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Abstract 
The integrated EU-project DECOS aims at the provision of enabling technologies to move from federated 
to integrated distributed architectures in order to reduce development, validation and maintenance costs, 
and to increase the dependability of embedded applications in various application domains. A major con-
cern is the development of an integrated tool-chain accompanying the system development process from 
design to deployment. This paper gives an overview of this tool-chain and outlines important design deci-
sions and features. 

 
 

1 Introduction 

Over the past decades, development of embed-
ded systems has followed a customised design 
approach, resulting in rather isolated applica-
tions, reinvention of system design concepts, 
and minimal reuse of code across diverse appli-
cation domains. Consequently, in modern cars a 
number of services like the body electronic sub-
system or the power-train control subsystem co-
exist, each equipped with its own electronic 
hardware, communication cabling etc.  While this 
approach eases system composition and sup-
ports fault encapsulation (a failure in one sub-
system will not affect others), it implies at least 
increased hardware costs, weight, and power 
consumption. 

In contrast to such "federated" system architec-
tures, DECOS

1
 targets the development of an 

"integrated" system architecture, where the 
same hardware infrastructure (computational 
resources, communication network) is shared by 
several subsystems. For extending its applicabil-

                                                 
1
 DECOS (Dependable Embedded COmponents and 

Systems) is an integrated project (IP) funded by the 
EU within priority “Information Society Technologies 
(IST)” in the sixth EU framework programme (contract 
no. FP6-511 764). 

ity, mixed-criticality applications, including those 
with hard real-time requirements, shall be sup-
ported. 

When integrating (safety-critical) subsystems in-
to one platform, it has to be guaranteed that 
each of them can be executed in a protected 
environment that resembles the environment of 
the federated architecture, i.e. it would not share 
resources with other subsystems. In particular, 
subsystems must not disturb each other, and 
faults emanated in one subsystem must not 
propagate to others. 

A dedicated system architecture (relying on 
strong fault encapsulation and fault tolerance by 
means of replication, separating safety-critical 
from non-safety-critical functionality or encap-
sulated execution environments) is essential for 
achieving the intended goal and hence a central 
outcome of DECOS. For successfully exploiting 
the benefits of the system architecture, tool sup-
port is also crucial. Therefore, a tool-chain is de-
veloped for design, development, configuration 
and integration of DECOS applications, which is 
presented in this paper. 

After the next chapter, which shortly outlines 
DECOS and the tool chain, system modelling, 
configuration establishment, and behaviour mo-
delling are addressed by chapters 3 to 5, respec-
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tively. After putting all these pieces together in 
chapter 6, the last chapter draws a conclusion 
and depicts a short outlook. 

2 Overview 

2.1 DECOS Concepts and Architecture 

Here, only a summary can be given. See [10] for 
more details. 

Supporting safety-critical applications almost en-
forces distribution in order to achieve sufficient 
redundancy and tolerance against hardware 
faults. Additionally, supporting hard real-time 
applications requires guaranteed execution and 
transmission times. Therefore, a DECOS system 
consists of a number of (nearly) independent 
Distributed Application Subsystems (DAS), run-
ning on a set of hardware nodes connected via a 
communication network. DASs can be subdivi-
ded into jobs representing the smallest executa-
ble software fragment in the DECOS model, and 
which communicate through the exchange of 
messages. Nodes and network together estab-
lish a DECOS cluster, as indicated in Fig. 1. 

 

Fig. 1: DECOS cluster with four nodes and three DASs: 
one with jobs A, B, C, another one with P and Q, and a 
third one with U, V, W, X, and Y. A, B, and Q have two 
replicas each, while P has three. 

In order to benefit from existing achievements, 
DECOS presumes the existence of a core archi-
tecture, providing the core services 

• Deterministic and timely transport of 
messages 

• Fault tolerant clock synchronization 

• Strong fault isolation 

• Consistent diagnosis of failing nodes 

Any architecture that provides these core ser-
vices can be used. It has been demonstrated 
that the Time-Triggered Architecture (TTA) [9] is 
appropriate for the implementation of applica-
tions in the highest criticality class in the aero-
space domain according to RTCA DO-178B [13] 

and consequently meets the DECOS require-
ments as core architecture. 

On top of the core services, DECOS provides a 
set of architectural (or high-level) services 

• Virtual Networks (VN) and Gateways 

• Encapsulated Execution Environment 
(EEE) 

• Diagnostics 

VNs represent the communication system for 
DASs, embedded on the physical cluster net-
work. Gateways provide means to exchange 
information between VNs, as well as with exter-
nal networks, in a controlled way. The EEE en-
ables execution of jobs from different DASs and 
criticality on the same hardware with guaranteed 
fault encapsulation. This is achieved by housing 
each job in an own partition with strong spatial 
and temporal protection. And the diagnostics 
service both assists fault encapsulation and 
supports prognoses of hardware breakdowns.  

In order to minimise dependency of application 
programmers on a certain DECOS implementa-
tion, the Platform Interface Layer (PIL) provides 
a platform independent interface of the architec-
tural services for application jobs. 

An important DECOS feature is the support of 
both time- and event-triggered messages. Time-
triggered (TT) messages transmit state values 
like the current speed periodically, while event-
triggered (ET) messages transmit changes, e.g. 
the difference to the previous speed value 
whenever that change passes a certain thresh-
old. So, while a transient transmission error of a 
TT message can be compensated with the next 
one, this is not the case for ET messages. 
Therefore, the latter cannot be utilized for trans-
mission of safety-critical information. 

2.2 DECOS Tool-Chain 

For supporting development of certifiable DE-
COS applications by integrating several DASs 
on one cluster, a dedicated tool-chain is defined 
and currently under development. As shown in 
Fig. 2, it adopts a model-driven approach [12]. 
First, the Platform Independent Models (PIMs) of 
the DASs are created, which serve two pur-
poses.  

On the one side, together with the specification 
of the target cluster (Cluster Resource Descrip-
tion - CRD) and other information (job size etc.), 
it is used to derive configuration and scheduling 
information, as well as to generate the PIL, by 
transforming the PIMs into the Platform Specific 
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Model (PSM). In Fig. 2, "Candidate PSM" is de-
noted rather than "PSM", because if scheduling 
fails, another allocation has to be chosen. 

On the other side, PIMs are used to guide the 
development of jobs, by modelling their beha-
viour, which is addressed in section 5. Finally, 
the results of both activities are integrated to 
achieve the target executables, which can then 
be downloaded to the application cluster. 

 

Fig. 2: DECOS tool-chain overview. Feedback loop, e.g. 
for failure reporting,  are not shown.  

3 System and Configuration Model-
ling 

This chapter addresses generation of relevant 
input for the PIM→PSM transformation process, 
namely the PIMs and the description of the clus-
ter hardware and resources (CRD). 

3.1 PIM and its Generation 

The purpose of the PIM [16] is to formalize the 
functional, dependability, and performance re-
quirements of the DAS in an implementation 
platform independent manner. It is the place of 
the first steps of system architecture concep-
tualization. DECOS platform services - both at 

core and high-level - are handled in an abstract 
form that is easy to use and understand at this 
level of design. 

Functionality

Performance
Dependability

OCL expressions

 

Fig. 3: PIM meta-model 

According to the concepts of MDA [12], the PIM 
has its own meta-model. It is a UML model com-
posed of four packages, each containing its re-
spective object diagrams: (I) Functionality pack-
age: the basic functional elements like DAS, Job, 
Interface, Port, Message, Sensor/Actuator, State 
Variable, etc. (II) Dependability package: the 
dependability attributes of functional elements: 
reliability, availability, SIL, redundancy degree, 
etc. (III) Performance package: the performance 
attributes of functional elements: WCET, period, 
phase, deadline, latency, etc. (IV) OCL expres-
sion: additional semantic constraints: multiplicity 
dependability etc. 

 

Fig. 4: DSE for the PIM under VIATRA  

Since the data model of the PIM – XML – is hard 
to edit even with XML editors, two solutions are 
provided in order to ease the generation of a 
PIM: (i) to use the same UML tool as for high-
level system design. In this case, the DECOS-
PIM-XML file is generated from the XMI output of 
the UML editor. Currently Rational Rose 2003 
and Rational Software Modeller are supported.  
(ii) to use a Domain Specific Editor (DSE) (see 
Fig. 4), which would allow for creating only meta-
model compliant PIMs. Currently a DSE is im-
plemented under the Eclipse technology

2
. It runs 
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 http://www.eclipse.org/ 

  PIM CRD Behaviour 
Model 

Feasibility 
Checks 

Marking 
PIM 

Allocation 
Jobs→Nodes 

Job Info 
(size etc.) 

Candidate 
PSM 

Message 
Scheduling 

Job 
Scheduling 

Configu- 
ration 

PIL-Binding 
(Generation) 

Bound PIL 
(Code) 

Gateway 

SCADE 
Model 

Wrapper 
Generation 

Code 
Generation 

Wrapper 
Code 

Job 
Code 

Deployment 

Executables 

arch.serv. 
library 



Tagungsband - 4 - ME 2006 

directly inside of VIATRA [1] which is the selec-
ted tool for PIM-PSM mapping. This way import-
ing PIMs is not needed any more. 

3.2 CRD and its Generation 

It is the purpose of the so-called Cluster Re-
source Description (CRD) to capture the relevant 
characteristics of the platform for the software-
hardware integration in the DECOS design flow. 
These characteristics include amongst others 
computational resources (e.g., CPU and mem-
ory), communication resources, and dependabil-
ity properties. 

In order to ease CRD creation, a graphical, do-
main-specific modelling environment is devel-
oped, using the Generic Modelling Environment 
(GME). GME is a configurable framework for 
creating domain-specific modelling environments 
[11]. The configuration of GME is performed via 
the Hardware Specification Model (HSM), a 
meta-model which formally describes the tar-
geted modelling domain, i.e. it describes the en-
tities, its attributes, the relationships, and con-
straints that can be expressed with and that are 
validated by the resulting modelling environment. 

 

Fig. 5: Example (cut-out) of a CRD built with GME 

One aim of the HSM is to facilitate reuse and 
hierarchical composition of the resource model. 
This is achieved by separating the resource 
modelling process into two phases: the resource 
capturing and the resource composition. 

Resource Capturing: The specification of reus-
able hardware entities of a DECOS platform, so-
called resource primitives, is addressed by the 
resource capturing phase. Ressource primitives 
are the smallest physical hardware units whose 
characteristics are captured. Examples for 
resource primitives are: processors, memory 
elements, communication interfaces. However, 
the HSM provides mechanisms to extend the set 

of resource primitives that can be modelled in 
order to be flexible and extensible with respect to 
the types of resource primitives [6].  

Resource Composition: This second phase of 
the modelling process is concerned with the 
composition of an entire CRD (including the in-
ternal setup of DECOS components and their 
interconnection) out of the previously modelled 
resource primitives. The composition is guided 
by the DECOS component model [10], which is 
fully captured by the HSM. 

The interface to the subsequent tools in the de-
velopment process realising the software/hard-
ware integration is specified using the extensible 
markup language (XML). 

4 Deriving the Infrastructure 

Based on these inputs (bound PIL will be ad-
dressed in 4.3), the next steps in the DECOS 
tool-chain are described: 

• PSM-generation (mapping jobs to nodes) 

• scheduling 

• PIL-generation 

4.1 PSM-Generation 

Being (still) a model, the main purpose of the 
PSM is to precisely specify which application 
jobs are to be assigned to which cluster nodes, 
under consideration of all constraints defined in 
the PIMs of the DASs and the available re-
sources described in the CRD. Fig. 6 depicts a 
small part of its meta-model in UML-notation. 
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Fig. 6: Part of PSM meta-model 

The PSM generation process encompasses a 
number of steps like PIM marking, feasibility 
checks, and the allocation process. The signifi-
cant part of the mapping process is to allocate 
jobs with different criticality to a shared HW plat-
form (HW nodes) subject to constraints and re-
quirements of fault-tolerance and real-time.  
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It is sometimes necessary to add manually in-
formation to the PIM. This step is called PIM 
marking. It is an interactive step, where informa-
tion like specific middleware requirements as for 
CAN-protocol support, special message lengths, 
or pre-mapping hints are added. The result is a 
modified PIM containing elements and associa-
tions reflecting the additional information. 

The main step is to assign jobs to nodes under 
the considerations of the functional and non-
functional (i.e. performance and dependability) 
constraints given in the PIMs. Examples for such 
constraints are 

• resource requirements (e.g. memory, 
CPU, sensors, actuators, bandwidth) 

• dependability constraints (e.g. replicas 
must be assigned to different nodes) 

A dual-track approach is taken in DECOS to 
generate the PSM. In the first phase, a transfor-
mation based mapping process is developed 
which deals constraints one-by-one. It finds a 
feasible solution for resource allocation while 
satisfying different constraints. We have expli-
cated a heuristics based systematic resource 
allocation approach for this and presented it in 
[8].  Considering dependability and real-time as 
prime drivers, we presented a schedulable allo-
cation algorithm for the consolidated mapping of 
SC and non-SC applications onto a distributed 
platform. 

Although the allocation problem is NP-hard [4], 
exploiting symmetry (job replicas, identical 
nodes, …) can improve the performance of such 
approaches [15], but it is difficult to assess solu-
tions with respect to certain criteria like reliability 
maximisation or cost minimisation.  

Therefore, in the second phase, a Multi-Variable 
Optimization (MVO) approach is proposed where 
multiple objectives are optimized together with 
satisfaction of constraints. Here, a so-called 
MVO function is used, which associates a sca-
lar-valued function v(q) to each point q in an 
evaluation space, representing the system de-
signer’s preferences, provided that choosing a 
feasible alternative from a set of contenders 
such that v is maximized or minimized.  

See [7] for more information about the gener-
ation of the PSM. 

 

4.2 Scheduling 

The DECOS Integrated Architecture consists of 
several nodes that communicate via a time-
triggered physical network. Virtual time-triggered 
or event-triggered networks are built upon this 
time-triggered physical network, implying that all 
information transfer takes place via messages of 
the underlying time-triggered physical network. 
Thus, each DECOS node must be able to 
send/receive messages (cf. Fig. 7). Furthermore, 
DECOS nodes that share the same communica-
tion medium are required to coordinate the 
transmission of messages, i.e., at each point in 
time, exactly one node is allowed to send a 
message. 

Node Node Node Node Node

time triggered physical network

 
Fig. 7: DECOS nodes communicating via a time-
triggered physical network 

In addition to the scheduling of messages, the 
scheduling of EEE-partitions (see 2.1) and of 
applications tasks (DAS jobs may consist of 
several tasks sharing the same spatial and tem-
poral resources) that run in the partitions must 
be provided.  

For that purpose, the TTTech tool suite
3
 has 

been adapted to cope with partitions, and inte-
grated into the DECOS tool chain. 

These tools (DECOS TTPplan and TTPbuild) 
provide a graphical front-end for the specification 
of partitions as well as a programming interface 
that is used for importing the PSM. From that, 
they compute valid schedules and generate con-
figuration data structures, i.e. MEDLs (Message 
Descriptor Lists) for the communication control-
ler, C-MEDLs for the hardware implemented 
fault-tolerance layer, optimized fault-tolerance 
layer tasks, and the respective configuration files 
for the operating system configuration including 
the protection parameters of the partitions.  

4.3 PIL Generation 

As mentioned in 2.1, the PIL provides a technol-
ogy invariant interface to the DECOS architec-

                                                 
3
 http://www.tttech.com/products/software.htm 
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tural services for application jobs. Following "na-
tive" services are offered by PIL: 

• generic message transfer (TT and ET), 

• global time service, 

• membership service (to get information 
about health states of nodes and jobs). 

In addition, the usage of domain-specific applica-
tion middleware (AppMW) like for CAN-support 
is possible. 

Since C is still the most common programming 
language for embedded systems, including gen-
erated code like that from SCADE (see next sec-
tion), a C-binding for the PIL API is provided by 
default. One means to improve safety in a C-
environment is to make intensive use of types 
and names, and to avoid the usage of error 
prone types like void* or char* for parameters 
and return values. Hence, for each job/message 
combination an own set of functions is provided, 
forcing to generate the PIL individually for each 
job. 

For instance, if a job X receives a state message 
S of type t_S and may send event messages E 
of type t_E, then essentially the following C-API 
will be generated for it: 

DCS_RetCode DCS_get_S( 

  t_S *out_S,  

 DCS_bool *out_validityIndicator); 

DCS_RetCode DCS_queue_E( 

  const t_E * in_E,  

  const DCS_Time* in_timeout); 

(’DCS’ stands for DECOS.) Some more func-
tions are generated, e.g. for providing some con-
trol on data access, but according to the same 
principle.  

In order to achieve platform and programming 
language independency, PIL generation can be 
controlled by the bound PI (see Fig. 2), which 
contains, for instance, coding templates for the 
respective platform/language pair. 

5 Behaviour Modelling and Design 

In addition to modelling system structure, con-
figuration, and scheduling as described so far, 
specification of behaviour is another issue. 
Though using C-code for that purpose is of 
course possible, in safety-critical environments 
safer approaches are highly recommended. 
Therefore, SCADE [14] has been chosen to be 
the primary DECOS tool for behaviour modelling 

and development, which is described in this 
chapter. 

5.1 SCADE 

Based on a formally defined data-flow notation 
[5], SCADE offers strong typing, explicit initializa-
tion, explicit time management (delays, clocks, 
etc), and simple expression of concurrency (data 
dependencies). By means of a graphical data 
flow graph editor, it supports model-based de-
velopment. This not only allows for simulation at 
model level, accompanied by dedicated testing 
[3] or formal proof techniques by the SCADE 
Design Verifier [2] to prove safety properties, it 
also enables qualified code generation, using the 
KCG code generator. KCG has been certified 
against DO178B level A [13] and IEC 61508 at 
any SIL level.  

The basic SCADE modelling elements are pre-
defined operators and user-definable nodes. 
Both have input and output parameters, through 
which they are connected with other nodes and 
operators (see Fig. 8). Of course nodes can be 
nested. Fairly obviously, nodes will be used to 
represent DAS jobs. 

In order to assure that "job nodes" adhere to 
their interface definition in PIM, SCADE's UML 
gateway is used to import PIMs into SCADE. 
And in order to enable usage of behaviour mod-
els developed in Simulink

4
, another SCADE 

gateway can be used to import Simulink models 
into such nodes 5.3. In the following, these 
gateways are addressed. 

5.2 PIM-Import 

The SCADE UML gateway is a flexible tool for 
import and reuse of software architectures speci-
fied in other modelling languages as SCADE 
node skeletons. It allows for easy addition of ex-
tension modules to support any modelling lan-
guage that has similar architectural concepts as 
UML: Architectures consist of functional blocks, 
with one or several levels of hierarchical decom-
position; and blocks are connected at specific 
interaction points, with corresponding communi-
cation protocols defined. 

The SCADE UML gateway is being extended to 
support PIM-based modelling, by adding a new 
module specifically tailored for DECOS PIM, 
which realizes the following mapping: 

• Each DAS represent a namespace for its con-
tained Jobs. 

                                                 
4
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• Jobs of a DAS are the architectural blocks of 
the DAS.  

• Ports (grouped in Interfaces) of a Job are the 
interaction points of the corresponding block. 

• Event-triggered and time-triggered messages 
form the protocols at the interaction points. 

Note that in SCADE, a node can be instantiated 
several times. Therefore, a node is a kind of 
“block type”. In the PIM on the contrary, Jobs are 
instances already. There is no notion of job-type 
to be instantiated several times. Anyway, a job 
instance can be assimilated to its implicit “single-
ton” job type whenever the concept of “block 
type” is needed. 

Using the mapping realized by this PIM gateway, 
the core of the gateway builds an internal repre-
sentation of the corresponding SCADE model, 
together with traceability information that points 
back to the original PIM model. 

The PrettyPrint module of the gateway then seri-
alizes this internal representation into a valid 
SCADE model containing skeleton nodes for all 
jobs present in the PIM model. 

 
Fig. 8: Importing PIM and Simulink models into SCADE 

5.3 Simulink-Import 

If the behaviour of the DAS jobs is originally 
modelled in Simulink, it has to be imported into 
SCADE, to "fill the contents" of the nodes cre-

ated by the PIM to SCADE gateway. The DAS 
jobs behaviour can be defined in several Simu-
link models, and/or in several parts of a Simulink 
model. The current version of the Simulink trans-
lator only allows one Simulink import (one part of 
one Simulink model), so it is upgraded to support 
this requirement. When a modification of a Simu-
link job model is made, thanks to this "modular 
translation" feature, only the respective part 
needs to be re-imported.  

Since re-translation may introduce incoherencies 
in the SCADE model, semantic inconsistencies 
(on names, types, or used clock units) are auto-
matically checked by the SCADE checker. 

5.4 Code Generation  

As already mentioned, KCG is used to generate 
the code from each individual SCADE node job. 
To get the code of the complete distributed ap-
plication, the job code must be linked to the mid-
dleware code via the PI API. 

Since SCADE nodes do not access DECOS ser-
vices via the PI API directly, but instead work on 
‘context objects’ which contain their input and 
output parameter, they have to be embedded 
into so-called wrappers, which per execution 

• fetch received messages and put them 
into the input fields of context objects, 

• activate the node code, 

• forward output fields of context objects 
to PI API as send messages. 

Since node code may not produce requested 
output, a specific flag mechanism is implement-
ed to inform the wrapper which messages to 
send. 

6 Putting it all Together 

As shown in the previous chapters, a rather wide 
variety of tools comprise the DECOS tool-chain. 
In order ease the handling of all these tools, 
VIATRA [1] is used as "backbone" with respect 
to PIM→PSM transformation. It not only allows 
for developing model transformation conve-
niently, it is also possible to generate code with it 
(e.g. PIL), as well as to develop domain-specific 
editors, which e.g. ease PIM creation. Although 
CRDs could conceptually also be developed with 
VIATRA, the taken approach (see 3.2) is very 
appealing. So, basically four tools constitute the 
DECOS tool-chain – GME, VIATRA, SCADE, 
TTPplan/build, as indicated in Fig. 9, which also 
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shows the interchange formats among these 
tools. Boxes denote interactive activities. 

 

Fig. 9: DECOS tool-chain: involved tools and interfaces 

7 Conclusion 

A tool-chain has been presented, being under 
development in the integrated EU-project DE-
COS, which enables efficient and convenient 
configuration and code development for integra-
ted embedded real-time systems, based on a 
model-based approach. 

Besides completing the tool-chain itself, further 
features are intended to support simulation of 
complete DASs in SCADE, and easing PIM 
creation by means of PIM-specific patterns. 
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