
Tagungsband - 1 - ME 2006

From Model-Based Design to Deployment

of Integrated, Embedded, Real-Time Systems:
The DECOS Tool-Chain

Wolfgang Herzner, ARC Seibersdorf research, wolfgang.herzner@arcs.ac.at
Martin Schlager, TTTech Computertechnik AG, Martin.Schlager@tttech.com

Thierry Le Sergent, Esterel Technologies, Thierry.LESERGENT@esterel-technologies.com
Bernhard Huber, Technical University of Vienna, huberb@vmars.tuwien.ac.at

Shariful Islam, Technische Universität Darmstadt, ripon@informatik.tu-darmstadt.de
Neeraj Suri, Technische Universität Darmstadt, suri@informatik.tu-darmstadt.de

András Balogh, Budapest University of Technology and Economics, abalogh@mit.bme.hu

Abstract
The integrated EU-project DECOS aims at the provision of enabling technologies to move from federated
to integrated distributed architectures in order to reduce development, validation and maintenance costs,
and to increase the dependability of embedded applications in various application domains. A major con-
cern is the development of an integrated tool-chain accompanying the system development process from
design to deployment. This paper gives an overview of this tool-chain and outlines important design deci-
sions and features.

1 Introduction

Over the past decades, development of embed-
ded systems has followed a customised design
approach, resulting in rather isolated applica-
tions, reinvention of system design concepts,
and minimal reuse of code across diverse appli-
cation domains. Consequently, in modern cars a
number of services like the body electronic sub-
system or the power-train control subsystem co-
exist, each equipped with its own electronic
hardware, communication cabling etc. While this
approach eases system composition and sup-
ports fault encapsulation (a failure in one sub-
system will not affect others), it implies at least
increased hardware costs, weight, and power
consumption.

In contrast to such "federated" system architec-
tures, DECOS

1
 targets the development of an

"integrated" system architecture, where the
same hardware infrastructure (computational
resources, communication network) is shared by
several subsystems. For extending its applicabil-

1
 DECOS (Dependable Embedded COmponents and

Systems) is an integrated project (IP) funded by the
EU within priority “Information Society Technologies
(IST)” in the sixth EU framework programme (contract
no. FP6-511 764).

ity, mixed-criticality applications, including those
with hard real-time requirements, shall be sup-
ported.

When integrating (safety-critical) subsystems in-
to one platform, it has to be guaranteed that
each of them can be executed in a protected
environment that resembles the environment of
the federated architecture, i.e. it would not share
resources with other subsystems. In particular,
subsystems must not disturb each other, and
faults emanated in one subsystem must not
propagate to others.

A dedicated system architecture (relying on
strong fault encapsulation and fault tolerance by
means of replication, separating safety-critical
from non-safety-critical functionality or encap-
sulated execution environments) is essential for
achieving the intended goal and hence a central
outcome of DECOS. For successfully exploiting
the benefits of the system architecture, tool sup-
port is also crucial. Therefore, a tool-chain is de-
veloped for design, development, configuration
and integration of DECOS applications, which is
presented in this paper.

After the next chapter, which shortly outlines
DECOS and the tool chain, system modelling,
configuration establishment, and behaviour mo-
delling are addressed by chapters 3 to 5, respec-

Tagungsband - 2 - ME 2006

tively. After putting all these pieces together in
chapter 6, the last chapter draws a conclusion
and depicts a short outlook.

2 Overview

2.1 DECOS Concepts and Architecture

Here, only a summary can be given. See [10] for
more details.

Supporting safety-critical applications almost en-
forces distribution in order to achieve sufficient
redundancy and tolerance against hardware
faults. Additionally, supporting hard real-time
applications requires guaranteed execution and
transmission times. Therefore, a DECOS system
consists of a number of (nearly) independent
Distributed Application Subsystems (DAS), run-
ning on a set of hardware nodes connected via a
communication network. DASs can be subdivi-
ded into jobs representing the smallest executa-
ble software fragment in the DECOS model, and
which communicate through the exchange of
messages. Nodes and network together estab-
lish a DECOS cluster, as indicated in Fig. 1.

Fig. 1: DECOS cluster with four nodes and three DASs:
one with jobs A, B, C, another one with P and Q, and a
third one with U, V, W, X, and Y. A, B, and Q have two
replicas each, while P has three.

In order to benefit from existing achievements,
DECOS presumes the existence of a core archi-
tecture, providing the core services

• Deterministic and timely transport of
messages

• Fault tolerant clock synchronization

• Strong fault isolation

• Consistent diagnosis of failing nodes

Any architecture that provides these core ser-
vices can be used. It has been demonstrated
that the Time-Triggered Architecture (TTA) [9] is
appropriate for the implementation of applica-
tions in the highest criticality class in the aero-
space domain according to RTCA DO-178B [13]

and consequently meets the DECOS require-
ments as core architecture.

On top of the core services, DECOS provides a
set of architectural (or high-level) services

• Virtual Networks (VN) and Gateways

• Encapsulated Execution Environment
(EEE)

• Diagnostics

VNs represent the communication system for
DASs, embedded on the physical cluster net-
work. Gateways provide means to exchange
information between VNs, as well as with exter-
nal networks, in a controlled way. The EEE en-
ables execution of jobs from different DASs and
criticality on the same hardware with guaranteed
fault encapsulation. This is achieved by housing
each job in an own partition with strong spatial
and temporal protection. And the diagnostics
service both assists fault encapsulation and
supports prognoses of hardware breakdowns.

In order to minimise dependency of application
programmers on a certain DECOS implementa-
tion, the Platform Interface Layer (PIL) provides
a platform independent interface of the architec-
tural services for application jobs.

An important DECOS feature is the support of
both time- and event-triggered messages. Time-
triggered (TT) messages transmit state values
like the current speed periodically, while event-
triggered (ET) messages transmit changes, e.g.
the difference to the previous speed value
whenever that change passes a certain thresh-
old. So, while a transient transmission error of a
TT message can be compensated with the next
one, this is not the case for ET messages.
Therefore, the latter cannot be utilized for trans-
mission of safety-critical information.

2.2 DECOS Tool-Chain

For supporting development of certifiable DE-
COS applications by integrating several DASs
on one cluster, a dedicated tool-chain is defined
and currently under development. As shown in
Fig. 2, it adopts a model-driven approach [12].
First, the Platform Independent Models (PIMs) of
the DASs are created, which serve two pur-
poses.

On the one side, together with the specification
of the target cluster (Cluster Resource Descrip-
tion - CRD) and other information (job size etc.),
it is used to derive configuration and scheduling
information, as well as to generate the PIL, by
transforming the PIMs into the Platform Specific

P1 P2

P3 Q1

Q1

Node 1

U V W

X Y

Node 2

Node 3 Node 4

A1 A2

B1 B2

C

Jobs

Tagungsband - 3 - ME 2006

Model (PSM). In Fig. 2, "Candidate PSM" is de-
noted rather than "PSM", because if scheduling
fails, another allocation has to be chosen.

On the other side, PIMs are used to guide the
development of jobs, by modelling their beha-
viour, which is addressed in section 5. Finally,
the results of both activities are integrated to
achieve the target executables, which can then
be downloaded to the application cluster.

Fig. 2: DECOS tool-chain overview. Feedback loop, e.g.
for failure reporting, are not shown.

3 System and Configuration Model-
ling

This chapter addresses generation of relevant
input for the PIM→PSM transformation process,
namely the PIMs and the description of the clus-
ter hardware and resources (CRD).

3.1 PIM and its Generation

The purpose of the PIM [16] is to formalize the
functional, dependability, and performance re-
quirements of the DAS in an implementation
platform independent manner. It is the place of
the first steps of system architecture concep-
tualization. DECOS platform services - both at

core and high-level - are handled in an abstract
form that is easy to use and understand at this
level of design.

Functionality

Performance
Dependability

OCL expressions

Fig. 3: PIM meta-model

According to the concepts of MDA [12], the PIM
has its own meta-model. It is a UML model com-
posed of four packages, each containing its re-
spective object diagrams: (I) Functionality pack-
age: the basic functional elements like DAS, Job,
Interface, Port, Message, Sensor/Actuator, State
Variable, etc. (II) Dependability package: the
dependability attributes of functional elements:
reliability, availability, SIL, redundancy degree,
etc. (III) Performance package: the performance
attributes of functional elements: WCET, period,
phase, deadline, latency, etc. (IV) OCL expres-
sion: additional semantic constraints: multiplicity
dependability etc.

Fig. 4: DSE for the PIM under VIATRA

Since the data model of the PIM – XML – is hard
to edit even with XML editors, two solutions are
provided in order to ease the generation of a
PIM: (i) to use the same UML tool as for high-
level system design. In this case, the DECOS-
PIM-XML file is generated from the XMI output of
the UML editor. Currently Rational Rose 2003
and Rational Software Modeller are supported.
(ii) to use a Domain Specific Editor (DSE) (see
Fig. 4), which would allow for creating only meta-
model compliant PIMs. Currently a DSE is im-
plemented under the Eclipse technology

2
. It runs

2
 http://www.eclipse.org/

 PIM CRD Behaviour
Model

Feasibility
Checks

Marking
PIM

Allocation
Jobs→Nodes

Job Info
(size etc.)

Candidate
PSM

Message
Scheduling

Job
Scheduling

Configu-
ration

PIL-Binding
(Generation)

Bound PIL
(Code)

Gateway

SCADE
Model

Wrapper
Generation

Code
Generation

Wrapper
Code

Job
Code

Deployment

Executables

arch.serv.
library

Tagungsband - 4 - ME 2006

directly inside of VIATRA [1] which is the selec-
ted tool for PIM-PSM mapping. This way import-
ing PIMs is not needed any more.

3.2 CRD and its Generation

It is the purpose of the so-called Cluster Re-
source Description (CRD) to capture the relevant
characteristics of the platform for the software-
hardware integration in the DECOS design flow.
These characteristics include amongst others
computational resources (e.g., CPU and mem-
ory), communication resources, and dependabil-
ity properties.

In order to ease CRD creation, a graphical, do-
main-specific modelling environment is devel-
oped, using the Generic Modelling Environment
(GME). GME is a configurable framework for
creating domain-specific modelling environments
[11]. The configuration of GME is performed via
the Hardware Specification Model (HSM), a
meta-model which formally describes the tar-
geted modelling domain, i.e. it describes the en-
tities, its attributes, the relationships, and con-
straints that can be expressed with and that are
validated by the resulting modelling environment.

Fig. 5: Example (cut-out) of a CRD built with GME

One aim of the HSM is to facilitate reuse and
hierarchical composition of the resource model.
This is achieved by separating the resource
modelling process into two phases: the resource
capturing and the resource composition.

Resource Capturing: The specification of reus-
able hardware entities of a DECOS platform, so-
called resource primitives, is addressed by the
resource capturing phase. Ressource primitives
are the smallest physical hardware units whose
characteristics are captured. Examples for
resource primitives are: processors, memory
elements, communication interfaces. However,
the HSM provides mechanisms to extend the set

of resource primitives that can be modelled in
order to be flexible and extensible with respect to
the types of resource primitives [6].

Resource Composition: This second phase of
the modelling process is concerned with the
composition of an entire CRD (including the in-
ternal setup of DECOS components and their
interconnection) out of the previously modelled
resource primitives. The composition is guided
by the DECOS component model [10], which is
fully captured by the HSM.

The interface to the subsequent tools in the de-
velopment process realising the software/hard-
ware integration is specified using the extensible
markup language (XML).

4 Deriving the Infrastructure

Based on these inputs (bound PIL will be ad-
dressed in 4.3), the next steps in the DECOS
tool-chain are described:

• PSM-generation (mapping jobs to nodes)

• scheduling

• PIL-generation

4.1 PSM-Generation

Being (still) a model, the main purpose of the
PSM is to precisely specify which application
jobs are to be assigned to which cluster nodes,
under consideration of all constraints defined in
the PIMs of the DASs and the available re-
sources described in the CRD. Fig. 6 depicts a
small part of its meta-model in UML-notation.

+ node
1

+ partition
0..n

+ fieldbus

0..n

+ partitionMap1..n
+ externalMap

0..n

+ job

1

+ canRunOn

0..n1..n

+ job

+ refinement

+ job
0..n

+ task
0..n

Fieldbus

PartitionMapElement

ApplicationComputer

ExternalMapElement

JobAllocationMap

Job

name : String
description : String
externalDescriptor : String

JobRefinementMap

Fieldbus

PartitionMapElement

ApplicationComputer

ExternalMapElement

JobAllocationMap

Job

name : String
description : String
externalDescriptor : String

JobRefinementMap

Fig. 6: Part of PSM meta-model

The PSM generation process encompasses a
number of steps like PIM marking, feasibility
checks, and the allocation process. The signifi-
cant part of the mapping process is to allocate
jobs with different criticality to a shared HW plat-
form (HW nodes) subject to constraints and re-
quirements of fault-tolerance and real-time.

Tagungsband - 5 - ME 2006

It is sometimes necessary to add manually in-
formation to the PIM. This step is called PIM
marking. It is an interactive step, where informa-
tion like specific middleware requirements as for
CAN-protocol support, special message lengths,
or pre-mapping hints are added. The result is a
modified PIM containing elements and associa-
tions reflecting the additional information.

The main step is to assign jobs to nodes under
the considerations of the functional and non-
functional (i.e. performance and dependability)
constraints given in the PIMs. Examples for such
constraints are

• resource requirements (e.g. memory,
CPU, sensors, actuators, bandwidth)

• dependability constraints (e.g. replicas
must be assigned to different nodes)

A dual-track approach is taken in DECOS to
generate the PSM. In the first phase, a transfor-
mation based mapping process is developed
which deals constraints one-by-one. It finds a
feasible solution for resource allocation while
satisfying different constraints. We have expli-
cated a heuristics based systematic resource
allocation approach for this and presented it in
[8]. Considering dependability and real-time as
prime drivers, we presented a schedulable allo-
cation algorithm for the consolidated mapping of
SC and non-SC applications onto a distributed
platform.

Although the allocation problem is NP-hard [4],
exploiting symmetry (job replicas, identical
nodes, …) can improve the performance of such
approaches [15], but it is difficult to assess solu-
tions with respect to certain criteria like reliability
maximisation or cost minimisation.

Therefore, in the second phase, a Multi-Variable
Optimization (MVO) approach is proposed where
multiple objectives are optimized together with
satisfaction of constraints. Here, a so-called
MVO function is used, which associates a sca-
lar-valued function v(q) to each point q in an
evaluation space, representing the system de-
signer’s preferences, provided that choosing a
feasible alternative from a set of contenders
such that v is maximized or minimized.

See [7] for more information about the gener-
ation of the PSM.

4.2 Scheduling

The DECOS Integrated Architecture consists of
several nodes that communicate via a time-
triggered physical network. Virtual time-triggered
or event-triggered networks are built upon this
time-triggered physical network, implying that all
information transfer takes place via messages of
the underlying time-triggered physical network.
Thus, each DECOS node must be able to
send/receive messages (cf. Fig. 7). Furthermore,
DECOS nodes that share the same communica-
tion medium are required to coordinate the
transmission of messages, i.e., at each point in
time, exactly one node is allowed to send a
message.

Node Node Node Node Node

time triggered physical network

Fig. 7: DECOS nodes communicating via a time-
triggered physical network

In addition to the scheduling of messages, the
scheduling of EEE-partitions (see 2.1) and of
applications tasks (DAS jobs may consist of
several tasks sharing the same spatial and tem-
poral resources) that run in the partitions must
be provided.

For that purpose, the TTTech tool suite
3
 has

been adapted to cope with partitions, and inte-
grated into the DECOS tool chain.

These tools (DECOS TTPplan and TTPbuild)
provide a graphical front-end for the specification
of partitions as well as a programming interface
that is used for importing the PSM. From that,
they compute valid schedules and generate con-
figuration data structures, i.e. MEDLs (Message
Descriptor Lists) for the communication control-
ler, C-MEDLs for the hardware implemented
fault-tolerance layer, optimized fault-tolerance
layer tasks, and the respective configuration files
for the operating system configuration including
the protection parameters of the partitions.

4.3 PIL Generation

As mentioned in 2.1, the PIL provides a technol-
ogy invariant interface to the DECOS architec-

3
 http://www.tttech.com/products/software.htm

Tagungsband - 6 - ME 2006

tural services for application jobs. Following "na-
tive" services are offered by PIL:

• generic message transfer (TT and ET),

• global time service,

• membership service (to get information
about health states of nodes and jobs).

In addition, the usage of domain-specific applica-
tion middleware (AppMW) like for CAN-support
is possible.

Since C is still the most common programming
language for embedded systems, including gen-
erated code like that from SCADE (see next sec-
tion), a C-binding for the PIL API is provided by
default. One means to improve safety in a C-
environment is to make intensive use of types
and names, and to avoid the usage of error
prone types like void* or char* for parameters
and return values. Hence, for each job/message
combination an own set of functions is provided,
forcing to generate the PIL individually for each
job.

For instance, if a job X receives a state message
S of type t_S and may send event messages E
of type t_E, then essentially the following C-API
will be generated for it:

DCS_RetCode DCS_get_S(

 t_S *out_S,

 DCS_bool *out_validityIndicator);

DCS_RetCode DCS_queue_E(

 const t_E * in_E,

 const DCS_Time* in_timeout);

(’DCS’ stands for DECOS.) Some more func-
tions are generated, e.g. for providing some con-
trol on data access, but according to the same
principle.

In order to achieve platform and programming
language independency, PIL generation can be
controlled by the bound PI (see Fig. 2), which
contains, for instance, coding templates for the
respective platform/language pair.

5 Behaviour Modelling and Design

In addition to modelling system structure, con-
figuration, and scheduling as described so far,
specification of behaviour is another issue.
Though using C-code for that purpose is of
course possible, in safety-critical environments
safer approaches are highly recommended.
Therefore, SCADE [14] has been chosen to be
the primary DECOS tool for behaviour modelling

and development, which is described in this
chapter.

5.1 SCADE

Based on a formally defined data-flow notation
[5], SCADE offers strong typing, explicit initializa-
tion, explicit time management (delays, clocks,
etc), and simple expression of concurrency (data
dependencies). By means of a graphical data
flow graph editor, it supports model-based de-
velopment. This not only allows for simulation at
model level, accompanied by dedicated testing
[3] or formal proof techniques by the SCADE
Design Verifier [2] to prove safety properties, it
also enables qualified code generation, using the
KCG code generator. KCG has been certified
against DO178B level A [13] and IEC 61508 at
any SIL level.

The basic SCADE modelling elements are pre-
defined operators and user-definable nodes.
Both have input and output parameters, through
which they are connected with other nodes and
operators (see Fig. 8). Of course nodes can be
nested. Fairly obviously, nodes will be used to
represent DAS jobs.

In order to assure that "job nodes" adhere to
their interface definition in PIM, SCADE's UML
gateway is used to import PIMs into SCADE.
And in order to enable usage of behaviour mod-
els developed in Simulink

4
, another SCADE

gateway can be used to import Simulink models
into such nodes 5.3. In the following, these
gateways are addressed.

5.2 PIM-Import

The SCADE UML gateway is a flexible tool for
import and reuse of software architectures speci-
fied in other modelling languages as SCADE
node skeletons. It allows for easy addition of ex-
tension modules to support any modelling lan-
guage that has similar architectural concepts as
UML: Architectures consist of functional blocks,
with one or several levels of hierarchical decom-
position; and blocks are connected at specific
interaction points, with corresponding communi-
cation protocols defined.

The SCADE UML gateway is being extended to
support PIM-based modelling, by adding a new
module specifically tailored for DECOS PIM,
which realizes the following mapping:

• Each DAS represent a namespace for its con-
tained Jobs.

4
 http://www.mathworks.com/

Tagungsband - 7 - ME 2006

• Jobs of a DAS are the architectural blocks of
the DAS.

• Ports (grouped in Interfaces) of a Job are the
interaction points of the corresponding block.

• Event-triggered and time-triggered messages
form the protocols at the interaction points.

Note that in SCADE, a node can be instantiated
several times. Therefore, a node is a kind of
“block type”. In the PIM on the contrary, Jobs are
instances already. There is no notion of job-type
to be instantiated several times. Anyway, a job
instance can be assimilated to its implicit “single-
ton” job type whenever the concept of “block
type” is needed.

Using the mapping realized by this PIM gateway,
the core of the gateway builds an internal repre-
sentation of the corresponding SCADE model,
together with traceability information that points
back to the original PIM model.

The PrettyPrint module of the gateway then seri-
alizes this internal representation into a valid
SCADE model containing skeleton nodes for all
jobs present in the PIM model.

Fig. 8: Importing PIM and Simulink models into SCADE

5.3 Simulink-Import

If the behaviour of the DAS jobs is originally
modelled in Simulink, it has to be imported into
SCADE, to "fill the contents" of the nodes cre-

ated by the PIM to SCADE gateway. The DAS
jobs behaviour can be defined in several Simu-
link models, and/or in several parts of a Simulink
model. The current version of the Simulink trans-
lator only allows one Simulink import (one part of
one Simulink model), so it is upgraded to support
this requirement. When a modification of a Simu-
link job model is made, thanks to this "modular
translation" feature, only the respective part
needs to be re-imported.

Since re-translation may introduce incoherencies
in the SCADE model, semantic inconsistencies
(on names, types, or used clock units) are auto-
matically checked by the SCADE checker.

5.4 Code Generation

As already mentioned, KCG is used to generate
the code from each individual SCADE node job.
To get the code of the complete distributed ap-
plication, the job code must be linked to the mid-
dleware code via the PI API.

Since SCADE nodes do not access DECOS ser-
vices via the PI API directly, but instead work on
‘context objects’ which contain their input and
output parameter, they have to be embedded
into so-called wrappers, which per execution

• fetch received messages and put them
into the input fields of context objects,

• activate the node code,

• forward output fields of context objects
to PI API as send messages.

Since node code may not produce requested
output, a specific flag mechanism is implement-
ed to inform the wrapper which messages to
send.

6 Putting it all Together

As shown in the previous chapters, a rather wide
variety of tools comprise the DECOS tool-chain.
In order ease the handling of all these tools,
VIATRA [1] is used as "backbone" with respect
to PIM→PSM transformation. It not only allows
for developing model transformation conve-
niently, it is also possible to generate code with it
(e.g. PIL), as well as to develop domain-specific
editors, which e.g. ease PIM creation. Although
CRDs could conceptually also be developed with
VIATRA, the taken approach (see 3.2) is very
appealing. So, basically four tools constitute the
DECOS tool-chain – GME, VIATRA, SCADE,
TTPplan/build, as indicated in Fig. 9, which also

SCADE Simulink

Gateway

1 job � 1 SCADE node

SCADE

PIM

Gateway

PIM

model

Interface

adaptation

Tagungsband - 8 - ME 2006

shows the interchange formats among these
tools. Boxes denote interactive activities.

Fig. 9: DECOS tool-chain: involved tools and interfaces

7 Conclusion

A tool-chain has been presented, being under
development in the integrated EU-project DE-
COS, which enables efficient and convenient
configuration and code development for integra-
ted embedded real-time systems, based on a
model-based approach.

Besides completing the tool-chain itself, further
features are intended to support simulation of
complete DASs in SCADE, and easing PIM
creation by means of PIM-specific patterns.

References
[1] G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza,

and D. Varro: VIATRA: Visual automated transforma-

tions for formal verification and validation of UML

models. In Proc. of the 17th IEEE Int. Conf. on Auto-

mated Software Engineering (ASE 2002). IEEE

(2002), 267–270

[2] A. Bouali, B. Dion, K. Konishi,; Using Formal Verifi-

cation in Real-Time Embedded Software Develop-

ment. Japan SAE, Yokohama, 2005

[3] B. Dion, J. Gartner; Efficient Development of Embed-

ded Automotive Software with IEC 61508 Objectives

using SCADE Drive. in Proc. of VDI Conference Elec-

tronic Systems for Vehicles, Baden-Baden, Oct. 2005;

[4] D. Fernandez-Baca, Allocating Modules to Processors

in a Distributed System. IEEE Trans. on Softw. Eng.,

15(11), pp. 1427–1436, 1989.

[5] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.

The synchronous dataflow programming language lus-

tre. Proceedings of the IEEE, 79(9):1305–1320, Sep-

tember 1991.

[6] B. Huber, R. Obermaisser, and P. Peti. MDA-Based

Development in the DECOS Integrated Architecture –

Modeling the Hardware Platform. Proc. of the 9th

IEEE Int. Symp. on Object and Component-Oriented

Real-Time Distribued Computing (ISORC). 2006.

[7] S. Islam, G. Csertan, W. Herzner, T. LeSergent, A.

Pataricza, N. Suri; A SW-HW Integration Process for

the Generation of Platform Specific Models. ME´06,

Oct. 2006

[8] S. Islam, R. Lindström and N. Suri; Dependability

Driven Integration of Mixed Criticality SW Compo-

nents, In the proc. of the 9th IEEE International Sym-

posium on Object and Component-oriented Real-time

distributed Computing (ISORC), p 485-495, 2006.

[9] Kopetz, H. and Bauer, G. (2003). The time-triggered

architecture. IEEE Special Issue on Modeling and De-

sign of Embedded Software

[10] H. Kopetz, R. Obermaisser, P. Peti, N. Suri; From a

Federated to an Integrated Architecture for Dependable

Real-Time Embedded Systems; Technical report

22/2004, TU Vienna, July 2004.

[11] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garret,

C. Thomason, G. Nordstrom, J. Sprinkle, and P. Vol-

gyesi; The Generic Modeling Environment; Proceed-

ings of WISP, Budapest Hungary, May 2001

[12] OMG. Model driven architecture, A technical perspec-

tive. Technical report, OMG Document No. ab/2001-

02-04, Object Management Group.

[13] RTCA (1992). DO-178B: Software Considerations in

Airborne Systems and Equipment Certification. Radio

Technical Commission for Aeronautics, Inc. (RTCA),

Washington, DC.

[14] SCADE Suite Technical and User Manuals, Version

5.0.1, June 2005, Esterel Technologies

[15] G. Weißenbacher, W. Herzner, E. Althammer; Alloca-

tion of Dependable Software Modules under Consid-

eration of Replicas. ERCIM Workshop on Dependable

Software Intensive Embedded Systems, Porto, Portu-

gal. Sep.2005

[16] A. Pataricza: Report about decision on meta model and

tools for PIM specification, DECOS deliverable D

1.1.1, Dec 2004.

bound PIL

C

CRD-Editor
(GME)

CRD

XML
PIM-Editor
(VIATRA)

PIM

Candidate
PSM

VIATRA
DECOS

Model Store

PIL generation

Code
Information

(XML)

PIM marking
(VIATRA)

Candidate
PSM

Python

Scheduling/
OS-config.

(TTPplan/build)

Behaviour
Modelling
(SCADE)

Marked PIM

XMI

Job Allocation
(VIATRA)

Simulink/
Stateflow

Models

.mdl

Wrapper and
Node Code
generation

Arch.Serv. Lib

Compile/Link

Executables

Wrapper &
Node Code

C

Config. Data

C

(src, bin)

Tagungsband - 9 - ME 2006

Wolfgang Herzner received his doc-
tor degree in Computer Science at
the Vienna University of Technology
in 1984. Initially working in the fields
of computer graphics and multime-
dia, he was engaged in correspond-
ing international standardisation
within ISO/ IEC JTC1 until 1996.

After co-designing and developing large industrial
systems, e.g. for digital video surveillance, he now
works in the area of safe software engineering and
related areas like model-driven software development
or (design) patterns, with emphasis on dependable
embedded real-time systems. With that focus, he is
currently involved in projects like DECOS. Herzner is
with the ARC Seibersdorf research since 1984. He
gives lectures about component-based software engi-
neering at the Johannes Kepler University of Linz, and
is member of ACM, IEEE Computer Society, the Aus-
trian Computer Society (OCG), and reviewer of IEEE
Software Engineering.

Martin Schlager received two mas-
ter degrees from the Vienna Univer-
sity of Technology, a Master of Sci-
ence (2002) and a Master of Social
and Economic Sciences (2005). In
the past four years, he has been
involved in several national and
European research projects with a

focus on dependable real-time systems. Martin
Schlager has been affiliated with TTTech Com-
putertechnik AG since 2001. Between 2003 and 2004
he was granted a one-year schoolarship by the Aus-
trian Academy of Sciences. In that time he worked as
a researcher in the Real-Time Systems Group at the
Institute of Computer Engineering at the Vienna Uni-
versity of Technology. In 2004 he joined TTTech as
an R&D project manager. His current assignment in-
cludes the coordination of TTTech's activities in the
EU FP6 project DECOS.

Thierry Le Sergent received his PhD
on Computer Science from the
“LAAS-CNRS” in 1993. He has been
involved for 7 years in the develop-
ment of software engineering meth-
ods and tools (ASA+, Ob-
jectGEODE) at Verilog and CS-
Verilog. Years 2000 and 2001, he

managed the IST SafeAir project for Telelogic Tech-
nologies Toulouse. In 2002, he joined Esterel Tech-
nologies as R&D project manager leading the SCADE
Gateways team. Activities of the team includes the
design and development of SW tools that link SCADE
environment to other formalisms, e.g. UML/SysML
and Simulink/Stateflow. He is managing IST projects
for Esterel Technologies: RISE (FP5), DECOS (FP6),
SPEEDS (FP6).

Bernhard Huber received his di-
ploma degree (MSc) in Computer
Science from Vienna University of
Technology in 2004. He is currently
affiliated as research and teaching
assistant with the Real-Time Sys-
tems Group of Vienna University of
Technology. His research interests

focus on dynamic reconfiguration and integrated re-
source management of time-triggered systems as part
of the EU-funded IST research project DECOS.

Shariful Islam received the B.Sc.
degree in Electrical and Electronic
Engineering from Khulna University
of Engineering and Technology,
Bangladesh in 2000 and the M.Sc.
degree in Information Technology
[Study Model: Embedded Systems
Engineering] from the University of

Stuttgart, Germany in 2004. He is currently a PhD
candidate at the DEEDS group in the Department of
Computer Science at TU Darmstadt, Germany. His
research interests include design and assessment of
integrated dependable real-time embedded systems,
system design optimization, SW-HW integration -
main issues are dependability, real-time and power.
He received the ‘Prime Minister Gold Medal’ award in
recognition of his outstanding academic performance
in B.Sc. He is a student member of the IEEE. More
information on his interests and activities is provided
at http://www.deeds.informatik.tu-darmstadt.de/ripon.

Neeraj Suri received his Ph.D. from
the University of Massachusetts at
Amherst. He currently holds the TU
Darmstadt Chair Professorship in
"Dependable Embedded Systems
and Software" at TU Darmstadt,
Germany. His earlier academic ap-
pointments include the Saab En-

dowed Professorship and faculty at Boston University.
His research interests span design, analysis and as-
sessment of dependable and secure sys-
tems/software. His group's research activities have
garnered support from DARPA, NSF, ONR, EC,
NASA, Boeing, Microsoft, Intel, Saab among others.
He is also a recipient of the NSF CAREER award. Suri
serves as an editor for IEEE Trans. on Dependable
and Secure Computing, IEEE Trans. on Software En-
gineering, ACM Computing Surveys, IJSN, and has
been an editor for IEEE Trans. on Parallel and Dis-
tributed Systems. He is a member of IFIP WG 10.4 on
Dependability, and a member of Microsoft's Trustwor-
thy Computing Academic Advisory Board. More de-
tails are available at: http://www.deeds.informatik.tu-
darmstadt.de/suri

Tagungsband - 10 - ME 2006

András Balogh holds an MS in Techni-
cal Informatics received from the Bu-
dapest University of Technology and
Economics in 2004. Currently he is a
Ph.D. student at the Fault Tolerant
Systems Research Group at BUTE.
His professional interest includes

model-driven development of dependable systems
and e-business systems, and formal analysis of sys-
tem models. He has many years of experience in ar-
chitectural system design, and in software and trans-
formation development. He holds courses on Eclipse-
based development, and UML modeling.

