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ABSTRACT 

The increasing complexity of distributed embedded 
systems, as found today in airplanes or cars, becomes 
more and more a critical cost-factor for their develop-
ment.  Model-based approaches have recently demon-
strated their potential for both improving and accelerating 
(software) development processes.  Therefore, in the 
project DECOS1, which aims at improving system 
architectures and development of distributed safety-
critical embedded systems, an integrated, model-driven 
tool-chain is established, accompanying the system 
development process from design to deployment.  This 
paper gives an overview of this tool-chain and outlines 
important design decisions and features. 

INTRODUCTION 

Today, the development of embedded systems still fol-
lows a customized design approach, resulting in rather 
isolated applications, reinvention of system design con-
cepts, and little reuse of code across diverse application 
domains and even product families.  So, for example in 
modern cars a number of sub-systems co-exist like the 

                                                      
1  DECOS (Dependable Embedded COmponents and 

Systems) is an integrated project partially funded by the EU 
within priority “Information Society Technologies (IST)” in the 
sixth EU framework programme (contract no. FP6-511 764) 

power-train control, the body electronics, or driver-
assistance systems, each equipped with its own elec-
tronic hardware, communication cabling etc.  While this 
federated approach eases system composition and 
supports fault encapsulation (a failure in one subsystem 
will not affect others), it implies at least increased 
hardware costs, weight, and power consumption. It also 
severely hampers the sharing of resources like sensors 
among the different sub-systems. 

Based on these observations, the European project 
DECOS aims at developing basic enabling technology for 
moving from federated to integrated distributed architec-
tures to reduce development, validation and mainte-
nance costs, and increase the dependability of embed-
ded applications in various application domains. An inte-
grated architecture is characterized by the integration of 
multiple application subsystems within a single distribu-
ted computer system.  When integrating subsystems into 
one platform, however, it has to be guaranteed that each 
of them can be executed in a protected environment that 
resembles the environment of the federated architecture, 
i.e. as it would not share resources with other subsys-
tems.  In particular, subsystems must not disturb each 
other, and faults in one subsystem must not propagate to 
others. 

Efficient development of applications relies on a proper 
system architecture and on appropriate tool support.  
Within the DECOS project, a tool-chain has been 



developed for design, development, configuration and 
integration of applications [1]. In this paper we discuss 
the model-based development of distributed embedded 
real-time system based on the final version of this tool-
chain. 

The following section shortly outlines the DECOS 
architecture and gives an overview of the tool chain. 
Thereafter, the constituents for system modeling, con-
figuration establishment, and behavior modeling are 
described.  Finally, in the last section a conclusion is 
drawn and a short outlook is given. 

DECOS OVERVIEW 

CONCEPTS AND ARCHITECTURE 

The basic principles for achieving dependability in a 
DECOS system [2] are strong fault encapsulation, fault 
tolerance by means of replication and redundancy, and 
separation of safety-critical from non-safety-critical 
functionality.  These principles, in particular redundancy, 
lead to functional distribution. Additionally, supporting 
hard real-time applications requires guaranteed response 
times.  Therefore, the functional structuring of a DECOS 
system comprises a number of (nearly) independent 
Distributed Application Subsystems (DASs), each rea-
lizing a part of the overall system service.  DASs can be 
further subdivided into jobs, which represent the smallest 
executable software fragment in the DECOS model. 
Jobs communicate with each other by the exchange of 
messages via virtual networks. 

 

Fig. 1: DECOS cluster with four nodes and three DASs: one 
with jobs A, B, C, another one with P and Q, and a third one 
with U, V, W, X, and Y.  A, B, and Q have two replicas each, 

while P has three. 

Furthermore, a DECOS cluster is physically structured 
into a set of distributed node computers interconnected 
by a time-triggered network. Each node computer com-
prises several encapsulated partitions, which serve as 
the protected execution environment for jobs. During the 
development of a DECOS system, a mapping of jobs to 
partitions has to be established as indicated in Fig. 1.  
Due to the guaranteed non-interference of individual 
partitions, a DECOS node is able to host multiple jobs 
belonging to different DASs, even exhibiting different 
levels of criticality.  Conceptually, all jobs could be alloca-

ted to a single processing node, as long as resource 
limits and hardware fault-tolerance do not require distri-
bution. 

Taking the achievements of research in the area of de-
pendable system architectures into consideration, DE-
COS does not intend to design the complete system 
architecture from scratch.  Instead, it presumes the exist-
ence of a core architecture, providing the core services: 

• Deterministic and timely transport of messages. 
• Fault tolerant clock synchronization. 
• Strong fault isolation. 
• Consistent diagnosis of failing nodes. 

Any architecture that provides these core services can 
be used.  It has been demonstrated that the Time-
Triggered Architecture (TTA) [3] is appropriate for the 
implementation of applications in the highest criticality 
class in the aerospace domain according to RTCA DO-
178B [4] and consequently meets the DECOS require-
ments as core architecture. 

On top of the core services, DECOS provides a set of 
architectural (or high-level) services: 

• Virtual Networks (VN) and Gateways. 
• Encapsulated Execution Environment (EEE). 
• Diagnostics. 

VNs represent the communication system for DASs, 
embedded on the physical cluster network.  Gateways 
provide means to exchange information between VNs, 
as well as with external networks, in a controlled way.  
The EEE is a partitioning real-time operating system that 
enables the execution of jobs from different DASs and of 
different criticality on the same hardware with guaranteed 
fault encapsulation.  This is achieved by housing each 
job in its own partition with strong spatial and temporal 
protection [5].  Compared to other partitioning operating 
systems (e.g. ARINC653 LynxOS, AUTOSAR Tresos), 
the EEE is very small in terms of code size (< 1MB) and 
can run on comparably simple hardware [6]. The 
diagnostics service of DECOS both assists fault 
encapsulation and supports prognoses of hardware 
breakdowns. 

Architectural services are implemented in a form influ-
enced by the underlying (HW-)platform. In order to mini-
mize dependency of application programmers on a cer-
tain implementation of these services, the Platform Inter-
face Layer (PIL) provides a platform independent inter-
face of the architectural services for application jobs. 

An important DECOS feature is the support of both time- 
and event-triggered messages. Time-triggered (TT) mes-
sages transmit state values like the current speed perio-
dically, while event-triggered (ET) messages transmit 
changes, e.g. the difference to the previous speed value 
whenever that change passes a certain threshold.  So, 
while a transient transmission error of a TT message can 
be compensated with the next one, this is not the case 
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for ET messages.  Therefore, the latter cannot be utilized 
for transmission of safety-critical information.  TT messa-
ges are also denoted as state messages, and ET mes-
sages as event messages.  Essentially, state messages 
realize the parallel computing concept of a conflict-free 
distributed virtual shared memory. 

THE DECOS TOOL-CHAIN 

An important activity in DECOS was the development of 
a dedicated tool-chain for supporting the development of 
certifiable DECOS applications by integrating several 
DASs in one cluster. As shown in Fig. 2, this tool-chain 
relies on a model-driven approach [7], aiming at the 
generation of configuration data as well as middleware 
and application code purely from models.  

 

Fig. 2: DECOS tool-chain overview. Feedback loops, e.g. for 
failure reporting, are not shown.  

First, the Platform Independent Models (PIMs) of the 
DASs are created, which serve two purposes.  On the 
one side, together with the specification of the target 
cluster (Cluster Resource Description - CRD) and other 
information (job size etc.), they are used to derive confi-
guration and scheduling information, as well as to gene-
rate the PIL, by transforming the PIMs into the Platform 
Specific Model (PSM). In Fig. 2, "Candidate PSM" is de-
noted rather than "PSM", because if scheduling fails, 
another allocation has to be chosen. 

On the other side, PIMs are used to guide the deve-
lopment of jobs, by modeling their behavior, which is 
addressed in the section APPLICATION MODELING. 
Finally, the results of both activities are integrated to 
achieve the target executables, which can then be 
downloaded to the application cluster. 

SYSTEM AND CONFIGURATION MODELING 

This section addresses generation of relevant input for 
the PIM→PSM transformation process, namely the PIMs 
and the description of the cluster hardware and resour-
ces (CRD). 

PIM AND ITS GENERATION 

The purpose of the PIM [8] is to formalize the functional, 
dependability, and performance requirements of the DAS 
in an implementation platform independent manner.  It is 
the place of the first steps of system architecture concep-
tualization.  DECOS platform services - both at core and 
high-level - are handled in an abstract form that is easy 
to use and understand at this level of design. 
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Fig. 3: PIM meta-model packages 

According to the concepts of MDA [7] the PIM has its 
own meta-model.  It is composed of three sub-models, 
each containing its respective object diagrams: (a) 
Functionality package: the basic functional elements like 
DAS, Job, Interface, Port, Message, Sensor/Actuator, 
State Variable, etc. (b) Dependability package: the 
dependability attributes of functional elements: reliability, 
availability, SIL, redundancy degree, etc. (c) Perfor-
mance package: the performance attributes of functional 
elements: WCET, period, phase, deadline, latency, etc. 
Additional OCL expressions are used to specify semantic 
constraints: multiplicities, attribute constraints, etc. 

Since the data model of the PIM, which is XML, is hard to 
edit even with XML editors, two solutions are provided for 
easing the generation of a PIM: (a) to use the same UML 
tool as for high-level system design.  In this case, the 
DECOS-PIM-XML file is generated from the XMI output 
of the UML editor. Currently Rational Rose 2003 and 
Rational Software Modeler are supported.  (b) to use a 
Domain Specific Editor (DSE) (see Fig. 4), which allows 
for creating only meta-model compliant PIMs. Such a 
DSE has been implemented under the Eclipse 
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technology2.  It runs directly inside of VIATRA [9] which is 
the selected tool for PIM-PSM mapping. This way impor-
ting PIMs is not needed any more. 

As indicated in Fig. 4, a PIM consists of (instances of) 
elements like Job, Interface, or Message, and specific 
associations among them, as in UML object diagrams.  
Furthermore, most elements and associations have spe-
cific attributes.  In order to ease creation of PIMs, so-
called "PIM design patterns" are provided.  Inspired by 
(object-oriented software) design patterns, they allow ad-
ding dedicated sub-graphs to PIMs, guarded by a small 
number of parameters.  For example, if a job shall be 
added to a PIM, only (a) its name, (b) its type (TT or ET), 
(c) whether it performs physical I/O, (d) whether it sends 
messages to other jobs and (e) whether it receives mes-
sages from other jobs has to be given.  The sub-graph of 
new elements and required associations is then automa-
tically generated and added to the PIM.   

 

Fig. 4: DSE for the PIM under VIATRA  

Before applying these patterns, some consistency 
checks are performed.  For instance, a pattern will not be 
applied, if a name is given which is already used in the 
given PIM.  Thus, besides easing the PIM capturing pro-
cess, PIM patterns also help to avoid mistakes. 

Finally, a service is provided (which can be activated 
directly from the PIM/DSE per simple mouse-click) which 
allows to check a PIM for semantic completeness (based 
on the predefined OCL constraints).  The reason for this 
tool is that PIM/DSE does not allow for creating elements 
in conflict with the PIM meta-model like elements of 
undefined type or invalid associations.  It cannot avoid, 
however, that elements are missing or required attributes 
undefined.  Of course, when constructing a PIM under 
exclusive usage of the patterns, only a small number of 
attributes (e.g. execution periods of jobs or transmission 
periods of messages), for which no reasonable defaults 
exist, will have to be added manually. 

                                                      
2 http://www.eclipse.org/ 

CRD AND ITS GENERATION 

It is the purpose of the so-called Cluster Resource 
Description (CRD) to capture the relevant characteristics 
of the platform for the software-hardware integration in 
the DECOS design flow.  These characteristics include 
amongst others computational resources (e.g., CPU and 
memory), communication resources, and dependability 
properties. 

In order to ease CRD creation, a graphical, domain-
specific modeling environment is developed, using the 
Generic Modeling Environment (GME).  GME is a confi-
gurable framework for creating domain-specific modeling 
environments [10].  The configuration of GME is per-
formed via the Hardware Specification Model (HSM), a 
meta-model which formally describes the targeted 
modeling domain, i.e. it describes the entities, its 
attributes, the relationships, and constraints that can be 
expressed with and that are validated by the resulting 
modeling environment. 

 

Fig. 5: Example (cut-out) of a CRD built with GME 

One aim of the HSM is to facilitate reuse and hierarchical 
composition of the resource model.  This is achieved by 
separating the resource modeling process into two 
phases: the resource capturing and the resource 
composition. 

Resource Capturing: The specification of reusable 
hardware entities of a DECOS platform, so-called 
resource primitives, is addressed by the resource 
capturing phase. Resource primitives are the smallest 
physical hardware units whose characteristics are cap-
tured.  Examples for resource primitives are: processors, 
memory elements, communication interfaces.  However, 
the HSM provides mechanisms to extend the set of 
resource primitives that can be modeled in order to be 
flexible and extensible with respect to the types of 
resource primitives [11].  

Resource Composition: This second phase of the 
modeling process is concerned with the composition of 
an entire CRD (including the internal setup of DECOS 
components and their interconnection) out of the pre-



viously modeled resource primitives. The composition is 
guided by the DECOS component model [2], which is 
fully captured by the HSM. 

The interface to the subsequent tools in the development 
process realizing the software/hardware integration is 
specified using the extensible markup language (XML). 

CONFIGURATION AND MIDDLEWARE 

Based on PIM and CRD, the next steps involve the 
generation of configuration data and middleware:  
• PSM-generation (mapping jobs to nodes). 
• Scheduling and Fault-Tolerance Layer generation. 
• PIL-generation. 

PSM-GENERATION 

The main purpose of the PSM (which is still a model) is 
to precisely specify which application jobs are to be 
assigned to which cluster nodes, under consideration of 
all constraints defined in the PIMs of the DASs and the 
available resources described in the CRD.  Fig. 6 depicts 
a small part of its meta-model in UML-notation. 

The PSM generation process encompasses a number of 
steps like PIM marking, feasibility checks, and the 
allocation process.  The significant part of the mapping 
process is to allocate jobs with different criticality to a 
shared HW platform (HW nodes) subject to constraints 
and requirements of fault-tolerance and real-time.  
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Fig. 6: Part of PSM meta-model 

PIM marking is necessary for incorporating additional 
information to the PIMs that reflect designer decisions 
(hardware sensor/actuator allocation, job pre-allocation) 
and legacy information (job interface type, message 
protocol definition, etc.)  The result is a marked PIM 
containing elements and associations reflecting the 
additional information. 

Feasibility checks are executed both after the marking 
and after the allocation step to validate the (partial) 
models in order to achieve early detection of design 
problems.  If a design constraint is violated, the designer 
can step back in the PIM/PSM mapping process and 

modify markings and/or extra-functional requirements to 
get a feasible system design. 

The main (automatic) step is to assign jobs to nodes 
under the considerations of the functional and non-func-
tional (i.e. performance and dependability) constraints 
given in the PIMs. Examples for such constraints are: 

• Resource requirements (e.g. memory, CPU, 
sensors, actuators, bandwidth). 

• Dependability constraints (e.g. replicas must be 
assigned to different nodes). 

A dual-track approach is taken in DECOS to generate 
the PSM. First, a transformation based mapping process 
has been developed which deals constraints one-by-one.  
It finds a feasible solution for resource allocation while 
satisfying different constraints.  A heuristics based syste-
matic resource allocation approach has been explicated 
for this and presented in [12].  Considering dependability 
and real-time as prime drivers, we presented a schedu-
lable allocation algorithm for the consolidated mapping of 
SC and non-SC applications onto a distributed platform. 

Although the allocation problem is NP-hard [13], exploi-
ting symmetry (job replicas, identical nodes, etc.) can 
improve the performance of such approaches [14], but it 
is difficult to assess solutions with respect to certain 
criteria like reliability maximization or cost minimization.  

Therefore, in a second phase, a Multi-Variable Optimiza-
tion (MVO) approach is implemented where multiple 
objectives are optimized together with satisfaction of con-
straints.  Here, a so-called MVO function is used, which 
associates a scalar-valued function v(q) to each point q 
in an evaluation space, representing the system design-
er’s preferences, provided that choosing a feasible alter-
native from a set of contenders such that v is maximized 
or minimized.  

See [15] for more information about the generation of the 
PSM. 

SCHEDULING AND FAULT-TOLERANCE 

As mentioned previously, the DECOS Integrated 
Architecture consists of several nodes that communicate 
via a time-triggered physical network (cf. Fig. 1).  
DECOS does not make further assumptions about the 
specific time-triggered protocol that has to be used.  
Within the project, TTP as well as FlexRay and TT-
Ethernet have been successfully used for the core net-
work. 

Virtual networks (VN) are built upon this time-triggered 
physical network, implying that all information transfer 
takes place via messages of the underlying time-
triggered physical network.  Thus, each DECOS node 
must be able to send/receive messages (cf. Fig. 7). 
Furthermore, DECOS nodes that share the same com-
munication medium are required to coordinate the trans-



mission of messages, i.e., at each point in time, exactly 
one node is allowed to send a message. 

 

Fig. 7: DECOS nodes communicating via a time-triggered 
physical network 

In addition to the scheduling of messages, partition- and 
task-scheduling is required. The scheduling of partitions 
generates a proper arrangement of DAS jobs that are 
assigned to EEE partitions (see CONCEPTS and 
ARCHITECTURE). Task scheduling is concerned with 
arranging tasks within each single partition (DAS jobs 
can consist of several tasks). 

For that purpose, the TTTech tool suite3 has been 
adapted to cope with partitions, and has been integrated 
into the DECOS tool chain. 

The TTTech tool suite provides a graphical front-end for 
the specification of partitions as well as a programming 
interface that is used for importing the PSM.  From that, 
it computes valid schedules and generates configuration 
data structures for the communication controller and for 
the hardware implemented fault-tolerance layer, as well 
as optimized fault-tolerance layer tasks, and the 
respective configuration files for the operating system 
configuration including the protection parameters of the 
partitions. 

The hardware supported fault-tolerance layer (FTL) of 
the DECOS project comprises all functionality required 
for fault-detection and fault encapsulation. It consists of 
software (the generated fault-tolerance tasks) and 
hardware (implemented on a FPGA) part.  High-level 
operations such as comparing and voting on message 
replicas (if a sending job is replicated, recipients receive 
the same message from all replicas) are handled in 
software whereas the hardware part takes over low-level 
operations like message (un)packing, comparing content 
received on redundant channels, setting frame status 
and byte ordering. Experimental evaluation of the 
DECOS FTL recently showed that “built-in error detection 
and recovery mechanisms including different RDA 
functions are able to detect, mask or recover from errors 
both internal in a redundant node or on a replicated com-
munication network” [16]. 

PIL GENERATION 

As already mentioned, the Platform Interface Layer (PIL) 
provides a technology invariant interface to the DECOS 
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architectural services for application jobs. Following 
"native" services are offered by PIL: 

• generic message transfer (TT and ET), 
• global time service, and 
• membership service (to get information about health 

states of nodes and jobs). 

In addition, the usage of domain-specific application 
middleware like for CAN-support is possible. 

Since C is still the most common programming language 
for embedded systems, including generated code like 
that from SCADE (see next section), a C-binding for the 
PIL API is provided by default.  One means to improve 
safety in a C-environment is to make intensive use of 
types and names, and to avoid the usage of error prone 
types like void* or char* for parameters and return 
values.  Hence, for each job/message combination an 
own set of functions is provided, forcing to generate the 
PIL individually for each job. 

For instance, if a job X receives a state message S of 
type t_S and may send event messages E of type t_E, 
then essentially the following C-API will be generated for 
it: 

PIL_RetCode PIL_get_S( 
   t_S *out_S,  
  UINT16 *out_validity, 
  const PIL_WaitMode in_wait); 

PIL_RetCode PIL_queue_E( 
   const t_E * in_E,  
   PIL_WaitMode in_wait); 

"out_validity" returns the number of message replicas 
used to yield out_S; if 0, out_S is invalid, or outdated, 
respectively.  "in_wait" can be used for controlling whe-
ther the call shall return immediately if access to the 
internal buffer for S is blocked.  

Some more functions are generated according to the 
same principle, e.g. for providing control on data access. 

In order to achieve platform and programming language 
independency, PIL generation conceptually binds the PIL 
to the target environment. This is achieved, for instance, 
by using coding templates for the respective platform/ 
language pair.  This leads to a bound PIL tailored to 
interface platform and applications. 

APPLICATION MODELING 

In addition to modeling system structure, configuration, 
and scheduling as described so far, specification of 
behavior is another issue.  Though using C-code for that 
purpose is of course possible, in safety-critical environ-
ments safer approaches are highly recommended. 
Therefore, SCADE [17] has been chosen to be the pri-
mary DECOS tool for behavior modeling and develop-
ment, which is described in this section. 



SCADE 

Based on a formally defined data-flow notation [18], 
SCADE offers strong typing, explicit initialization, explicit 
time management (delays, clocks, etc), and simple 
expression of concurrency (data dependencies).  By 
means of a graphical data flow graph editor, it supports 
model-based development.  This not only allows for si-
mulation at model level, accompanied by dedicated 
testing [19] or formal proof techniques by the SCADE 
Design Verifier [20] to prove safety properties, it also 
enables qualified code generation, using the KCG code 
generator.  KCG has been certified against DO178B 
level A [4] and IEC 61508 at any SIL level.  

The basic SCADE modeling elements are predefined 
operators and user-definable nodes.  Both have input 
and output parameters, through which they are connec-
ted with other nodes and operators (see Fig. 8). Of 
course nodes can be nested. Fairly obviously, nodes will 
be used to represent DAS jobs. 

To assure that "job nodes" adhere to their interface defi-
nition in PIM, SCADE's UML gateway is used to import 
PIMs into SCADE.  And to enable usage of behavior 
models developed in Simulink4, another SCADE gateway 
can be used to import Simulink models into such nodes 
(see clause "Simulink Import" below).  In the following, 
these gateways are addressed. 

 

Fig. 8: Importing PIM and Simulink models into SCADE 

                                                      
4 http://www.mathworks.com/ 

PIM-IMPORT 

The SCADE UML gateway is a flexible tool for import 
and reuse of software architectures specified in other 
modeling languages as SCADE node skeletons.  It 
allows for easy addition of extension modules to support 
any modeling language that has similar architectural 
concepts as UML:  Architectures consist of functional 
blocks, with one or several levels of hierarchical 
decomposition; and blocks are connected at specific 
interaction points, with corresponding communication 
protocols defined. 

The SCADE UML gateway is being extended to support 
PIM-based modeling by adding a new module specifically 
tailored for DECOS PIM, which realizes the following 
mapping: 

• Each DAS represents a namespace for its contained 
jobs. 

• Jobs of a DAS are the architectural blocks of the 
DAS.  

• Ports (grouped in interfaces) of a job are the inter-
action points of the corresponding block. 

• Event-triggered and time-triggered messages form 
the protocols at the interaction points. 

SIMULINK-IMPORT 

If the behavior of the DAS jobs is originally modeled in 
Simulink, it has to be imported into SCADE, to "fill the 
contents" of the nodes created by the PIM to SCADE 
gateway.  The DAS jobs behavior can be defined in se-
veral Simulink models, and/or in several parts of a 
Simulink model.  The current version of the Simulink 
translator only allows one Simulink import (one part of 
one Simulink model), so it is upgraded to support this 
requirement.  When a modification of a Simulink job mo-
del is made, thanks to this "modular translation" feature, 
only the respective part needs to be re-imported.  

Since re-translation may introduce incoherencies in the 
SCADE model, semantic inconsistencies (on names, 
types, or used clock units) are automatically checked by 
the SCADE checker. 

NATIVE BEHAVIOR MODELING 

Instead of importing Simulink models, job behavior can, 
of course, also be modeled in SCADE directly.  Besides 
a rich set of basic operators (arithmetic, boolean, set, 
temporal etc.), SCADE offers a number of libraries with 
predefined nodes, which can be easily extended.  
DECOS takes advantage of this feature by providing an 
own library of DECOS specific nodes; for instance for 
fault-tolerant treatment of sensor input. 
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INTERFACE ADAPTATION 

The input/output interface of a job at PIM-level is made 
of a set of state messages and/or event messages carry-
ing information about various state variables together 
with validity flags provided by the platform.  (PIL's validity 
number is mapped to boolean, with 0 mapped to false 
and any positive value mapped to true).  A single mes-
sage can carry information about an arbitrary number of 
state variables and is therefore represented as a struc-
tured value with many fields, the first field being the 
validity flag for the whole message. 

Various application-level strategies exist for handling 
fault tolerance. The simplest one is to do the actual 
computation with the latest valid values of the state 
variables as extracted from input messages and then 
propagate the validity flags to dependent output mes-
sages. 

Usually, the first step during behavior computation is to 
check the validity flags of messages and extract the 
values of the various state variables that they carry.  
Then the actual computation is performed, often through 
an auxiliary node coming from an import from Simulink.  
The PIM gateway automates parts of this strategy, as 
follows: 

In the SCADE model, the state variables (and possibly 
also the event flags) as extracted from the I/O messages 
must be connected to the right inputs and outputs of the 
auxiliary node doing the computation.  This task is tedi-
ous and error prone, which is the reason why the PIM 
gateway does the state variable extraction automatically, 
by creating corresponding local variables in the SCADE 
job.  If the names happen to be consistent in the PIM 
versus in the algorithm node, a simple “connect by 
name” command in the SCADE editor will be enough to 
complete interface adaptation in just one click. 

Besides state variable extraction, the other aspect of 
interface adaptation is type conversion:  Indeed, the 
state-variables are typed by PIM-level types, which are 
opaque from a SCADE point of view (they are “imported 
types” in SCADE terminology), while the computation 
node itself is normally using various SCADE primitive 
types.  Values of state variables must therefore be con-
verted, mapping each opaque PIM-level type onto the 
most appropriate SCADE primitive type.  The mapping is 
expressed as SCADE-dedicated PIM annotations.  For 
each PIM types, the annotations provide its name as a 
SCADE imported type, the name of the most appropriate 
SCADE primitive type on which it should be mapped, and 
the name of the two conversion operators (from PIM type 
to SCADE type and vice-versa).  Most of the time, the 
conversion operators can be implemented by a simple 
cast at C-level.  The PIM gateway uses this information 
to automatically insert type conversions between the 
values as extracted from input/output messages and the 
values as manipulated by the algorithm node. 

Extraction of state variable information and type 
conversions are the two facets of interface adaptation. 
Most of this step is automated already, relieving the user 
of some tedious manual work, while limiting the risk of 
introducing errors. 

TESTING 

A particular strength of SCADE is its provision of power-
ful tools for simulation and testing.  In addition to an 
intrinsic simulation feature with a broad variety of control 
possibilities (single step, time range, etc.), it offers a set 
of dedicated tools like SCADE MTC for evaluating test 
coverage or model checking by means of DESIGN 
VERIFIER™ by Prover Technology. 

In DECOS, two further tools are under development for 
testing SCADE models.  One allows for checking the 
correct use of physical units and dimensions in SCADE's 
data-flow models [21], the other serves for simulating 
complete DASs based on their PIMs.  This can be used 
to quickly evaluate whether, e.g., temporal data like 
periods and phases of job executions or message trans-
fers are sufficiently complete, or to examine whether the 
integration of modeled job functionality into a DAS does 
not provoke unintended emergent system behavior.  It 
also allows simulating effects of faults like failing mes-
sage transfers at application level. 

CODE GENERATION  

As already mentioned, KCG is used to generate the code 
from each individual SCADE node job.  To get the code 
of the complete distributed application, the job code must 
be linked to the middleware code via the PI API. 

Since SCADE nodes do not access DECOS services via 
the PI API directly, but instead work on ‘context objects’ 
which contain their input and output parameters, they 
have to be embedded into so-called wrappers, written in 
C, which at each execution of the job 

• fetch received messages and put them into the input 
fields of context objects, 

• activate the node code, 
• forward output fields of context objects to PI API as 

send messages. 

Since node code may not always produce requested out-
puts, a specific flag mechanism is implemented to inform 
the wrapper which messages to send. 

At the moment, the wrappers do not handle type 
conversions, which are to be done in the SCADE model 
itself using imported type conversion operators, as ex-
plained previously.  Pushing type conversions into the 
wrapper code would simplify the SCADE model and 
remove the need for imported types and conversion 
operators in the SCADE model.  This improvement is 
currently under study. 



DEPLOYMENT 

As the final step in the tool chain, all parts (application 
code, either generated from SCADE or written manually, 
generated middleware and configuration data) are put 
together into executables for the target platform.  For the 
primary DECOS platform (EEE on TriCore TC1796) this 
is a single file per node which can be loaded into the 
flash memory of the node. 

Typical DECOS systems are built from parts contributed 
by/bought from different vendors and put together by the 
system integrator, e.g. a car manufacturer.  While com-
ponents developed by the integrator itself are usually 
available in source code, third party vendors in general 
only provide the subsystems PIM, C header files and 
precompiled object files or libraries, together with 
documentation for the integrator.  To keep these parts 
organized, a standard project directory structure is 
defined (see Fig. 9 for three DASs and a cluster with four 
nodes). 

 

Fig. 9: DECOS deployment directory hierarchy 

The EEE build environment expects all source code in 
one single build directory per node.  Therefore, using a 
global (static) deployment control makefile, augmented 
via a sub-makefile generated from PSM, with respect to 
the specific allocation, only the necessary input files are 
put into the build directories.  Subsequently, the com-
piling and linking steps for EEE applications are done for 

each node and produce binary files to upload into the 
nodes. 

TOOL-CHAIN INTEGRATION 

ASSEMBLING THE TOOL-CHAIN 

As shown in the previous sections, a rather wide variety 
of tools are involved in the DECOS tool-chain.  In order 
to ease the handling of all these tools, VIATRA [9] is 
used as "backbone" for PIM capturing and PIM→PSM 
transformation.  It not only allows for developing model 
transformation conveniently, it is also possible to 
generate code with it, e.g. PIL, as well as to develop 
domain-specific editors, which e.g. ease PIM creation.  
So, basically four tools constitute the DECOS tool-chain 
– GME, VIATRA, SCADE, and the TTP/TTX-tools, as 
indicated in Fig. 10. The interchange formats among 
these tools is also shown in Fig. 10. Boxes denote 
interactive activities, rectangles denote automated steps. 

 

Fig. 10: DECOS tool-chain: involved tools and interchange 
formats 
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USING THE TOOL-CHAIN 

As stated above, the tool chain is used by both the 
system integrator and the subsystem developer/vendor.  
While the subsystem vendor has to perform the same 
steps as the system integrator to test the built sub-
system, the main development steps done by the vendor 
using the tool chain are: 

1. With PIM DSE in VIATRA: Define PIM. 
2. With SCADE: 

a) Import PIM. 
b) Fill job skeletons with behavior (either import 

from Simulink or model in SCADE). 
c) Validate models. 
d) Generate code. 

3. Manually: add I/O code. 
4. (With build environment: build object code/libraries). 

The system integrator will mainly use GME, the PIM-
PSM-mapping editor, the TTP/TTX tools, and the com-
mand line build system (probably facilitating gnumake, 
and for the DECOS primary platform, the TriCore 1796 
by Infineon, Altiums tasking compiler and linker.  The 
system integrator will basically perform the following 
activities: 

1. With GME: build/adapt the CRD for the target cluster 
2. With Eclipse + Viatra + PIM-PSM-mapping editor: 

a) Build a new eclipse project (with DECOS project 
wizard) and import pre-existing files (CRD, 
PIMs). 

b) Create a new PSM. 
c) Map PIM datatypes to platform datatypes. 
d) Define interface types (e.g. virtual CAN API for 

legacy CAN applications). 
e) Define job type (e.g. for jobs running on other 

nodes connected via CAN). 
f) Attach non-DECOS jobs to physical fieldbus in-

terfaces. 
g) Connect I/O-jobs to I/O resources (sensors/actu-

ators). 
h) Connect gateways for inter-DAS communica-

tions. 
i) Manually restrict the possible allocations, if re-

quired. 
j) Run automatic allocation. 
k) Run TTP/TTX-tools scheduler input file genera-

tion. 
l) Run PIL code generation and makefile gene-

ration. 
m) Put job sources and library object files into their 

respective places in the project. 
3. From build command line: running make automati-

cally takes care of the following steps: 
a) Import schedule input data into DECOS version 

of TTP/TTX-tools and create schedule as well as 
configuration data for EEE. 

b) Copy middleware (PIL, FTL) and application 
source code as well as prebuilt libraries and dri-
vers to the node build directories according to 
allocation. 

c) Compile and link everything together into the 
binary file for each node, together with control 
files for uploading them with the debugger. 

 

CONCLUSION 

The paper presents a tool-chain for the design, mode-
ling, development, testing and deployment of integrated 
embedded applications of mixed criticality.  The exis-
tence of such a tool-chain is an important prerequisite for 
the migration from federated to integrated distributed 
embedded systems as targeted within the DECOS 
project. 

In this paper we presented a strict model-driven 
approach by using models for all design and develop-
ment phases and steps, from which all required source 
code – application, middleware, and system architecture 
configuration – is generated.  It is presumably the first 
time that for (dependable) embedded, distributed sys-
tems such a purely model-based approach has been 
realized. 
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ABBREVIATIONS 

API Application Programming Interface 
CAN Controller Area Network 
CRD Cluster Resource Description 
DAS Distributed Application Subsystem 
DSE Domain-Specific Editor 
EEE Encapsulated Execution Environment 
ET Event-Triggered 
FTL Fault-Tolerance Layer 
GME Generic Modeling Environment 
HSM Hardware Specification Model 
KCG Qualified Code Generator 
MDA Model-Driven Architecture 
MTC Model Test Coverage 
NP Non-deterministic Polynomial-time 
OCL Object Constraint Language 
PIL Platform Interface Layer 
PIM Platform Independent Model 
PSM Platform Specific Model 
SCADE Safety-Critical Application Development 

Environment 
TT Time-Triggered 
TTP TT Protocol 
UML Unified Modeling Language 
VIATRA VIsual Automated TRAnsformations 
VN Virtual Network 
WCET Worst-Case Execution Time 

 


