajority(caucus, vl) = HybridMajority(caucus, v2)

HybridMajority3: LEMMA
HybridMajority(caucus, v) = t
AND (FORALL p,q : g(p) AND g(q) AND member(p,caucus) and member(q,
caucus)
IMPLIES (v(p) = v(q) AND v(p) /= error))
AND fincard(gs(caucus)) > fincard(ss(caucus))
AND (FORALL p : c(p) AND member(p, caucus) IMPLIES v(p)=error)
IMPLIES
(FORALL p : g(p) AND member(p,caucus) IMPLIES v(p) = t)

The first line of this fragment of the specification can be read as follows. The function Hybrid-
Majority takes two arguments, a set of processors (i.e., an feuset), which we call the caucus, and
a vector mapping processors to values (i.e., an feuvector).

The antecedent to the implication in the second clause of this specification is complicated, but
can be read as follows. If the vector records the same non-error value for all good processors in
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the caucus, and the vector records an error value for all benign-faulty (benign) processors in the
caucus, and there are more good processors than symmetric-value faulty processors in the caucus,
then HybridMagority returns the same value as that recorded in the vector for the good processors.
Any implementation of HybridMajority that does in fact compute the true majority after casting
out error values would satisfy this axiom.

The third clause, HybridMajority2, states that the value returned depends only on the values
recorded in the vector for the processors in the caucus. Although HybridMajority is a function,
it could potentially be implemented in such a way that when there is no majority (i.e., when
the antecedent to the implication above is false), the output depends on values of the vector
corresponding to processors not in the caucus, or other irrelevant information contained in the
arguments. The second axiom prohibits this kind of behavior.

The fourth clause, HybridMajority3 is given for convenience. It states that if there are more
good than symmetric-faulty processors and all good processors agree on some non-error value, and
the HybridMajority function returns a value, then that value is the value of each good processor.
This is a direct consequence of HybridMajorityl, but is added to ease use in formal verification.

We then begin definition of the actual algorithm.

Syndrome (R, j,i,01ldAccuse): T =
IF OldAccuse(i,j) OR (NOT Val(R) = send(Val(R),j,i))
THEN BAD
ELSE GOOD
ENDIF

The Syndrome function above is meant to capture the property that in round R, ¢ believes j is
faulty. The parameter OldAccuse essentially records old accusations from earlier rounds (As we
will see later, in algorithm PP, if a processor ¢ does not accuse a bad processor k, then all other
good processors j will accuse 7 of being bad the next round.) The only other reason to accuse a
processor of faulty behavior is if that processor sent some value that does not correspond to the
correct value. The next function is built using Syndrome

KDeclareJ(pset,R,01dAccuse,j,k): bool =
HybridMajority(pset, LAMBDA i: send(Syndrome(R,j,i,01dAccuse),i,k))=BAD

This predicate is meant to capture the idea that processor k will gather all accusations against
some processor j, and then take the HybridMajority of that set. If most processors accuse j, then
this predicate is true. Next,

PP(pset, R, 0OldAccuse)(i,j): RECURSIVE bool =
IFR =0
THEN FALSE
ELSE KDeclareJ(pset,R,0ldAccuse,j,i)
OR
PP(pset, R-1,
(lambda i2,k: 0ldAccuse(i2,k) OR

19



EXISTS j2: (KDeclareJ(pset,R,01dAccuse,j2,i2)
/=
(send(Syndrome (R, j2,k,01dAccuse) ,k,i2)=BAD)))) (i,j)
ENDIF
MEASURE (LAMBDA pset, R, 0OldAccuse -> nat : R)

Here we have the top-level algorithm F-PP. As stated above, this most closely corresponds to the
algorithm PP and captures essentially the same process as rewritten in the formal algorithm F-PP.
The intended meaning of this formal description is that after R rounds, starting with OldAccuse
accusations, processor ¢ believes that processor j is faulty. PP is defined as a recursive function. If
the number of rounds R is zero, then ¢ will not accuse j. If KDeclareJ(pset,R,OldAccuse,j,i), that
is, if after gathering votes for round R, a (hybrid) majority of other processors send i an accusation
of j, then i believes j is faulty. Otherwise, PP is called recursively, using one less round. The
recursive call also updates OldAccuse to include the case that some processor misdiagnosed some
other processor. That is, an accusation is added to the local OldAccuse for the next round if the
voted diagnosis KDeclareJ(pset,R,OldAccuse,j2,i2) of some processor j2 does not agree with the
individual accusation sent from & to 2.

The remainder of the specification consists of interesting properties of the PP algorithm. Many
of the following theorems are first defined as predicates, then a lemma asserting that this predicate
is universal is proved by induction on the number of rounds, and then a theorem giving the result in
the form desired is stated. This style of breaking a specification into separate predicate, lemma, and
theorem is quite useful in formal systems. Many other large specifications use this technique [30,
40, 13].

We now present the final theorem versions of the two properties.

Final_Correctness: THEOREM
(FORALL i,j:
g(i)
AND fincard(gs(fullset[fcul)) > fincard(ss(fullset[fcul)) + 1
AND PP(fullset[fcul,R,Empty)(i,j)
IMPLIES
c(j) OR s(j))

This theorem is supposed to roughly correspond to the first formal requirement: “Correctness:
If PP says a processor is faulty, then it is indeed faulty.” Formally, we must make explicit the
assumption that there are enough good processors around, and what is meant by “PP says.” The
key property being addressed here is that all good processors accuse only faulty processors of being
faulty. This formally becomes

g(i) AND PP(fullset[fcul,R,Empty)(i,j) IMPLIES c(j) OR s(j)
which can be read as: “If 7 is good, and after R rounds of PP, i accuses j, then either j is benign

or symmetric-value faulty.” Formally, a condition needs to be added that there be enough good
processors. The second theorem is
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Final_Completeness: THEOREM
(FORALL i,j:
g (i)
AND (c(j) OR (s(j) AND (FORALL t,p: send(t,j,p) /= t)))
AND fincard(gs(fullset[fcul)) > fincard(ss(fullset[fcul)) + 1
AND R>0
IMPLIES
PP(fullset[fcul ,R,Empty) (i,j))

This theorem tries to capture the following property: “Completeness: If a processor is faulty, then
algorithm PP will determine this.” Again, an extra assumption must be made that there are enough
good processors. The statement is simple in the case of benign faults. In the case of symmetric-
value faults, however, a further assumption must be made that the symmetric-value faulty processor
does not become “stuck at the right value.” That is, it is possible for a symmetric-value faulty
processor to fail in such a way that it appears good. To be reliably detected, a symmetric-value
faulty processor must manifest its fault by failing on a value other than the correct value.

Now we go back to the definitions of Correctness_Prop, Correctness, Completeness_Prop, and
Completeness. The definitions are essentially just the inductive variants of the corresponding final
theorems. The lemmas assert that the inductively defined property is true for any number of
rounds of execution. The inductive version of Correctness, Correctness_Prop also contains some
extra assumptions, such as the fact that if a good processor accuses some other processor, then all
good processors accuse that processor. This strong property is needed inductively, even though it
is not needed explicitly in the theorem (since it is trivially true of the empty set of accusations that
starts the protocol).

The complete theory specification is presented in the Appendix section 12.1. Detailed PVS
theories can be obtained from lincoln@csl.sri.com or http://www.csl.sri.com/~lincoln.

4.4 Formal Proofs for PP

The formal verifications corresponding to the two main requirements are proved by induction on
the number of rounds, and follow the general proofs quite closely. The theorem prover of PVS with
its built-in arithmetic decision procedures and rewriting allowed the formal proof to be constructed
at a relatively high level without being mired in detail. The PVS system allows partial proofs to be
replayed under alternative assumptions, facilitating the exploration of generalizations and special
cases.

The first lemma, fincard_all, states that the cardinality of an entire set of processors is equal to
the sum of the cardinalities of the processors in that set of each status. This lemma follows from
properties implicit in the definition of statuses: that they are inclusive and disjoint. In detail, the
formal proof requires about twenty user-supplied steps in PVS, about ten of which are ground or
assert, which invoke the ground decision procedures of PVS.

The second lemma, send5, states that all non-arbitrary-faulty processors exhibit symmetric
sending behavior. The proof of this property appeals to the fact that the three statuses—symmetric-
value faulty, benign, and good—are inclusive. Case analysis and appeal to the send axioms send1,
send2, and send4 essentially completes the proof. In two cases, such as that when the transmitter
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is benign faulty, the relevant axiom must be applied twice. The entire formal proof comprises 14
user-supplied steps in the PVS interactive verification system.

The other significantly complicated proof is that of Completeness, which is roughly half the size
and complexity of the proof of Correctness. Full machine-readable PVS specifications and PVS
proofs of the entire proof chain are available from lincoln@csl.sri.com.

Note: As highlighted in Section 2.4, the formal specification of PP develops the formal infras-
tructure for the specification of the subsequent algorithms PLP, DD and HD. The formal specifi-
cations of these algorithms will re-use the formal concepts developed for PP. This will also lead to
simpler discussions for the formal analysis of PLP, DD and HD.

5 Model PLP: Considering Byzantine Faults

Model PP is representative of systems which discount the likelihood of asymmetric dispersal and
Byzantine faults. If a diagnosis algorithm based on this model encounters an asymmetric-value
fault, two interesting cases result. These cases are encountered in steps D3.1.1 and D3.2.1 of
algorithm PP. Define mess; as an error-free message from j and mess;- an arbitrarily corrupted
message from j.

. . . . . . / .
Case (i): Suppose a majority of monitoring processors receive mess; and all others receive

mess;. Accordingly, if Fj},(j) > E and a monitoring processor, k, does not receive mess'j, then k
will be diagnosed as a faulty monitor. The result is that an asymmetric-value fault causes a non-
faulty resource, k, to be excluded and early exhaustion of system resources will occur unnecessarily.

Case (ii): Suppose a majority of monitoring processors receive mess; and all others receive
mess'j. Accordingly, if F},(j) < E and a monitoring processor, k, is a minority observer of mess'j
then it will be concluded that k is faulty since an insufficient number of other monitoring processors

will support k’s accusation.

The typical response to case (i) would be to halt the diagnosis at this point since the source
fault j could still be correctly diagnosed. Case (ii) is usually ignored by other diagnosis algorithms
because it is assumed that a latent fault of this type will not be harmful to the system during
the mission or will hopefully be detected by an extensive off-line diagnosis algorithm. Both of
these approaches, however, have the disadvantage of increasing the probability of system failure
due to latent faults. This violates a major goal for highly-critical fault tolerant systems where the
accumulation of latent faults is to be avoided so the probability of multiple faults can be decreased.

In order to properly resolve these cases, the model of the system is extended to consider the
interactions among processors and communications links and their contribution to the cause of
asymmetric and symmetric errors in communication. The system structure provides us with some
important information. First, a processor cannot maliciously send different messages because of the
broadcast mode used by a transmitter. An asymmetric dispersal may be due to: a weak transmitter,
environmental noise corrupting messages, or physical damage. Although it is possible to identify
errors with greater resolution using the existence of “I'm alive” messages from a transmitting
processor, all of these errors will be classified in model PLP as link errors.

The assumption Al in the original system model will now be modified to give the processor-
link-processor (PLP) model:
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MA1.1 A processor issues a single message onto its associated communications link.

MA1.2 A faulty link may arbitrarily corrupt delivery of the message but cannot correct an erro-
neous message by its associated processor.

Definition The set of symmetric errors, FS;'(j), are those messages which i believes that j issued
during round n which should be observed by all non-faulty monitoring processors.

Definition The set of asymmetric errors, FA?(j), are those messages which ¢ believes that
g issued during round n which may be observed only by a partial set of non-faulty monitoring
processors.

The primary example of asymmetric dispersal would be a transmission error potentially at-
tributable to a faulty link j. This information would be classified as an improperly formatted
message, IFM!(j), and be included in FA?(j). It should be noted that detection of this type
of error does not necessarily guarantee that all processors made different observations, but that
congruent observations cannot be guaranteed. This fact can be used to determine whether it is
possible for a distributed system to make a correct diagnosis of the fault based on current syndrome
information.

Algorithm PLP

We define IFM;*(j) as the set of mess; € M} (j) which failed to pass the link protocol and parity
checks. The syndrome information is subdivided into two parts to identify observations regarding
symmetric and asymmetric information dispersal. The error report F}*(j) now consists of an ordered
quintuple < 4,5, n, FS'(j), FA}(5) >.

D1.0 Monitor each mess; € M7 (j).

D1.1 If mess; € IFM] (j), then mess; € FA?(j),
D1.2 If mess; € ILM](j), then mess; € FS;(j).
D1.3 If mess; € MM (j), then mess; € FS{(j).
D2. At the completion of round n, for every j, each i will determine if an error report should be issued:
if FA?(j) = FS?*(j) = 0, then do not send a report on j, else send F[*(j) as sourced by i to other processors.

D3. For each j, as round n + 1 completes, compute F/3.(5).

D3.1 If F},(j) > [IN/2] then declare j as faulty.

D3.1.1 If a majority of reports agree that only symmetric errors were observed and processor k failed
to report any errors then messy € FSP*! (k)

D3.2 If F/,(j) < [N/2] then

D3.2.1 If processor k issued a report on j without identifying an asymmetric observation, then mess; €
S (k)

D4. Increment round counter n and proceed to step D1.
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5.1 Analysis of PLP

Algorithm PLP considers the effects introduced in diagnosing errors whenever an asymmetric link
error occurs. We will first show that algorithm PLP preserves the property of correctness.

Theorem 5 (Correctness) If i is non-faulty, then F'(j) # O implies that j is faulty, ensuring the
correctness of diagnosis of Algorithm PLP.

Proof: The proof of Theorem 1 can be extended by including the case where link errors exist.
A faulty link can only cause a message to be received improperly or to become lost. The additional
set of errors caused by a message failing the link protocol and parity checks is detectable by the
receiver as mess; € IFM]*. Thus, if Fj*(j) # 0, it will be because j is faulty. O

Before demonstrating that algorithm PLP has the property of completeness, several lemmas
will first be introduced.

Lemma 3 IfV i€ N, FS'(j) # 0 and FA(j) = 0 then processor j is faulty.

Proof: In order for FA?(j) = 0, all links must be non-faulty. The results for model PP now
apply as shown in the proof of the correctness property in Theorem 1.

Lemma 4 If a link, £}, is faulty in round n, this does not necessarily imply that for each i € N
that E'(j) # 0.

Proof: Let ¢; be faulty and ¢ non-faulty. If F{"(j) # 0, then it is because ¢ observed an error.
However, /; can arbitrarily fail so that a set of processors, P4, receive correct copies and another
set of processors Py, receive corrupted copies. Thus, it can be seen that not all ¢ € N observe the
error and if ¢ does not detect j to be faulty in any way, F*(j) = 0. O

Lemma 5 For N > 3, the number of non-faulty processors, i, required to detect an arbitrary failure
in processor j 18 Ppin = max(2, tymen + 1).

Proof: We first note that because the algorithm performs diagnosis on each j separately, there
is only one source fault j to be dealt with at a time and that j is prevented from participating
in its own diagnosis. Thus, we only need to analyze the processors accusing j and their ability to
make a correct decision. At least two non-faulty processors need to report F'(j) # () to assure
that an invalid alarm does not cause a non-faulty j to be diagnosed as faulty. Now, suppose j
is arbitrarily faulty and a set of processors, Pf,;, record Fj*(j) # (. Even though j’s errors may

24



be detected differently, each ¢ in Pp,; can be used as a vote indicating j is faulty. Although a
majority of non-faulty monitoring processors, i.e. tmnon + 1, are still required, the nature of the
asymmetry does not need to be agreed upon but only whether ; committed an error. With this
fact, if | Ppit| > Pnin = max(2,tmon + 1), a correct decision can be reached even in the presence of
arbitrarily faulty diagnostic processors. O

As with all other diagnosis algorithms, the ability of algorithm PLP to satisfy the completeness
property for an arbitrarily faulty j is conditional on the error occurring with enough visibility so
that correct diagnosis can be guaranteed.

Theorem 6 (Completeness) If j is faulty, then at least Ppn = max(2, tmon + 1) non-faulty pro-
cessors will declare § as faulty, processors, ensuring completeness of diagnosis for Algorithm PLP.

Proof: Lemma 4 requires that F},,(j) non-faulty processors must observe an error by an ar-
bitrarily faulty j, where FJ},(5) > Ppnin = max(2,tmen + 1). The rest of the proof is identical to
Theorem 2 in that if j sends an erroneous mess; € M7 (j), a non-faulty 7 will always detect an error
and report F}*(j) # 0. Also if j omits a mess; from M7 (j), it will be detectable by a non-faulty 4
and result in F(j) # 0. 0

Next, we will analyze its ability to detect failures in the diagnostic processors by determining
whether an alarm was valid or invalid. As earlier, we will assume a system contains six processors
which are denoted pi, p2, ..., pg and their associated links are £1,4s, ...,¢g respectively. Let pq
be faulty during round n. If p; is faulty and ¢; is non-faulty, then by Lemma 2 we know that
P2, P3, Pa, D5, Pe should all respond with FSP(1) # () and FA? (1) =  since it will be agreed that
observations should be congruent. Any processor k& which fails to report the error will be accused
as faulty such that FSPH! (k) # 0.

Now let p; be non-faulty and #; faulty. Lemma 3 demonstrates that ps, p3, p4, p5, Ps may not
necessarily respond with F*(1) # 0. If Ppin = maz(2, tmen + 1) and F{b(j) < Pmin, then j (ie., py
in our example) will not be declared as faulty. Any F}'(j) # 0 will be viewed as an invalid alarm.
The only legitimate reason for a non-faulty processor to issue a report on j would be that an error
was observed caused by asymmetric information dispersal.

Thus, if there were asymmetric errors (either benign or value faulty) included in the report on j,
processor k£ may have been the sole observer of j’s fault. It cannot be determined if £ or j is faulty;
therefore, no decision is made at this time (step 3.2.1). If only symmetric errors were reported
(either benign or value faulty), then k is invalid since these errors should have been observed by at
least P,,;, non-faulty processors.

If F2,(j) > Pumin, then j (or p; in the example) will be declared as faulty. Any F*(j) # 0
will be a valid alarm. The case of diagnosing missing alarms is shown in step D3.1.1. The only
legitimate reason for a non-faulty processors failing to respond to a faulty j would be that j sent
a correct message to some nodes and an erroneous message to others. If at least P;, processors
report an error, i.e., FA7(j) # 0 then j is faulty but monitoring processors still cannot be accused
of failing to report an error on j.
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6 Formal Analysis for Algorithm PLP

As in the case of PP and F-PP, we first develop a simplification of algorithm PLP as originally
presented above [35]. The relationship between this version, F-PLP, and the original PLP is the
same as the relationship between PP and F-PP as presented earlier in Section 3.

Algorithm F-PLP:

1. For each ¢, monitor each message mess; sent by j to i.

2. If mess; is improperly formatted, is missing, or properly formatted but fails rea-
sonableness checks, then i accuses j of an asymmetric error.

3. All processors exchange their sets of accusations.
4. Each processor ¢ sums the accusations against every other processor j.

5. If the majority of processors accuse j of some kind of fault, ¢ declares j faulty.
In this case, if a majority of processors accuse j of symmetric errors, but some
processor k does not accuse j, then 7 adds a new accusation against k£ for the next
round.

6. If the majority of processors do not accuse j of some kind of fault, and some
processor k accuses j of a symmetric fault, then ¢ adds a new accusation against
k for the next round.

6.1 Discussion

The main difference between PLP and PP is that PLP differentiates between two kinds of apparently
bad values (i.e., locally detectable): those that are produced symmetrically and those that are
produced asymmetrically. That is, benign faults produce one kind of error value and link faults
produce a different kind of error value.

Since this distinction cannot be guaranteed, some processor may still fail in such a way that it
sends out errors on some channels that appear to the receivers to have been sent by a benign-faulty
processor at the same time that this failed processor sends good or IFM to some other processors.
Such circumstances appear to be extremely rare, but can be disastrous: algorithm PLP is not able
to withstand even a single arbitrary fault. Consider the case of a two-round algorithm PLP, with
four processors participating, three good and one arbitrary-faulty. The arbitrary-faulty processor,
1, sends symmetric-appearing data to one receiver k£ and good data to the other two receivers.
That is, an erroneous value that appears to have come from a benign-faulty processor is sent to
one processor k. In any case, the unfortunate processor k will send out an accusation that 7 is
benign-faulty. Since there will be only a single accusation against k, in step 6 the other two good
processors Will therefore accuse ¢ of being benignly bad in the next round. With the arbitrary-
faulty processor concurring, in the next round all processors other than i itself will accuse 7 of a
symmetric-benign fault, and therefore all other processors will declare 7 bad. This process could
repeat itself with the arbitrary-faulty processor k singling out a single good processor at each round,
and quickly exhausting the system resources.

This rare but devastating possibility is a large part of the motivation for the development of the
later algorithms algorithms DD and HD (see Section 8). However, for the purposes of the analysis
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here, the fault-effect of link faults is restricted to eliminate the possibility described above, and
truly arbitrary faults are essentially eliminated from consideration during the analysis of PLP.

The assumptions regarding restricted behavior of links during algorithm PLP is reminiscent of
reasonable restrictions one might place on the behavior of interstages. That is, one might assume
that an interstage, with only message forwarding capability, is not able to forge signatures nor
deliver multiple corrupt messages. The distinction between benign faults and link faults is still
difficult, however. A series of cut wires could directly lead to a series of missing messages exactly
as described in the scenario above.

In any event, with this restriction of fault-effects, the PLP algorithm above is formalized similar
to algorithm PP.

6.2 Requirements and Assumptions

The requirements and assumptions here are the same as for algorithm PP, with the added possibility
of link faults. We refer the reader to the Appendix section 12.2 for the formal specification of PLP.
As we commented in Section 2.4, once the basic formal specification and analysis is established
for an algorithm, (e.g., Sec. 4 for PP), analysis of subsequent algorithms that utilize similar
underpinnings can be considerably simplified. This is chiefly due to the element of re-usability of
formal concepts entailed in the development of axioms and formal theories which remain essentially
unchanged.

7 Developing Foundations for Diagnosis under the Hybrid Fault-
Effects Model (HFM)

As discussed in the earlier sections, especially Section 2, our interest is in considering diagnosis
of faults with unrestricted behavior. In the previous sections we have described the formal basis
for identification of the faulty units. In this section, we continue the discussion of Section 2.2.1
generalizing the underlying fault model to include a composite time and data-domain fault model.
We adopt the Hybrid Fault-Effects Model (HFM)[32, 36], in which faults are classified according
to the fault manifestations they present across the system. Further, to address the on-line diag-
nosis process we will base the diagnosis on the existing system consensus procedures. A two-fold
motivation is provided for using HFM as linked to the diagnosis objective.

First, we are basing diagnosis on consensus algorithms. These algorithms are very robust but
also expensive (time and space complexity) to implement. Designed to provide coverage to the
worst case Byzantine faults, these assume all fault occurrences to be Byzantine faults and require a
node-redundancy of N > 3t to cover ¢ faults where each instance of ¢ is treated as a Byzantine fault.
Realistically, even if the fault was a simple benign fault that could be handled through voting, the
traditional approaches require the consensus algorithm to execute. This is both unnecessary and
also expensive in terms of time and overhead requirements.

The HFM assumes perfect coverage to a limited number of arbitrary faults, but recognizes that
weaker fault types are typically more common than the classical Byzantine faults. The algorithms
under the HFM do not compromise the system’s capability of tolerating Byzantine faults, however
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they provide additional and concurrent coverage to fault sets (or combinations) of weaker manifes-
tations. In essence, the same consensus algorithm is shown to have a greater capability of handling
a combination of faults of varying severity. This also facilitates a higher resolution of fault granular-
ity compared to considering all faults of a single fault severity. The distinction here is that hybrid
faults can be of any type, as long as they can be tolerated by the system implementation without
causing system failure. If the system is destroyed, or a sufficiently large portion of the system is
damaged, then the issue of diagnosis becomes moot.

Second, it is important to note that the fault classes are disjoint, under the HFM, preventing
any ambiguities in discerning the fault behavior and effect and subsequent diagnostic ambiguities.
Furthermore, as the HFM considers fault classification based on the effect the fault causes to the
system operation, it provides a uniform framework to handle both time-domain and data-domain
faults.

7.1 Does consensus hold under the HFM?

Our diagnosis protocols utilize the Consensus paradigm or its extension, Exact Agreement, as rele-
vant, for the fault model under consideration. For the classical fault models we used for algorithms
PP and PLP, the classical agreement protocols also applied. The HFM represents a unique fault
model which covers a set of faults instead of discrete fault types in earlier models. Thus, prior to
developing the diagnostic procedure under HFM, we first need to establish that exact agreement
is indeed possible under the HFM. This is not a trivial problem. Algorithm Z(r)'3 (see [34]) was
proposed to accomplish consensus under the HFM, but was found to be flawed [13]. A corrected
algorithm OM H (r) has been formally verified using PVS [13]. To be precise, we review algorithm
OMH(r) and its properties below. Although this is a slight digression from the diagnosis issues
under consideration here, this is an essential basis for the subsequent diagnosis algorithms DD and
HD that follow in Sections 8 and 9.

It is essential to highlight that whereas classical off-line techniques generally assume the sanity
of diagnosis operations in an off-line fault-free scenario, on-line techniques such as ours must also
consider faults in the diagnostic hardware during the diagnosis process. Thus, we need to ensure
that the consensus algorithms such as OMH(r), which form the basis of our diagnostic processes, are
also resilient to faults under the HFM. Given the lack of such concepts, we believe the development
of OMH(r) under the HFM to be a contribution in itself, and thus the following discussion in this
section.

7.1.1 OMH(r) Algorithm for Exact Agreement under HFM

The Oral Messages Algorithm [11] demonstrated that Agreement can be guaranteed if N > 3¢ and
r > t where t is the number of Byzantine faults, N is the number of nodes, and r is the number of
rebroadcast rounds. However, it makes the pessimistic assumption that all faults are asymmetric-
value faulty. This implies that a 4, 5, or 6 node system can tolerate only a single arbitrary fault
(t=1), and that 7 nodes will be required to tolerate two faults (t=2). However, their analysis is
pessimistic in the case of simple modes of failure.

13« {5 the number of rounds of message exchange.
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Table 2: OMH(r) Algorithm

S1: The Transmitter sends its personal value, v, to all receivers.

S2: Vi, let v; denote the value that Receiver i gets from the Transmitter.
If r = 0, and a benign-faulty(b) value is received, Receiver i adopts £. Otherwise, Receiver i adopts v;. The
algorithm then terminates.
If r > 0, each Receiver adopts R(£), if a benign-faulty(b) value is received, and R(v;) otherwise. Each receiver
then acts as the Transmitter in Algorithm OMH(r — 1) sending its adopted value to the other N — 2 nodes.

S3: Vi, j, with ¢ # j, let v; denote the value Receiver i gets from sender j in Step 2 of OMH(r — 1). If no message
is received or v; is obviously incorrect, Receiver ¢ adopts & for v;; otherwise, v; is used.

Since all Receivers act as senders in OMH(r — 1), each Receiver will have a vector containing (N-1) values at
the end of OMH(r — 1). Receiver ¢ adopts v=H — maj(vi,v2,...vn—1) as the Transmitter’s value.

The OMH(r) algorithm — Table 2 — is a r-rebroadcast round protocol based on the OM][11]
algorithm, requiring N > 2a + 2s+ b+ r nodes to mask (a + s+ b) faults, where b nodes are benign
faulty, s nodes are symmetric-value faulty, a nodes are asymmetric-value faulty, and ¢ < r. Any
consensus algorithm must provide the following two key properties under the HFM if there are
enough non-faulty nodes and enough rounds.

Validity: If the Transmitter is non-faulty, then all non-faulty Receivers select the sender’s original
value. If the Transmitter is benign faulty, then all non-faulty Receivers will adopt a default
value, £. If the Transmitter is symmetric-value faulty, then all non-faulty Receivers will adopt
the value sent by the Transmitter.

Agreement: All non-faulty Receivers agree on the value of the Transmitter.
OMH(r) uses a family of error values, {€, R(E),...,R"(€)}, where r is the number of rebroadcast

rounds. If the value R"(€) is received, where n > r — [ in S2 of OMH(r — [), then that too is
recognized as an error, and £ should be adopted. The function H-maj, used by OMH(r), is as

follows. Given a set V' of n values, v, ..., v,, H-maj(V') is given by
&, if all of the v; satisfy v; = &.
H—maj((V)) =< R '(vg), if ve = maj(exclude(V,E&)) exists.
0, otherwise.

The provision which adopts £ if all the v; are £ cannot occur on a good node, and thus is not
required in order for OMH(r) to satisfy the Validity and Agreement properties, but is included to
provide a fail safe default value should that case occur on a partially faulty node.

7.2 Algorithm OMH(r): Properties

We defer detailed discussion of the formal analysis of algorithm OMH(r) referring the interested
reader to [13]. Below we review the properties relevant to the formalization of the diagnosis proce-
dures.
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Lemma 6 Algorithm OMH(r) achieves Validity for any a,b,s, N,r >0, such that N > 2a + 2s +
b+r, and a <.

Lemma 7 If N > 2a+2s+b+r, for any N,a,s,b >0, r >0 and a < r, then OMH(r) satisfies
Agreement.

Taken together, Lemmas 6 and 7 prove the following theorem.

Theorem 7 Algorithm OMH(r) achieves Byzantine Agreement when N > 2a+2s+b+r, for any
r>0, any a <7, any s > 0, and any b > 0, where a is the number of asymmetric-value faults, s
is the number of symmetric-value faults, and b is the number of benign faults in the system.

This is a basic result which underlies the diagnosis algorithms. However, the diagnosis algo-
rithms (and most applications of consensus in digital flight control) actually require a variant of
consensus called Interactive Consistency. Interactive Consistency differs from Consensus in that
each processor is assumed to have a value, and the desired result is the reliable interchange of all
values so that all good processors agree on all values and if a processor behaves correctly the cor-
rect value is the agreed upon value. The obvious solution to this problem is to iterate the OMH(r)
algorithm where each processor takes its turn acting as the transmitter. In fact, the HIC problem
appears as the inductive case of algorithm OMH(r), as explicitly revealed in [2].

Algorithm 1 (HIC(r)) Let S be the set of nodes holding values upon which HIC is desired, with
|S| = N. Each node sends its private value to all other nodes in S, acting as the transmitter in
OMH(r), with the value of r identical for all nodes.

At the conclusion, each good node in § will hold a final vector which satisfies the following
conditions.

HIC Validity: Each element of the final vector that corresponds to a non-faulty node is the private
value of that node. Each element of the final vector that corresponds to a benign faulty node
is €.

HIC Agreement: All non-faulty nodes compute the same vector of values.

Theorem 8 Algorithm HIC(r) achieves Validity and Agreement when N > 2a + 2s + b+ r, for
anyr >0, any a <7, any s > 0, and any b > 0, where a is the number of asymmetric-value faults,
s is the number of symmetric-value faults, and b is the number of benign faults in the system.

Proof: By Theorem 7, at the conclusion of OMH(r) with node i as the transmitter, Validity
and Agreement will be satisfied. Thus, each good node will have a consistent view of node 4’s
personal value. All nodes then execute OMH(r). By the proof of agreement and validity for OMH,
if N > 2a+ 2s+ b+ r, and all nodes act as the Transmitter in OMH(r), with a < r, and all nodes
using the same value of r, then Validity and Agreement will be satisfied. Since ¢ is arbitrary, this
guarantees that all good nodes will hold the same vector of values, either a good node’s original
value or an agreed upon default value for a faulty node’s original value. O

The combination of the OMH(r) and the HIC(r) algorithms provide a formal basis to our
diagnostic approach presented in Sections 8 and 9.
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7.3 Formal Analysis for OMH(r)

For this analysis, we build on the formal analyses developed in earlier work on Byzantine Agreement
and interactive consistency under a hybrid fault model [13, 13]. We use the same fault model with
the exception of ruling out link faults. Thus any link fault is counted as an arbitrary fault, since it
may not present symmetric data to all receivers.

The goal of OMH(r) is to distribute single-source data (such as a sensor sample) from one
processor of a fault-tolerant system to all the others in such a way that all non-faulty processors
receive the same value. The principal difficulty is that a faulty processor may send different values
to different receivers. To overcome this, traditional algorithms use several “rounds” of message
exchange during which processor p tells processor ¢ what value it received from processor r and
so on. Under the “Oral Messages” assumptions, the difficulty is compounded because a faulty
processor ¢ may “lie” to processor r about the value it received from processor p [11]. We assume
there are n processors in total, one of which is distinguished as the transmitter (or the “General”,
in more informal terms).

The problem is to devise an algorithm that will allow each receiver p to compute an estimate
vp of the transmitter’s value satisfying the following requirements:

e Agreement: If processors p and ¢ are non-faulty, then they agree on the value ascribed to
the transmitter; that is, v, = v,.

e Validity: If processor p is non-faulty, and the transmitter is not arbitrary-faulty, the value
ascribed to the transmitter by p is the value actually sent from v to p.

The basic design of OMH(r) is that the transmitter first sends a value to all other processors.
Each receiver then plays the part of the transmitter in a recursive instance of the algorithm. Each
receiver then takes a vote of the values it has received and uses the majority value as its final value.
However, in each round of OMH(r), the processors do not forward the actual value they received.
Instead, each processor sends a value corresponding to the statement “I’'m reporting value.” If a
benign faulty value is received, it is recorded as the special value E. After several rounds, it is
possible to imagine values corresponding to “I’m reporting that he’s reporting that she’s reporting
E” arise. When taking the majority vote, processors ignore all E values, but treat “I’'m reporting
E” values as regular values. After the majority vote, if the result is “He is reporting Y,” then “Y”
is taken as the final value. The algorithm OMH(r) is defined semi-formally below. The parameter
m is the number of rounds of message exchanges that are to be performed; the functions R and
UnR correspond to the addition and removal of the “I'm reporting” tags and are specified in more
detail shortly.

OMH(0)
1. The transmitter sends its value to every receiver.

2. Each receiver uses the value received from the transmitter, or uses the value E if
a missing or benign-faulty value is received.

OMH(r), r > 0
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1. The transmitter sends its value to every receiver.

2. For each p, let v, be the value receiver p obtains from the transmitter, or £ if no
value, or a benign faulty bad value, is received.
Each receiver p acts as the transmitter in Algorithm OMH(m —1) to communicate
the value R(vp) to all of the N — 1 receivers, including itself.

3. For each p and ¢, let v, be the value receiver p received from receiver ¢ in Step
(2) using Algorithm OMH(r — 1), or else E if no such value, or a benign-faulty
value, was received. Each receiver p computes the majority of all non-E values vy
received (if no majority exists, the receiver uses some arbitrary, but functionally
determined value), and then applies UnR to that value, using the result as the
transmitter’s value.

7.4 Sketching out the Formal Proof

For this algorithm to be correct as stated, we must make three more assumptions: (1) The class
of possible messages exchanged between processors can be increased to accommodate new kinds of
messages such as “I'm reporting that she’s reporting 5.” (2) For all values v, R(v) # E; reported
errors are never mistaken for errors. (3) For all values v, UnR(R(v)) = v; untagging a tagged value
results in the original value. The addition of the tagging and untagging functions, R and UnR, is
key to the correctness of Algorithm OMH(r).

The argument for the correctness of OMH is an adaptation of that for the Byzantine Generals
formulation

e N, the number of processors

e ¢, the maximum number of arbitrary-faulty processors

e s, the maximum number of symmetric-value faulty processors
e b, the maximum number of benign-faulty processors

e 7 the number of rounds of message passing the algorithm is to perform.

Theorem 9 For any r, Algorithm OMH(r) satisfies validity if there are more than
2(a + s) + b+ processors.

Proof: This is proved by induction on r. In the base case, the assumptions on message transmis-
sion ensure the property. For the inductive case, in Step 2 of the algorithm all non-faulty receivers
apply the algorithm OMH(r — 1) to the value received. By a counting argument, we apply the
inductive hypothesis to conclude that non-faulty receivers correctly record the forwarded value. All
values forwarded from non-faulty processors are of the form R(z) for some value z. By another
counting argument, we see that the non-faulty processors form a majority of the processors which
are not benign-faulty, and therefore the values R(x) forwarded by them win the majority vote, and
after applying UnR, all non-faulty receivers settle on the value actually sent by the transmitter. O
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Theorem 10 For any r, Algorithm OMH(r) satisfies agreement if there are more than 2(a + s) +
b+ r processors and r > a.

Proof: This theorem is also proved by induction on r. In the base case, there can be no arbitrary
faulty processors, since r > ¢ and r = 0; by the previous theorem, therefore, we have the result.
In the inductive step there are two cases: (1) when the transmitter is arbitrary-faulty, and (2)
otherwise. In the latter case, again the previous theorem is sufficient. When the transmitter is
arbitrary faulty, the inductive hypothesis can be applied by a counting argument to show that all
non-faulty processors arrive at the same set of values before the hybrid majority vote is taken. If
there is a majority, all non-faulty processors will agree on that value; if there is no majority, all
non-faulty processors will agree on the functionally determined value. Whatever that value, all
non-faulty processors will arrive at consistent values after applying the function UnR. O

We utilize OMH(r) to distribute locally diagnosed syndrome information in algorithm DD,
discussed in Section 8, and in HD and F-HD, a formal version of algorithm HD, discussed in
Section 9. Appendix section 12.3 outlines the formal specifications for the OMH(r) algorithm.

8 On-Line Diagnosis Under the HFM: Algorithm DD

Diagnosis consists of two parts: (1) errors must be properly detected, and (2) correctly classified
according to their behavior. In the earlier algorithms PP and PLP, we demonstrated the feasibility
of correctly detecting errors of arbitrary behavior during on-line operations. We now shift our focus
to the classification process and further detail those aspects of the diagnosis algorithm.

As the system is a frame-based model, we utilize these frame delimiters to define diagnosis inter-
vals, in which the following primitives are executed: local detection and diagnosis, global information
collection and global diagnosis — on a concurrent, on-line and continual basis. The information col-
lected locally by each node during diagnosis interval n, D(n), is broadcast to all other nodes, which
then collect and analyze the information during D(n + 1), to formulate a global perspective on
the fault behavior. The length of the diagnosis interval is bounded by the assumed frequency of
asymmetric-value faults in the system.

We continue our presentation of diagnosis algorithms on a progressive basis. Algorithm DD
(Distributed Diagnosis) represents the basic two-phase, on-line diagnostic approach linking the
diagnosis and consensus procedures. We will utilize algorithm DD to introduce the diagnostic ra-
tionale under the HFM, and present the details and formal analysis for the subsequent algorithm
HD. In Algorithm HD (Hybrid Diagnosis), we extend on DD to provide the capability of discrim-
inating between node and link faults, where possible; to assess the severity of the node fault from
temporal perspectives, and to incorporate the facets of node recovery and re-integration.

8.1 Distributed Diagnosis: Node Health Monitoring

The goal of algorithm DD, shown in Table 3, is for all non-faulty nodes to acquire a consistent view of
the health of all other nodes in the system. This is done by an exchange of local health assessments
and subsequent computation of a consistent global health vector, using the OMH(r) algorithm. It
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Table 3: Algorithm DD for Node ¢ : Basic Consensus Driven Syndrome Formulation

DDO Initialize s} to be the zero health vector.

DD1 [Local detection:] Over round D(n), Vi,j € N, each processor ¢ monitors each message mess; Vj # i.

DD1.1 If received message is mess;”, update o}; = (05 OR 1), thus forming the local n'" round health
vector s;'.

DD2 For each i, j, as round D(n) completes:

DD2.1 [Global Dispersion:] Broadcast updated health vector s7 =< o7y, 07%,...00n >.

DD2.2 [Global Assimilation:] Node i collects health vectors s?~' computed during diagnosis interval D(n—1)
into the N x N global syndrome matrix Si("*l). Row [ of Si("*l) is the syndrome vector 51("71) received

from node [.

DD3 [Syndrome Matriz/Diagnosis:] Combine the values in column j of Si("fl), corresponding to other nodes’
views of the health of node j, by using a hybrid voting function to generate a consistent health value, faulty
or non-faulty, for node j. Node exclusion/inclusion as per consensus value exceeding [].

DD4 Increment round counter n and proceed to step DDO.

%Unlike PP and PLP segregation of ILM, MM and IFM classes, mess;- encompasses all faults locally discernible
by processor 1

is pertinent to mention that the diagnosis algorithm running during diagnosis interval D(k) utilizes
information collected across the system over the previous round D(k — 1). All operations can be
considered to be on-going in a pipelined manner. It may be noted that the basic operations of PP
and PLP are integral to the operation of DD.

Inter-node messages are considered as the sole indicators of the health of a node. Based on
this, step DD1, the local detection phase, examines all received messages for errors. Since the
detection of an error in a message by its receiver implies that the sender is locally benign faulty,
local detection utilizes the parity checks, checksums, message framing checks, range checks, sanity
checks, and comparison techniques. The failure to receive an expected message from a node or an
early/delayed message is also logged as an error for that node.

During D(n), each node i locally formulates a health vector, s} =< o}},00,...,00y >, con-
taining an entry, o7, corresponding to the perceived status of each system node, j. If any error is
detected from a given node, j, its entry oj; is set to 1; otherwise it remains at the fault-free value
of 0. This local diagnosis step is equivalent to the identity mapping, as no further local diagnosis

occurs following detection.

To achieve consistency of this local diagnosis, and to build the global perspective to handle the
“locally undetectable” class of value faults, information dispersal across the system is necessitated.
At the end of each detection interval, in step DD2.1, the local health vector s} of node i is sent to
all other nodes. Thus, each node compiles (and analyzes) a global syndrome matrix during D(n+1)
that contains the local health assessments of every node by other nodes over D(n).

During D(n), global diagnosis of each node’s health during D(n — 1) is performed in step DD3.

The local health vectors computed during D(n — 1) form the rows of the global health matrix
sy,

i If no health vector or an discernibly erroneous vector is received from node [, then an
(n—1) (n—1)

error indicator value, £, is adopted for each ;] in s, , and node [ is assessed for an error
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(n—1)

7 )

by updating o75. The global health vector held by each non-faulty node ¢ is denoted by h
with entries ng}_l) giving the global status of node j during D(n —1). The global health vector for
D(n—1) is computed during D(n) by applying a hybrid majority voting function, described below,
to each column of Sin_l).

First, all elements of column j equal to £ are excluded, along with node j’s opinion of itself
(o](-?fl)). The final value, 778-171), is the majority of the remaining values. If no majority exists, the
value 0 should be adopted to ensure that a good node is not identified as faulty. At the conclusion
of D(n), each good node will contain a global health vector hgn_l) =< ngl_l),ngl_l), . ,ngff_l) >,
where ngn_l) = 1 means that node i has diagnosed node j as being faulty during D(n — 1). It
needs to be stated that this diagnosis is consistently achieved by all non-faulty nodes, as this is the

HIC-Agreement condition.

8.2 Formal Requirements for DD

The requirements for algorithm DD to provide for diagnosis are as follows:

e Correctness: If there are more than 2a + 2s + b+ 1 processors, a < 1, and DD diagnoses j
as faulty, then j is indeed faulty.

e Completeness: If there are more than 2a + 2s 4+ b+ 1 processors, ¢ < 1, and some processor
7 is benign-faulty, then DD will diagnose j as faulty.

Algorithm DD is thus required to diagnose simple faults in the presence of arbitrary faults. As
discussed before, it is impossible to reliably diagnose all arbitrary faults. Thus, here the requirement
is only to diagnose the benign-faulty processors in the presence of arbitrary-faulty processors.

There is no requirement for DD to diagnose either benign or value faults. In fact, as pointed out
in an earlier paper [36], algorithm DD is incomplete with respect to arbitrary faults. For example,
consider the case where there are four total processors, one arbitrary-faulty and three good. The
arbitrary-faulty processor may send apparently bad'# messages to one of the good processors. Even
though that processor will report the faulty message, there are not enough accusations to allow the
other good processors to determine which processor is faulty.

We present the complete formal specification of algorithm DD in the Appendix section 12.4.

9 Algorithm HD: Hybrid Fault Diagnosis

In DD, an error in a single message from a node during a single diagnosis interval is sufficient
to cause that node to be removed from the system. The local detection mechanism described
previously for DD1 treats a node that sends a single erroneous message as if all messages from the
node were indeed faulty. Essentially, a transient and a permanent fault will have an identical fault
effect here. This is not an efficient strategy, and could lead to rapid depletion of system resources.
Further, DD provides only the fault detection and isolation facets of FDIR. Recovery of a faulty

Hocally detectable
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Table 4: Fault Classification under HD

| Type | | Recorded in: |
MM (5) Missing Message €l
IFM?(j) Improperly Formatted Message €172
ZLM?(j) Improper Logical Message €153
CYM7?(j) || Failing Comparison to Voted Value €1

node or node re-integration require refined temporal considerations, which the DD does not fully
support. These issues, and increasing the diagnostic resolution, are dealt with in HD (Table 5),
building on the basic framework of DD. We also add temporal fault detection to the local diagnosis
primitive, and replace the simple good—bad local diagnosis with a preliminary assessment of the
node and/or link fault symmetry.

9.1 Local Primitives in HD

The scalar status value, o7, used in step DD1 of the previous algorithm, corresponding to node
i’s local assessment of node j’s health during D(n), is replaced in step HD1 by a local diagnosis
vector, e;;. This local diagnosis vector is used to indicate the type of detection mechanism which
found errors in messages from node j, providing a preliminary diagnosis of the fault type. While
the entries in e}, =< €1, €9, ..., €5y, > can have a one-to-one correspondence with the m fault
detection mechanisms implemented in the system, as in MAFT [37, 35], we consider four potential
diagnoses shown in Table 4, as refined over those presented in Sec. 8.

The information in the local error log, €7, is condensed into a set of boolean error flags and a

cumulative penalty weight which is sent in the summary error report on an accused node j. The
boolean flags indicate that one or more errors of a given type were observed. An individual flag can
represent either a symmetric or asymmetric communication error and flag definitions are determined
by a small lookup table which is programmed identically in each processor. One example of the
flexibility provided by this table is that the model can be selected by programming all flags to
be symmetric (model PP) or identifying the specific asymmetric flags (model PLP/HD). The use
of boolean error flags reduces the total amount of information to be transmitted for reporting an
error; however, multiple occurrences of the same error type cannot be represented. The cumulative
penalty weight performs this function and reflects the detection of all errors. Also, by aggregating
all errors over round n, the size and total number of reports can be fixed.

We assign a penalty weight to each error type, commensurate with its assumed severity in the
system implementation, and accumulate the weights for each node over D(n). By definition, these
detected errors result from benign faulty nodes. However, discerning the potential symmetry of the
errors is useful in discriminating between a crash faulty node and a potentially less severe faulty
communications link. The relationships among these accumulated penalty counts, referred to as
WMMs WILM, WIFM, woyvy for the MM, ILM, IFM and CVM error categories, forms the basis
of inferences on fault-type. Of course, more or fewer weights could be used. Also, an additional
correlated weight can be used if a faulty node exhibits several of these behaviors during a single
diagnosis interval. It is interesting to note that selection of different weights to different fault
types is very much application dependent. Essentially, for different system operation profiles this
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Table 5: Algorithm HD for node ¢ : Enhanced Consensus Driven Syndrome Formulation

HDO Initialize expanded health vector, sj =< e}y, el, ..., ey >, to zero at the beginning of D(n); restore penalty
weight vector pi' =< pi1, pis, - - -, pin > from D(n-1).

HD1 [Local Diagnosis:] Over round D(n), Vi, j € N, each processor ¢ monitors each message mess; Vj # i.

HD1.1 If mess; € MM, then set €};; = max(ej;, 1) and pj; = pJ + wimrnm.

HD1.2 If mess; € ZFM, then set €}j, = max(efj», 1) and pj; = p}; + wrrm.

HD1.3 If mess; € ZLM, then set €3 = max(
(

HD1.4 If mess; € CVM, then set ¢;;4 = max

n n _ n
€ij3, 1) and pi; = pi; + wrrm.

n n _n
€i5,1), and p; = p; +wov.

HD2 For each i, j, as round D(n) completes:

HD2.1 [Global Dispersion:] Broadcast updated health vector, sf =< o}},07%,...07y >, and penalty count
vector, p? =< p?hp?% s 7P?N >.

HD2.2 [Information Assimilation:] Node i collects the health vectors computed during D(n — 1) into the

N x N syndrome matrix Si("*l), where row [ of Si("*l) is the syndrome vector 51("71) received from node

I. Similarly, the penalty counts computed during D(n — 1) are collected into the matrix Pf"fl)7 where

)

column j of Pf"fl contains the weights received from all nodes regarding node j.

HD3 [Consensus — Diagnosis:] Combine the values in column j of Si("fl) to generate a health value, faulty or
( —
column. Combine the values in column j of Pi("_l) to generate a consistent incremental penalty count for node
j during D(n — 1) using a hybrid voting function. Node Inclusion/Exclusion based on threshold matching to
Incremental and Cumulative Penalty Counts.

good, for node j by first OR-ing the entries in e 1), and then performing a hybrid majority vote down the

HD4 Increment round counter n and proceed to step HDO.

provides an effective way of controlling the system features of availability metrics and also defining
the fail-safe/stop conditions as desired or warranted for the particular application profile. The final
extended health vectors and accumulated penalty weights from D(n) are sent to all nodes at the
end of D(n).

9.2 HD: Global Diagnosis/Properties

During D(n), the extended health vectors and penalty weights from all nodes during D(n — 1)
are analyzed in a fashion similar to that in DD. Steps HD2 and HD3 ensure a consistent global
perspective on the cumulative penalty values associated with each and every system node following
global information collection in HD2. The overall relative value of a fault type e.g., €1 > €;j2's,
are useful in attempting to identify the type of fault. The penalty weight for each node under
diagnosis is its initial value in OMH(1). The asymmetric fault coverage is limited to one fault by
the single re-broadcast round.

Since behavior of a faulty node is unrestricted, and a faulty node can send different corrupt
health vectors (or none) to other nodes, good nodes may receive different health matrices. So, we
must prove that the final health vectors h; computed by all good nodes ¢ during each diagnosis
interval are consistent. Furthermore, we must assess the correctness and completeness of diagnosis.
Global diagnosis is correct for D(n — 1) if each node identified as faulty by a good node in step
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HD3 of HD (during D(n)) is indeed faulty. Similarly, global diagnosis is complete for D(n —1) if all
nodes that were faulty during D(n —1) are identified as such in step HD3 in that diagnosis interval.

While the statement of algorithm HD does not explicitly invoke any fault tolerance algorithm, it
is implicit in the definition of HD and in the fault masking used in the the HIC(a) algorithm. The
local health of node j as viewed by node 7 during D(n — 1), assessed as either 0 or 1, is equivalent
to node j holding a personal value of either 0 or 1 and transmitting it to node i during D(n — 1).
This corresponds to the initial round of the OMH(a), with 7 = 1. The sending by node i of its
local assessment of node j’s health to other nodes at the end of D(n — 1) represents the rebroadcast

round of OMH(1), with the hybrid majority column vote of Si(n) during interval D(n) equivalent
to the final value for j as computed by node i in OMH(1).

Since HD is executed on all nodes, and each node ¢ monitors all other nodes, completion of HD
is equivalent to all good nodes achieving interactive consistency during D(n) on the health of all
other nodes during D(n — 1). Theorems 7 and 8 provide conditions under which the global health
vectors h?fl are guaranteed to be consistent on all good nodes. These theorems also permit us to
prove the following correctness and completeness results.

Theorem 11 (Correctness) If n > 2t — b+ 1, where t = a + b+ s faulty nodes are present during
both D(n—1) and D(n), and a < 1, then diagnosis under Algorithm HD during D (n) is guaranteed
to be correct for D(n —1).

Proof: By Theorems 7 and 2, with the default majority value set to 0, all good nodes will have

hz(ln_l) = 0 for the values of all good nodes [. Thus, any node 5 for which hg?_l)

a

= 1 must be faulty.

Theorem 12 (Completeness) If n > 2t — b+ 1 as defined above, a < 1, and node j was benign
faulty during D(n— 1), then under Algorithm HD, node j will be diagnosed during D(n) as having
been faulty during D(n —1).

Proof: By definition, a node that is benign faulty during D(n — 1) will be detected locally on each
good node. Thus, the sender’s initial value for these nodes is 1, with all good nodes adopting 1
(faulty) as the local diagnosis during D(n — 1), and agreeing on 1 at the conclusion of D(n), by
Thm 7. O

This covers the cases for data and node faults. It must however be kept in mind that correctness
and completeness conditions for value faults (symmetric or asymmetric) is ensured after the re-
broadcast round of health vectors is completed.

10 Formal Analysis for Algorithm HD

Next we present a re-write of algorithm HD, termed as F-HD, for the formal analysis. As for F-PP
and F-PLP, the purpose of the simplification, F-HD, is to reduce the notational complexity and
emphasize the operations. The main simplification between F-HD and HD are that F-HD uses the
current rounds data to diagnose faults, F-HD makes more explicit the exchange of some computed
values, and F-HD exchanges only the penalty weights, where HD broadcasts both penalty weight
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and boolean health information. In F-HD the assumption is that a node 7 accuses another node j
of being faulty if and only if it broadcasts a non-zero penalty weight. One could combine algorithm
DD and F-HD to provide both boolean health information (DD) and penalty weight information (F-
HD) into a combined algorithm that would more closely simulate the above algorithm HD. As was
done for algorithms F-PP and F-PLP, developing the formal arguments quite often helps to better
understand the algorithms themselves, and also be able to provide clarifications or modifications
for better working of the algorithms.

10.1 Algorithm F-HD

Each processor sends its report sf to all other processors.

F-HD(0)

1. All accusations of faults are cleared by setting pf to be the zero penalty vector.

F-HD(k), k > 0

1. Each processor i executes one frame of the workload, arriving at some value or
checksum Val(i)

2. Each processor sends Val(%) to all other processors.
3. Initialize pf = pk, pk,, .-+, pF, to be the zero health vector

4. Node i monitors message traffic from all other nodes throughout F-HD(k). If the

value received from j is apparently bad, set pfj =1lin sf.

5. Node ¢ reliably distributes its health vector pf = pé“l, pr, s pfn to all other nodes
using OMH(1).

6. Node ¢ collects health vectors pf into the n X n global health syndrome matrix
Pi(K). Row [ of PZ-(K) is the syndrome vector pgk) received from node [ in the
previous step.

7. Node % combines the values in each column j of Pi(K) using a hybrid majority
voting function to generate a consistent health value, faulty or non-faulty, for node

j. If the penalty value is nonzero, 7 declares j faulty.

As stated above, we have not described detailed formal analysis of algorithm HD. Instead we
have developed a variant called F-HD. Algorithm HD is essentially algorithm DD with some extra
mechanisms to separate fault-effects and to perform fault severity estimation as well as fault decays.
As with algorithm DD, algorithm HD and HD’s agreement component are analogous to OMH(1),
which provides resilience against only a single arbitrary fault.
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10.2 Formal Specification for HD

The formal specification of algorithm F-HD follows the specification of DD in Section 8 and 12.4 in
most respects. One key difference is the instance of the OMH(r) theory imported. The specification
of algorithm DD is parametric in the types of values being voted on. DD passes the type of values
being voted on to the OMH(r) theory, since agreement (algorithm OMH(r)) will be run on these
values. On the other hand, the specification of algorithm F-HD assumes that the values being
voted are natural numbers. This choice is made in order to simplify the specification slightly as
well as to demonstrate that it is possible to instantiate the OMH(r) specification with a concrete
type (natural numbers). However, even this instance is still abstract in that it presents no bound
on the size of natural numbers used. As has been argued elsewhere [13], an effective bound on the
size of natural numbers can be maintained.

The instance of OMH(r) utilized in the specification of F-HD below uses algorithm OMH(r)
to allow processors to agree on a natural number. The other parameters to the OMH(r) theory
are the number of rounds used, a specific error value, and two functions called act and unact in
OMH(r) theory. These functions are implemented over the naturals as the increment and decrement
functions. However, the decrement function must ensure that it always returns an natural number,
even in the case its input is zero, and is thus called Decrement.

One other difference between the specification of algorithms F-HD and DD is that algorithm
DD is working over the boolean domain, and thus the output value can be used directly in the
statement of theorems, while F-HD is working with natural numbers. Thus a top level function
HDtop is defined as a simple threshold predicate over the natural number results of HD.

The detailed formal specification of F-HD is presented in the Appendix Section 12.5.

10.3 Algorithm HD: Addressing Temporal Perspectives

Following the formalism of the HD algorithm, we now motivate the fault resolution and the temporal
aspect of aggregating the penalty weights in steps HD1 and HD3. It should be kept in mind that
the processor and link fault diagnosis of PLP is directly encompassed under HD.

Algorithm HD improves the judgment of fault severity at any interval in time so that units with
less severe fault indications are left operational. Additional processing is required in HD as we are
interested in handling fault-effects over a longer round of time than the diagnostic interval. We
can build on the results obtained by instantaneous diagnosis(DD) by placing them into a temporal
framework(HD).

Errors can be viewed as the manifestation of faults which exist in the system. Duration is defined
as the total time a fault and its effects are present in the system during actual operation. We can
introduce the concept of decay-time to be the length of time an error would be present if the fault
was instantaneously applied and removed. Thus, the error is the effect of an instantaneous fault
injected at time to which lasts for a time At;. The concept of decay-time allows error information
to be carried across multiple intervals so that instantaneous diagnosis information can be related
over time.

It must be noted that the decay-time does not always correlate directly with the severity level
of the error. If a function in the system hard core is impacted by the transient fault, it may be
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necessary to immediately deal with the effects rather than waiting for them to die out. This method
can account for the possibility that errors may propagate due to lack of containment and cause
other errors which have their own decay-time and severity.

Errors which have shorter decay-times will have less time to further impact system operation.
For example, a lost bit on a communication link due to a transient fault should be considered as
an error with a short decay-time. If a noise pulse affects the link, some time will need to pass
before the energy is dissipated from the medium. During this time, the messages being sent may
be corrupted, depending on the level of noise. Another example would be a memory module with
scrubbing. When an an error occurs, there will be a time period where the error could propagate
and induce further errors. Once the scrubbing mechanism detects the error and removes it, the
immediate danger of error propagation will have lapsed (even though the faulty source may still be
present and/or intermittent).

Decay rates can therefore be determined if there exist regular and predictable times where errors
can be detected or removed. If the times of detection are not regular, it is prudent to assume a
worst case scenario which can be arrived at in a number of ways. The first approach would be to
assess a penalty so severe it causes exclusion immediately so that further reliance on fault detection
is not needed. A second method would be to attempt to identify the worst case detection time by
a higher level mechanism. This method may allow for some error propagation until it begins to
affect a critical higher level function. A third alternative is to schedule more extensive FDIR tasks
to attempt to collect more information while imposing greater overhead on the system.

Based on the concept of decay-time, we can assume that if the fault is applied and then goes
away immediately, the fault-effects should only last for a certain period of time. Faults with their
associated decay-times are handled as follows. First, a penalty weight (W) should be assessed
against the faulty unit in the interval D(k). Second, during the following diagnostic intervals, for
the node displaying sustained fault-free behavior, the penalty weight against it is reduced by a
predetermined amount, referred to as the decrement-count (DC). The ratio, W./DC provides the
decay-time for the given error.

This decrement-count is introduced so that temporary malfunctions do not result in permanent
exclusion. Note, that if the fault persists, penalties will continue to accrue and the decrement
amount will be offset by new increases in penalty weights. The duration aspect of faults is also
handled in this model. For the fault being transient, the source of the fault is removed and the effects
should disappear after the appropriate decay time has passed. For a permanent fault, the source
of the fault will remain present and new penalties will continually accrue over each new diagnostic
interval until an exclusion threshold is reached. In order to handle transient and intermittent faults
which are severe enough to cause exclusion but allow re-admission, the exclusion and re-admission
thresholds must be appropriately separated.

This approach alternately supports modeling of permanent faults by setting the decrement
count to zero. If one wants to support graceful re-admission of system units with on-line repair,
even permanent faults can have a relatively short decay-time. The decay time can also be based on
the time of re-admission, since once the unit is repaired its count must be decremented for it not
to appear faulty anymore.
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11 Conclusion

Most existing diagnosis strategies treat diagnosis as a stand-alone process in the system operations,
and are primarily off-line techniques. In this paper, we have addressed the problem of performing
on-line diagnosis as an integral phase of the system FDIR process. Unlike existing approaches, the
strategy is based on monitoring the system message traffic rather than using explicit test procedures.
We believe our work to be the first to present an on-line diagnosis solution incorporated into the
FDIR approach for a distributed environment.

Extending beyond the fixed fault severity models (time-domain and data-domain, s-a-X, Byzan-
tine faults), the HFM framework is developed, which permits handling a continuum of fault types
as groups of faults of varying fault manifestations under a single algorithm. The HFM’s applicabil-
ity to diagnosis is formally shown through the development of a distributed agreement algorithm
(OMH) and diagnosis algorithms DD and HD. The integration of HFM into the diagnosis domain
facilitates increased diagnostic resolution which can be used for improved resource management
strategies.

The overall approach presented in this paper is unique in presenting a comprehensive diagnostic
solution to span the entire range of encountered faults from the simplest benign fault case to the
extreme arbitrary fault cases, all within a single diagnostic paradigm, and as an on-line solution.
We have developed algorithms which provide for diagnostic support for progressively more com-
prehensive and generalized fault models. Furthermore, we have presented diagnostic algorithms
which, unlike the simplifying assumption in classical approaches of diagnosis being conducted in a
fault-free off-line environment, not only provide on-line diagnosis, but are also tolerant to faults in
the diagnostic process.

Furthermore, we have presented techniques of formal analysis and verification which greatly
help to rigorize the correctness and completeness of the developed algorithms, and also help de-
velop insights into the operations of the algorithms. Such an approach is shown to result in better
understanding of the algorithms and for providing clarifications, and sometimes, modifications for
better working of the algorithms using a systematic and rigorous formal specification and verifica-
tion approach.

The paper has also introduced the concept of fault decay-time and its impact in handling
transient, intermittent and permanent faults in conjunction with Byzantine faults. The usage of
penalty counts is shown as a basis for graceful node exclusion and re-admission protocols. In future
work a detailed penalty count model will be developed. Overall we have shown that a more efficient
and flexible approach to FDIR can be constructed, supported by on-line diagnosis algorithms under
a generalized hybrid fault-effects model.
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12 Appendix

The PVS theories of all presented algorithms are available from lincoln@csl.sri.com and also at
http://www.csl.sri.com/~lincoln.

12.1 Formal PP Specification

Finally, here we give the entire theory specification:

pp[m : posnat,n : posnat,T : TYPE, error: T, BAD: {z: T | -~z = error},
GOOD: {z: T | (mz = error) A (-2 = BAD)},
Val: [uptojm] — {x: T | = (x = error V 2 = BAD VvV z = GOOD)}]]:
THEORY

BEGIN

rounds : TYPE = upto[m]

t: VART

fcu: TYPE = below[n]

fcuset : TYPE = setof[fcu]
fcuvector : TYPE = [fcu — T

G,p,q,z: VAR fcu
v,v1,V2 . VAR fcuvector
caucus : VAR fcuset

r, R, Ry : VAR rounds
PSET: TvyPE = fcu

pset : VAR setof[PSET]
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i,j,k,is,jo : VAR PSET
Accuse, OldAccuse : VAR [PSET, PSET — bool]
AllDeclare : VAR [PSET, PSET — bool]
IMPORTING card_set[fcu, n, identity[fcu]],

finite_cardinality[fcu, n, identity[fcu]],

filters|fcu], hybridmjrty[T,n, error]
statuses : TYPE = {symmetric, manifest, good}
status : [fcu — statuses]
g(z) : bool = good?(status(z))
s(z) : bool = symmetric?(status(z))
¢(z) : bool = manifest?(status(z))
cs(caucus) : fcuset = filter(caucus,c)
ss(caucus) : fcuset = filter(caucus, s)
gs(caucus) : fcuset = filter(caucus, g)
fincard-all : LEMMA

fincard(caucus)
= fincard(cs(caucus)) + fincard(ss(caucus)) + fincard(gs(caucus))

send : [T, fcu, fcu — T
sendl : axioM g(p) D send(t,p,q) = t

send2 : AXIOM c¢(p) D send(¢,p,q) = error

send(¢,p, 2)

send4 : AXIoM s(p) D send(t,p,q)
send5 : LEMMA send(¢,p,q) = send(t,p,z)
HybridMajority(caucus,v) : T = PROJ_1(Hybrid-mjrty(caucus,v,n))

HybridMajorityl : LEMMA
fincard(gs(caucus)) > fincard(ss(caucus))
AN (Vp: glp) A p€caucus D v(p) = t)
A t # error

A

Vp:

¢(p) A p € caucus
D wv(p) = error)
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D HybridMajority(caucus,v) = t

HybridMajority2 : LEMMA
(Vp: p€caucus D vi(p) = v2(p))
D HybridMajority(caucus,v;) = HybridMajority(caucus, vs)

HybridMajority3 : LEMMA
HybridMajority(caucus,v) = ¢
A
(Vp.q
g(p) A g(q) N p € caucus A ¢ € caucus
D (v(p) = vlg) A v(p) # error))
A fincard(gs(caucus)) > fincard(ss(caucus))
A
(Vp:
c(p) A p € caucus
D wv(p) = error)
D (Vp: g(p) A p€caucus D v(p) = t)

Syndrome(R, j,i, OldAccuse) : T =
IF OldAccuse(i,j) V (= Val(R) = send(Val(R),j,i)) THEN BAD
ELSE GOOD
ENDIF

KDeclareJ(pset, R, OldAccuse, j, k) : bool =
HybridMajority(pset, A i : send(Syndrome(R, j,i, OldAccuse),i,k))
= BAD

PP(pset, R, OldAccuse)(i, ) :
RECURSIVE bool = 1IF R = 0 THEN FALSE
ELSE KDeclareJ(pset, R, OldAccuse, j, )
Vv
PP(pset,R — 1,
()\ 7:2, k:

OldAccuse(ia, k)

v 3 j2

(KDeclareJ(pset, R, OldAccuse, jo,i2)

£
(send(Syndrome(R, j2, k, OldAccuse),
kaiQ)
= BAD))))(i,

7)
ENDIF
MEASURE (A pset, R, OldAccuse — nat: R)

Correctness_Prop(R) : bool =
(V i,j, pset, OldAccuse :
g(1)
A i € pset
A j € pset
A fincard(gs(pset)) > fincard(ss(pset)) + 1
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A PP(pset, R, OldAccuse)(i, j)

A
vV p,q,k:
((9(p

A g(g) AN OldAccuse(p, k))
D> Ol

dAccuse(q, k)
A (c(k) V s(k))))
D c(j) Vv s(d))

Correctness : LEMMA Correctness Prop(R)

Completeness Prop(R) : bool =
(V i, j, pset, OldAccuse :

g(1)
A i € pset
A j € pset
A
(c(4)

V (s(j) A (Vt,p: send(t,j,p) # t)))
A fincard(gs(pset)) > fincard(ss(pset)) + 1
D PP(pset, R, OldAccuse)(i, 7))

Completeness : LEMMA (V R: Completeness_Prop(R) V R = 0)
Empty(i,j) : bool = FALSE

Final_Correctness : THEOREM
(Vi,j:
g(i)
A fincard(gs(fullset[fcu])) > fincard(ss(fullset[fcu])) + 1
A PP(fullset[fcu], R, Empty)(i, j)
5 eG) v ()

Final_Completeness : THEOREM
(Vi,j:
9(i)
A (el) v (50G) A (Vhp: send(tdp) £ )
A fincard(gs(fullset[fcul))
> fincard(ss(fullset[fcu])) + 1
AR >0
D PP(fullset[fcu], R, Empty)(i, j))

END pp

12.2 Formal PLP Specification

The formal specification of algorithm PLP follows that of algorithm PP quite closely. We point out
that the possible fault classes have changed to include link faults, and the algorithm has changed to
explicitly check for the two different kinds of error values. The use of hybrid majority now requires
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that two different kinds of error be excluded from the vote. However, an implementation where
HybridMajority excludes only benign faulty values (that is, Serror) satisfies all the requirements
as well.

Otherwise the specification is essentially unchanged.

plp[m : posnat,n : posnat,T : TYPE,Serror: T,Aerror: {z: T | —x = Serror},
BAD: {z: T | (—z = Serror) A (-z = Aerror)},
GOOD: {z: T
| (mz = Serror) A (mx = BAD) A (—z = Aerror)},

Val : [upto[m]

= {z: T

|

(mx = Serror)A

(=2 = Aerror)A
(—mz = BAD) A (mz = GOOD)}]] :

THEORY

BEGIN

rounds: TYPE = upto[m)]

t: VAR T

fcu: TYPE = below[n]
fcuset : TYPE = setof[fcu]
fcuvector : TYPE = [fcu — T

G,p,q,z: VAR fcu

v,v1,U2 ¢ VAR fcuvector

caucus : VAR fcuset

r, R, Ry : VAR rounds

PSET : TYPE = fcu

pset : VAR setof[PSET]

i,7,k,i2,j2 : VAR PSET

OldAccuse : VAR [PSET,PSET — bool]
AllDeclare : vAR [PSET,PSET — bool]

IMPORTING card_set[fcu, n, identity[fcu]],
finite_cardinality[fcu, n, identity[fcu]], filters[fcu], hybridmjrty[T, n, Serror]

statuses : TYPE = {link, manifest, good}
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status : [fcu — statuses]
g(z) : bool = good?(status(z))
¢(z) : bool = manifest?(status(z))

I(z) : bool = link?(status(z))

cs(caucus) : fcuset = filter(caucus,c)
Is(caucus) : fcuset = filter(caucus,!)
gs(caucus) : fcuset = filter(caucus, g)

fincard_all : LEMMA
fincard(caucus) = fincard(cs(caucus)) + fincard(ls(caucus)) + fincard(gs(caucus))

send : [T,fcu,fcu — T

sendl : AXioM ¢(p) D send(¢,p,q) =t

send2 : AXIOM ¢(p) D send(t, p,q) = Serror

send4 : axioM [(p) D send(¢,p,q) = Aerror V send(t, p,q) =t
HybridMajority(caucus,v) : T = PROJ_1(Hybrid_mjrty(caucus,v,n))

HybridMajorityl : LEMMA
fincard(gs(caucus)) > fincard(Is(caucus))A
(Vp: g(p) A (p € caucus) D v(p) =t)A
t # SerrorA
Vp:
¢(p) A (p € caucus) D
v(p) = Serror) D
HybridMajority(caucus,v) = ¢

HybridMajority2 : LEMMA
(Vp: (p € caucus) D vi(p) =v2(p)) D
HybridMajority(caucus,v;) = HybridMajority(caucus, vs)

HybridMajority3 : LEMMA
HybridMajority(caucus, v) = tA
(Vp,q:
g(p)A

9(@)A
(p € caucus)A

(¢ € caucus) D

(v(p) = v(g) A v(p) # Serror))A
fincard(gs(caucus)) > fincard(ls(caucus))A

Vp:
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c(p) A (p € caucus) D
v(p) = Serror) D
(Vp: g(p) A (p € caucus) D v(p) =t)

Syndrome(R, j,i,0ldAccuse) : T =
IF OldAccuse(i,j) V (=Val(R) = send(Val(R), j,i)) THEN BAD ELSE GOOD ENDIF

KDeclareJ(pset, R, OldAccuse, j, k) :
bool = HybridMajority(pset, A i : send(Syndrome(R, j,i, OldAccuse),i,k)) = BAD

PLP(pset, R, OldAccuse)(i, j) :
RECURSIVE bool = 1F R =0 THEN FALSE
ELSE
KDeclareJ(pset, R, OldAccuse, j,7)V
PLP(pset,R — 1,
()\ ig, k:
OldAccuse(iz, k)V
3'].2 :
(KDeclareJ(pset, R, OldAccuse, ja,i2) #
(send(Syndrome(R, j2, k, OldAccuse), k, i2) =
BAD))))(i,

7)

ENDIF
MEASURE (A pset, R, OldAccuse — nat: R)

Correctness_Prop(R) : bool =
(V i, j, pset, OldAccuse :
g(iA
(i € pset)A
(j € pset)A
fincard(gs(pset)) > fincard(Is(pset)) + 1A
PLP(pset, R, OldAccuse)(i, j)A

V' p,g,k:

((g(p)A

9(@)A
OldAccuse(p, k)) D

OldAccuse(q, k)A
(c(k) V I(K)))) D
=(9(4)))

Correctness : LEMMA Correctness_Prop(R)

Completeness_Prop(R) : bool =
(V i, j, pset, OldAccuse :
g(i)A
(i € pset)A
(j € pset)A
(c()Vv
(LA
VMt,p:
send(t, j, p) #
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HHA
fincard(gs(pset)) > fincard(ls(pset)) + 1>
PLP(pset, R, OldAccuse)(i, 7))
Completeness : LEMMA (V R: Completeness_Prop(R)V R = 0)
Empty(i,j) : bool = FALSE
Final_Correctness : THEOREM
(Vi
g(A
fincard(gs(fullset[fcu])) > fincard(Is(fullset[fcu])) + 1A

PLP (fullset[fcu], R, Empty)(Z,j) D
=(9(5)))

Final_Completeness : THEOREM

send(t,4,p) # £)))A
fincard(gs(fullset[fcu]))
> fincard(ls(fullset[fcu])) + 1A
R > 0D
PLP(fullset[fcu], R, Empty)(i, 7))

END plp

12.3 Formal OMH(r) Specification

A gentle introduction to the formal specification of OMH is omitted from this document. [13]
presents a very readable introduction and derivation of this formal specification along with a de-
scription of its complete formal verification using PVS [17]. We have used the nomenclature used

in [17] for this section.

omh[m : nat,n: posnat,T : TYPE, error: T, act, unact: [T'— > T]]: THEORY
BEGIN

ASSUMING
act-ax : ASSUMPTION (V (¢t: T): act(t) # error)
unact_ax : ASSUMPTION (V (¢ : T') : unact(act(t)) = t)
ENDASSUMING

rounds: TYPE = upto[m)]
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t: VAR T

fcu: TYPE = below[n]
fcuset : TYPE = setof[fcu]
fcuvector : TYPE = [fcu — > T

G,p,q,z: VAR fcu
v,v1,V2 . VAR fcuvector
caucus : VAR fcuset

r : VAR rounds

IMPORTING card_set[fcu,n, identity[fcu]],
finite_cardinality[fcu, n, identity[fcu]], filters[fcu], hybridmjrty[T, n, error]

statuses : TYPE = {arbitrary, symmetric, manifest, good}
status : [fcu — > statuses]

a(z) : bool = arbitrary?(status(z))

s(z): bool = symmetric?(status(z))

¢(z) : bool = manifest?(status(z))

g(z) : bool = good?(status(z))

as(caucus) : fcuset = filter(caucus,a)
ss(caucus) : fcuset = filter(caucus, s)
cs(caucus) : fcuset = filter(caucus,c)
gs(caucus) : fcuset = filter(caucus, g)

fincard-all : LEMMA
fincard(caucus)
= fincard(as(caucus)) + fincard(ss(caucus)) + fincard(cs(caucus)) + fincard(gs(caucus))
send : [T, fcu, fcu — > T
sendl : axioM D g(p)send(¢t,p,q) = ¢
send2 : AXIOM D c¢(p)send(t,p,q) = error

send4 : AxioM D s(p)send(t,p, q) send(¢, p, z)
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send5 : LEMMA D NOT a(p)send(t,p,q) = send(t,p,z)
HybridMajority(caucus,v) : T = PROJ_1(Hybrid-mjrty(caucus,v,n))

HybridMajority_ax1 : LEMMA
D fincard(gs(caucus)) > fincard(as(caucus)) + fincard(ss(caucus))
AND (V p: g(p) AND p € caucus IMPLIES v(p) = t)
AND t / = error
AND (V p: c¢(p) AND p € caucus IMPLIES v(p) = error)
HybridMajority(caucus,v) = ¢

HybridMajority_ax2 : LEMMA
D (Vp: p € caucus IMPLIES vi(p) = v2(p))
HybridMajority(caucus,v;) = HybridMajority(caucus, vs)

OMH(G,r,t, caucus) :

RECURSIVE fcuvector = IF 7 = 0 THEN (A p: send(t,G,p))
ELSE
Ap:
IF p = G THEN send(t, G, p)
ELSE

unact(HybridMajority(remove(G, caucus),
(A(g: {s: nat | s < n}):
OMH(q,r — 1, act(send(t,d,q)),
remove(G, caucus))(p))))
ENDIF)
ENDIF
MEASURE (A G,r,t, caucus — > nat: r)

Validity _Prop(r) : bool =
(V¥ p,q, caucus,t :
D NOT a(q)
AND p € caucus
AND q € caucus
AND fincard(caucus)
> 2 % (fincard(as(caucus)) + fincard(ss(caucus))) + fincard(cs(caucus))
+r
OMH(q, r,t, caucus)(p) = send(t,q,p))

Validity : LEMMA Validity_Prop(r)

Agreement _Prop(r) : bool =
(V¥ p,q, z, caucus,t :
2 (9(p)

AND g(q)
AND p € caucus

AND q € caucus
AND z € caucus
AND fincard(caucus)
> 2 x (fincard(as(caucus)) + fincard(ss(caucus)))
+ fincard(cs(caucus))
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+r
AND r >= fincard(as(caucus)))
OMH(z,r,t, caucus)(p) = OMH(z,r,t, caucus)(q))

Agreement : LEMMA Agreement_Prop(r)

Validity_Final : THEOREM
D g(p)
AND NOT a(G)
AND fincard(a) <= m AND 2 x fincard(a) + 2 * fincard(s) + fincard(c) + m < n
OMH(G,m, t, fullset[fcu])(p) = send(t,G,p)

Validity_Corollary : THEOREM
D g(p)
AND ¢g(@G)
AND fincard(a) <= m AND 2 x fincard(a) + 2 * fincard(s) + fincard(c) + m < n
OMH(G,m, t, fullset[fcu])(p) = ¢t

Agreement_Final : THEOREM

2 9(p)
AND g(q)
AND fincard(a) <= m AND 2 x fincard(a) + 2 * fincard(s) + fincard(c) + m < n

OMH(G,m, t, fullset[fcu])(p) = OMH(G,m,t, fullset[fcu])(q)

Crash_Only_Validity _Prop(r) : bool =
(V¥ p,q, caucus,t :
D g(p)
AND p € caucus
AND q € caucus
AND fincard(as(caucus)) = 0
AND fincard(ss(caucus)) = 0 AND fincard(caucus) > r
OMH(g,, cancus)(p) = send(t,q,p))

Crash_Only_Validity : LEMMA Crash_Only_Validity _Prop(r)

Crash_Only_Agreement_Prop(r) : bool =
(V¥ p,q, z, caucus,t :
2 9(p)

AND g(q)
AND p € caucus

AND g € caucus
AND z € caucus
AND fincard(as(caucus)) = 0
AND fincard(ss(caucus)) = 0 AND fincard(caucus) > r
OMH(z,r,t, caucus)(p) = OMH(z,r,t, caucus)(q))

Crash_Only_Agreement : LEMMA Crash_Ounly_Agreement_Prop(r)
Crash_Only_Validity Final : THEOREM

D g(p) AND fincard(a) = 0 AND fincard(s) = 0 AND fincard(fullset[fcu]) > m
OMH(G,m, t, fullset[fcu])(p) = send(t,G,p)
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Crash_Only_Validity _Corollary : THEOREM
D g(p) AND g(G) AND fincard(a) = 0 AND fincard(s) = 0 AND fincard(fullset[fcu]) > m
OMH(G,m, t, fullset[fcu])(p) = ¢t

Crash_Only_Agreement_Final : THEOREM
D g(p) AND g(gq) AND fincard(a) = 0 AND fincard(s) = 0 AND fincard(fullset[fcu]) > m
OMH(G,m, t, fullset[fcu])(p) = OMH(G,m,t, fullset[fcu])(q)

END omh

12.4 Formal Specifications for DD

The formal specification of algorithm DD follows the specification of PP in Section 3 and OMH
in various respects. The key definition of the algorithm DD is simpler in this case than in either
previous case, since PP retains OldAccuse information from one period to the next, and OMH
performs exponentially many recursive message-sends in deeper recursive instances of the algorithm.

The specification of DD does not include the description of the fault model nor of message
sending directly. Instead the DD theory imports these specifications from the OMH theory, which
is presented in Section 7.1.1.

dd[m : posnat,n: posnat,T : TYPE, error: T, act, unact: [T—> T], BAD: {z: T | NOT z = error},
GOOD: {z: T | NOoT Vx = errorz = BAD},
Val : [[upto[m], upto[n], upto[n] — > {z: T | NOT V& = errorz = BAD or z = GOOD}]]]:
THEORY
BEGIN
ASSUMING
act-ax : ASSUMPTION (V (¢t: T): act(t) # error)
unact_ax : ASSUMPTION (V (¢ : T') : unact(act(t)) = t)
ENDASSUMING
ROUNDS : TYPE = upto[m)]
R: var ROUNDS
t: VART
PSET : TYPE = below[n]
PSETvector: TYPE = [PSET — > T

pset : VAR setof[PSET]

i,j,k: VAR PSET
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IMPORTING omh[m,n, T, error, act, unact]

Syndrome(R, j,i): T = 1F Val(R,j,1) # send(Val(R, j,%),j,i) THEN BAD ELSE GOOD ENDIF
ICH(pset, (v : PSETvector)): [PSET — > PSETvector] = (Ai: OMH(,1,v(i), pset))
KDeclareJ(pset, R, j, k) : bool = ICH(pset, A i: Syndrome(R,j,i))(k)(j) = BAD

DD (pset, R)(i, j) :

RECURSIVE bool = IF R = (0 THEN FALSE
ELSE V KDeclareJ(pset, R, j,i)DD(pset, R — 1)(i, )
ENDIF

MEASURE (A pset, R— > nat: R)

Correctness_Prop(R) : bool =
(Vi,j, pset:
D g(i)
AND i € pset
AND j € pset
AND fincard(pset)
> 2 % (fincard(as(pset)) + fincard(ss(pset))) + fincard(cs(pset)) + m
AND fincard(as(pset)) <1 AND DD(pset, R)(3, j)

NOT(g(j)))

Correctness : LEMMA Correctness Prop(R)

Completeness_Prop(R) : bool =
(Vi,j, pset:
D g(i)
AND ¢(j)
AND 4 € pset
AND j € pset
AND fincard(as(pset)) <1 AND fincard(pset)
> 2 x (fincard(as(pset)) + fincard(ss(pset))) + fincard(cs(pset)) + m

DD (pset, R) (i, )

Completeness : LEMMA (V R: V Completeness_Prop(R)R = 0)

Final_Correctness : THEOREM

D g(i)
AND n > 2 * fincard(a) + 2 * fincard(s) + fincard(c) + m
AND fincard(a) <1 AND DD(fullset[PSET], R)(%, j)

NoTg(j)
Final_Completeness : THEOREM
D g(i)
AND

c(4)

AND n > 2 x fincard(a) + 2 * fincard(s) + fincard(c) + m AND fincard(a) <1 AND R > 0
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DD (fullset[PSET], R)(i, j)

END dd

12.5 Formal Specification for HD
hd2[m : posnat,n : posnat,T : TYPE, Val: [upto[m], upto[n], upto[n] — > posnat],
decay : nat, manifest_penalty, wrongvalue_penalty : posnat] :
THEORY

BEGIN
ROUNDS : TYPE = upto[m)]
R : var ROUNDS
t: VART
PSET : TYPE = below[n]
PSETvector: TYPE = [PSET — > T
pset : VAR setof[PSET]
i,j,k: VAR PSET
Increment((z : nat)): nat = = + 1
Decrement((z : nat)): nat = IF ¢ = 0 THEN 0 ELSE z — 1 ENDIF
IMPORTING omh[m,n, nat,0, Increment, Decrement]
Decay((x : nat)): nat = =z~ decay
Penalty(R, j,i) : nat =

IF send(Val(R,j,4),j,i) = 0 THEN manifest_penalty

ELSE IF Val(R,j,i) # send(Val(R, j,7),j,i) THEN wrongvalue_penalty

ELSE 0
ENDIF

ENDIF
ICH(pset, (v: [PSET — > nat])): [PSET — > [PSET — > nat]] = (Ai: OMH(,1,v(i), pset))
KPenaltyJ(pset, R, j,k) : nat = ICH(pset, A i: Penalty(R,j,7))(k)(j)

F-HD(pset, R)(,j) :

RECURSIVE nat = IF R = 0 THEN 0
ELSE KPenaltyJ(pset, R, j,7) + Decay(F-HD(pset, R — 1)(i,5))
ENDIF

MEASURE (A pset, R— > nat: R)
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F-HDtop(pset, R)(Z,j) : bool = F-HD(pset,R)(i,5) > 0

Correctness_Prop(R) : bool =
(Vi,j, pset:
D g(i)
AND i € pset
AND j € pset
AND fincard(pset)

> 2 % (fincard(as(pset)) + fincard(ss(pset))) + fincard(cs(pset)) + m
AND fincard(as(pset)) < 1
AND F-HDtop(pset, R)(i, )

NoT(g(j)

Correctness : LEMMA Correctness Prop(R)

Completeness Prop(R) : bool =
(Vi,j, pset:
D g(i)
AND ¢(j)
AND 4 € pset
AND j € pset
AND fincard(pset)

AND fincard(as(pset)) <1

> 2 x (fincard(as(pset)) + fincard(ss(pset))) + fincard(cs(pset)) + m
F'HDtOp(pseta R) (Zv ]))

Completeness : LEMMA (V R: V Completeness_Prop(R)R = 0)

Final_Correctness : THEOREM
D g(4)
AND n > 2 * fincard(a) + 2 * fincard(s) + fincard(c) + m
AND fincard(a) <1 AND I- HDtop(fullset[PSET], R) (3, j)

NoTg(j)
Final_Completeness : THEOREM
D g(i)
AND

c(7)

AND fincard(a) <1 AND n > 2 x fincard(a) + 2 = fincard(s) + fincard(c) + m AND R > 0
F-HDtop(fullset[PSET], R)(¢, j)

END hd2
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