
07ATC-240

Model-Based Development of Distributed Embedded Real-Time
Systems with the DECOS Tool-Chain

Wolfgang Herzner, Rupert Schlick
Austrian Research Centers GmbH - ARC

Martin Schlager, Bernhard Leiner
TTTech Computertechnik AG

Bernhard Huber
Vienna University of Technology

András Balogh, György Csertan
Budapest University of Technology and Economics

Alain LeGuennec, Thierry LeSergent
Esterel Technologies

Neeraj Suri, Shariful Islam
Darmstadt University of Technology

Copyright © 2007 SAE International

ABSTRACT

The increasing complexity of distributed embedded
systems, as found today in airplanes or cars, becomes
more and more a critical cost-factor for their develop-
ment. Model-based approaches have recently demon-
strated their potential for both improving and accelerating
(software) development processes. Therefore, in the
project DECOS1, which aims at improving system
architectures and development of distributed safety-
critical embedded systems, an integrated, model-driven
tool-chain is established, accompanying the system
development process from design to deployment. This
paper gives an overview of this tool-chain and outlines
important design decisions and features.

INTRODUCTION

Today, the development of embedded systems still fol-
lows a customized design approach, resulting in rather
isolated applications, reinvention of system design con-
cepts, and little reuse of code across diverse application
domains and even product families. So, for example in
modern cars a number of sub-systems co-exist like the

1 DECOS (Dependable Embedded COmponents and

Systems) is an integrated project partially funded by the EU
within priority “Information Society Technologies (IST)” in the
sixth EU framework programme (contract no. FP6-511 764)

power-train control, the body electronics, or driver-
assistance systems, each equipped with its own elec-
tronic hardware, communication cabling etc. While this
federated approach eases system composition and
supports fault encapsulation (a failure in one subsystem
will not affect others), it implies at least increased
hardware costs, weight, and power consumption. It also
severely hampers the sharing of resources like sensors
among the different sub-systems.

Based on these observations, the European project
DECOS aims at developing basic enabling technology for
moving from federated to integrated distributed architec-
tures to reduce development, validation and mainte-
nance costs, and increase the dependability of embed-
ded applications in various application domains. An inte-
grated architecture is characterized by the integration of
multiple application subsystems within a single distribu-
ted computer system. When integrating subsystems into
one platform, however, it has to be guaranteed that each
of them can be executed in a protected environment that
resembles the environment of the federated architecture,
i.e. as it would not share resources with other subsys-
tems. In particular, subsystems must not disturb each
other, and faults in one subsystem must not propagate to
others.

Efficient development of applications relies on a proper
system architecture and on appropriate tool support.
Within the DECOS project, a tool-chain has been

developed for design, development, configuration and
integration of applications [1]. In this paper we discuss
the model-based development of distributed embedded
real-time system based on the final version of this tool-
chain.

The following section shortly outlines the DECOS
architecture and gives an overview of the tool chain.
Thereafter, the constituents for system modeling, con-
figuration establishment, and behavior modeling are
described. Finally, in the last section a conclusion is
drawn and a short outlook is given.

DECOS OVERVIEW

CONCEPTS AND ARCHITECTURE

The basic principles for achieving dependability in a
DECOS system [2] are strong fault encapsulation, fault
tolerance by means of replication and redundancy, and
separation of safety-critical from non-safety-critical
functionality. These principles, in particular redundancy,
lead to functional distribution. Additionally, supporting
hard real-time applications requires guaranteed response
times. Therefore, the functional structuring of a DECOS
system comprises a number of (nearly) independent
Distributed Application Subsystems (DASs), each rea-
lizing a part of the overall system service. DASs can be
further subdivided into jobs, which represent the smallest
executable software fragment in the DECOS model.
Jobs communicate with each other by the exchange of
messages via virtual networks.

Fig. 1: DECOS cluster with four nodes and three DASs: one
with jobs A, B, C, another one with P and Q, and a third one
with U, V, W, X, and Y. A, B, and Q have two replicas each,

while P has three.

Furthermore, a DECOS cluster is physically structured
into a set of distributed node computers interconnected
by a time-triggered network. Each node computer com-
prises several encapsulated partitions, which serve as
the protected execution environment for jobs. During the
development of a DECOS system, a mapping of jobs to
partitions has to be established as indicated in Fig. 1.
Due to the guaranteed non-interference of individual
partitions, a DECOS node is able to host multiple jobs
belonging to different DASs, even exhibiting different
levels of criticality. Conceptually, all jobs could be alloca-

ted to a single processing node, as long as resource
limits and hardware fault-tolerance do not require distri-
bution.

Taking the achievements of research in the area of de-
pendable system architectures into consideration, DE-
COS does not intend to design the complete system
architecture from scratch. Instead, it presumes the exist-
ence of a core architecture, providing the core services:

• Deterministic and timely transport of messages.
• Fault tolerant clock synchronization.
• Strong fault isolation.
• Consistent diagnosis of failing nodes.

Any architecture that provides these core services can
be used. It has been demonstrated that the Time-
Triggered Architecture (TTA) [3] is appropriate for the
implementation of applications in the highest criticality
class in the aerospace domain according to RTCA DO-
178B [4] and consequently meets the DECOS require-
ments as core architecture.

On top of the core services, DECOS provides a set of
architectural (or high-level) services:

• Virtual Networks (VN) and Gateways.
• Encapsulated Execution Environment (EEE).
• Diagnostics.

VNs represent the communication system for DASs,
embedded on the physical cluster network. Gateways
provide means to exchange information between VNs,
as well as with external networks, in a controlled way.
The EEE is a partitioning real-time operating system that
enables the execution of jobs from different DASs and of
different criticality on the same hardware with guaranteed
fault encapsulation. This is achieved by housing each
job in its own partition with strong spatial and temporal
protection [5]. Compared to other partitioning operating
systems (e.g. ARINC653 LynxOS, AUTOSAR Tresos),
the EEE is very small in terms of code size (< 1MB) and
can run on comparably simple hardware [6]. The
diagnostics service of DECOS both assists fault
encapsulation and supports prognoses of hardware
breakdowns.

Architectural services are implemented in a form influ-
enced by the underlying (HW-)platform. In order to mini-
mize dependency of application programmers on a cer-
tain implementation of these services, the Platform Inter-
face Layer (PIL) provides a platform independent inter-
face of the architectural services for application jobs.

An important DECOS feature is the support of both time-
and event-triggered messages. Time-triggered (TT) mes-
sages transmit state values like the current speed perio-
dically, while event-triggered (ET) messages transmit
changes, e.g. the difference to the previous speed value
whenever that change passes a certain threshold. So,
while a transient transmission error of a TT message can
be compensated with the next one, this is not the case

P1 P2

P3 Q2

Q1

Node 1

U V W

X Y

Node 2

Node 3 Node 4

A1 A2

B1 B2

C

Jobs

for ET messages. Therefore, the latter cannot be utilized
for transmission of safety-critical information. TT messa-
ges are also denoted as state messages, and ET mes-
sages as event messages. Essentially, state messages
realize the parallel computing concept of a conflict-free
distributed virtual shared memory.

THE DECOS TOOL-CHAIN

An important activity in DECOS was the development of
a dedicated tool-chain for supporting the development of
certifiable DECOS applications by integrating several
DASs in one cluster. As shown in Fig. 2, this tool-chain
relies on a model-driven approach [7], aiming at the
generation of configuration data as well as middleware
and application code purely from models.

Fig. 2: DECOS tool-chain overview. Feedback loops, e.g. for
failure reporting, are not shown.

First, the Platform Independent Models (PIMs) of the
DASs are created, which serve two purposes. On the
one side, together with the specification of the target
cluster (Cluster Resource Description - CRD) and other
information (job size etc.), they are used to derive confi-
guration and scheduling information, as well as to gene-
rate the PIL, by transforming the PIMs into the Platform
Specific Model (PSM). In Fig. 2, "Candidate PSM" is de-
noted rather than "PSM", because if scheduling fails,
another allocation has to be chosen.

On the other side, PIMs are used to guide the deve-
lopment of jobs, by modeling their behavior, which is
addressed in the section APPLICATION MODELING.
Finally, the results of both activities are integrated to
achieve the target executables, which can then be
downloaded to the application cluster.

SYSTEM AND CONFIGURATION MODELING

This section addresses generation of relevant input for
the PIM→PSM transformation process, namely the PIMs
and the description of the cluster hardware and resour-
ces (CRD).

PIM AND ITS GENERATION

The purpose of the PIM [8] is to formalize the functional,
dependability, and performance requirements of the DAS
in an implementation platform independent manner. It is
the place of the first steps of system architecture concep-
tualization. DECOS platform services - both at core and
high-level - are handled in an abstract form that is easy
to use and understand at this level of design.

Functionality

Performance
Dependability

OCL expressions

Fig. 3: PIM meta-model packages

According to the concepts of MDA [7] the PIM has its
own meta-model. It is composed of three sub-models,
each containing its respective object diagrams: (a)
Functionality package: the basic functional elements like
DAS, Job, Interface, Port, Message, Sensor/Actuator,
State Variable, etc. (b) Dependability package: the
dependability attributes of functional elements: reliability,
availability, SIL, redundancy degree, etc. (c) Perfor-
mance package: the performance attributes of functional
elements: WCET, period, phase, deadline, latency, etc.
Additional OCL expressions are used to specify semantic
constraints: multiplicities, attribute constraints, etc.

Since the data model of the PIM, which is XML, is hard to
edit even with XML editors, two solutions are provided for
easing the generation of a PIM: (a) to use the same UML
tool as for high-level system design. In this case, the
DECOS-PIM-XML file is generated from the XMI output
of the UML editor. Currently Rational Rose 2003 and
Rational Software Modeler are supported. (b) to use a
Domain Specific Editor (DSE) (see Fig. 4), which allows
for creating only meta-model compliant PIMs. Such a
DSE has been implemented under the Eclipse

PIM
editing

PIM

CRD
editing

CRD

PIM→PSM
mapping

Candidate
PSM

Config.
generation

Configura-
tion

Middleware
generation

Middle-
ware

Behavior
Model

Behavior
modelling

e.g. C,
Simulink

Predef.
Models

Code
generation

Appl.
Code

Addition.
Code-libsDeploy-

ment

Execu-
tables

Configuration
&

Middleware Application

technology2. It runs directly inside of VIATRA [9] which is
the selected tool for PIM-PSM mapping. This way impor-
ting PIMs is not needed any more.

As indicated in Fig. 4, a PIM consists of (instances of)
elements like Job, Interface, or Message, and specific
associations among them, as in UML object diagrams.
Furthermore, most elements and associations have spe-
cific attributes. In order to ease creation of PIMs, so-
called "PIM design patterns" are provided. Inspired by
(object-oriented software) design patterns, they allow ad-
ding dedicated sub-graphs to PIMs, guarded by a small
number of parameters. For example, if a job shall be
added to a PIM, only (a) its name, (b) its type (TT or ET),
(c) whether it performs physical I/O, (d) whether it sends
messages to other jobs and (e) whether it receives mes-
sages from other jobs has to be given. The sub-graph of
new elements and required associations is then automa-
tically generated and added to the PIM.

Fig. 4: DSE for the PIM under VIATRA

Before applying these patterns, some consistency
checks are performed. For instance, a pattern will not be
applied, if a name is given which is already used in the
given PIM. Thus, besides easing the PIM capturing pro-
cess, PIM patterns also help to avoid mistakes.

Finally, a service is provided (which can be activated
directly from the PIM/DSE per simple mouse-click) which
allows to check a PIM for semantic completeness (based
on the predefined OCL constraints). The reason for this
tool is that PIM/DSE does not allow for creating elements
in conflict with the PIM meta-model like elements of
undefined type or invalid associations. It cannot avoid,
however, that elements are missing or required attributes
undefined. Of course, when constructing a PIM under
exclusive usage of the patterns, only a small number of
attributes (e.g. execution periods of jobs or transmission
periods of messages), for which no reasonable defaults
exist, will have to be added manually.

2 http://www.eclipse.org/

CRD AND ITS GENERATION

It is the purpose of the so-called Cluster Resource
Description (CRD) to capture the relevant characteristics
of the platform for the software-hardware integration in
the DECOS design flow. These characteristics include
amongst others computational resources (e.g., CPU and
memory), communication resources, and dependability
properties.

In order to ease CRD creation, a graphical, domain-
specific modeling environment is developed, using the
Generic Modeling Environment (GME). GME is a confi-
gurable framework for creating domain-specific modeling
environments [10]. The configuration of GME is per-
formed via the Hardware Specification Model (HSM), a
meta-model which formally describes the targeted
modeling domain, i.e. it describes the entities, its
attributes, the relationships, and constraints that can be
expressed with and that are validated by the resulting
modeling environment.

Fig. 5: Example (cut-out) of a CRD built with GME

One aim of the HSM is to facilitate reuse and hierarchical
composition of the resource model. This is achieved by
separating the resource modeling process into two
phases: the resource capturing and the resource
composition.

Resource Capturing: The specification of reusable
hardware entities of a DECOS platform, so-called
resource primitives, is addressed by the resource
capturing phase. Resource primitives are the smallest
physical hardware units whose characteristics are cap-
tured. Examples for resource primitives are: processors,
memory elements, communication interfaces. However,
the HSM provides mechanisms to extend the set of
resource primitives that can be modeled in order to be
flexible and extensible with respect to the types of
resource primitives [11].

Resource Composition: This second phase of the
modeling process is concerned with the composition of
an entire CRD (including the internal setup of DECOS
components and their interconnection) out of the pre-

viously modeled resource primitives. The composition is
guided by the DECOS component model [2], which is
fully captured by the HSM.

The interface to the subsequent tools in the development
process realizing the software/hardware integration is
specified using the extensible markup language (XML).

CONFIGURATION AND MIDDLEWARE

Based on PIM and CRD, the next steps involve the
generation of configuration data and middleware:
• PSM-generation (mapping jobs to nodes).
• Scheduling and Fault-Tolerance Layer generation.
• PIL-generation.

PSM-GENERATION

The main purpose of the PSM (which is still a model) is
to precisely specify which application jobs are to be
assigned to which cluster nodes, under consideration of
all constraints defined in the PIMs of the DASs and the
available resources described in the CRD. Fig. 6 depicts
a small part of its meta-model in UML-notation.

The PSM generation process encompasses a number of
steps like PIM marking, feasibility checks, and the
allocation process. The significant part of the mapping
process is to allocate jobs with different criticality to a
shared HW platform (HW nodes) subject to constraints
and requirements of fault-tolerance and real-time.

+ node
1

+ partition
0..n

+ fieldbus

0..n

+ partitionMap1..n
+ externalMap

0..n

+ job
1

+ canRunOn
0..n1..n

+ job

+ refinement

+ job
0..n + task0..n

Fieldbus

PartitionMapElement

ApplicationComputer

ExternalMapElement

JobAllocationMap

Job

name : String
description : String
externalDescriptor : String

JobRefinementMap

Fieldbus

PartitionMapElement

ApplicationComputer

ExternalMapElement

JobAllocationMap

Job

name : String
description : String
externalDescriptor : String

JobRefinementMap

Fig. 6: Part of PSM meta-model

PIM marking is necessary for incorporating additional
information to the PIMs that reflect designer decisions
(hardware sensor/actuator allocation, job pre-allocation)
and legacy information (job interface type, message
protocol definition, etc.) The result is a marked PIM
containing elements and associations reflecting the
additional information.

Feasibility checks are executed both after the marking
and after the allocation step to validate the (partial)
models in order to achieve early detection of design
problems. If a design constraint is violated, the designer
can step back in the PIM/PSM mapping process and

modify markings and/or extra-functional requirements to
get a feasible system design.

The main (automatic) step is to assign jobs to nodes
under the considerations of the functional and non-func-
tional (i.e. performance and dependability) constraints
given in the PIMs. Examples for such constraints are:

• Resource requirements (e.g. memory, CPU,
sensors, actuators, bandwidth).

• Dependability constraints (e.g. replicas must be
assigned to different nodes).

A dual-track approach is taken in DECOS to generate
the PSM. First, a transformation based mapping process
has been developed which deals constraints one-by-one.
It finds a feasible solution for resource allocation while
satisfying different constraints. A heuristics based syste-
matic resource allocation approach has been explicated
for this and presented in [12]. Considering dependability
and real-time as prime drivers, we presented a schedu-
lable allocation algorithm for the consolidated mapping of
SC and non-SC applications onto a distributed platform.

Although the allocation problem is NP-hard [13], exploi-
ting symmetry (job replicas, identical nodes, etc.) can
improve the performance of such approaches [14], but it
is difficult to assess solutions with respect to certain
criteria like reliability maximization or cost minimization.

Therefore, in a second phase, a Multi-Variable Optimiza-
tion (MVO) approach is implemented where multiple
objectives are optimized together with satisfaction of con-
straints. Here, a so-called MVO function is used, which
associates a scalar-valued function v(q) to each point q
in an evaluation space, representing the system design-
er’s preferences, provided that choosing a feasible alter-
native from a set of contenders such that v is maximized
or minimized.

See [15] for more information about the generation of the
PSM.

SCHEDULING AND FAULT-TOLERANCE

As mentioned previously, the DECOS Integrated
Architecture consists of several nodes that communicate
via a time-triggered physical network (cf. Fig. 1).
DECOS does not make further assumptions about the
specific time-triggered protocol that has to be used.
Within the project, TTP as well as FlexRay and TT-
Ethernet have been successfully used for the core net-
work.

Virtual networks (VN) are built upon this time-triggered
physical network, implying that all information transfer
takes place via messages of the underlying time-
triggered physical network. Thus, each DECOS node
must be able to send/receive messages (cf. Fig. 7).
Furthermore, DECOS nodes that share the same com-
munication medium are required to coordinate the trans-

mission of messages, i.e., at each point in time, exactly
one node is allowed to send a message.

Fig. 7: DECOS nodes communicating via a time-triggered
physical network

In addition to the scheduling of messages, partition- and
task-scheduling is required. The scheduling of partitions
generates a proper arrangement of DAS jobs that are
assigned to EEE partitions (see CONCEPTS and
ARCHITECTURE). Task scheduling is concerned with
arranging tasks within each single partition (DAS jobs
can consist of several tasks).

For that purpose, the TTTech tool suite3 has been
adapted to cope with partitions, and has been integrated
into the DECOS tool chain.

The TTTech tool suite provides a graphical front-end for
the specification of partitions as well as a programming
interface that is used for importing the PSM. From that,
it computes valid schedules and generates configuration
data structures for the communication controller and for
the hardware implemented fault-tolerance layer, as well
as optimized fault-tolerance layer tasks, and the
respective configuration files for the operating system
configuration including the protection parameters of the
partitions.

The hardware supported fault-tolerance layer (FTL) of
the DECOS project comprises all functionality required
for fault-detection and fault encapsulation. It consists of
software (the generated fault-tolerance tasks) and
hardware (implemented on a FPGA) part. High-level
operations such as comparing and voting on message
replicas (if a sending job is replicated, recipients receive
the same message from all replicas) are handled in
software whereas the hardware part takes over low-level
operations like message (un)packing, comparing content
received on redundant channels, setting frame status
and byte ordering. Experimental evaluation of the
DECOS FTL recently showed that “built-in error detection
and recovery mechanisms including different RDA
functions are able to detect, mask or recover from errors
both internal in a redundant node or on a replicated com-
munication network” [16].

PIL GENERATION

As already mentioned, the Platform Interface Layer (PIL)
provides a technology invariant interface to the DECOS

3 http://www.tttech.com/products/software.htm

architectural services for application jobs. Following
"native" services are offered by PIL:

• generic message transfer (TT and ET),
• global time service, and
• membership service (to get information about health

states of nodes and jobs).

In addition, the usage of domain-specific application
middleware like for CAN-support is possible.

Since C is still the most common programming language
for embedded systems, including generated code like
that from SCADE (see next section), a C-binding for the
PIL API is provided by default. One means to improve
safety in a C-environment is to make intensive use of
types and names, and to avoid the usage of error prone
types like void* or char* for parameters and return
values. Hence, for each job/message combination an
own set of functions is provided, forcing to generate the
PIL individually for each job.

For instance, if a job X receives a state message S of
type t_S and may send event messages E of type t_E,
then essentially the following C-API will be generated for
it:

PIL_RetCode PIL_get_S(
 t_S *out_S,
 UINT16 *out_validity,
 const PIL_WaitMode in_wait);

PIL_RetCode PIL_queue_E(
 const t_E * in_E,
 PIL_WaitMode in_wait);

"out_validity" returns the number of message replicas
used to yield out_S; if 0, out_S is invalid, or outdated,
respectively. "in_wait" can be used for controlling whe-
ther the call shall return immediately if access to the
internal buffer for S is blocked.

Some more functions are generated according to the
same principle, e.g. for providing control on data access.

In order to achieve platform and programming language
independency, PIL generation conceptually binds the PIL
to the target environment. This is achieved, for instance,
by using coding templates for the respective platform/
language pair. This leads to a bound PIL tailored to
interface platform and applications.

APPLICATION MODELING

In addition to modeling system structure, configuration,
and scheduling as described so far, specification of
behavior is another issue. Though using C-code for that
purpose is of course possible, in safety-critical environ-
ments safer approaches are highly recommended.
Therefore, SCADE [17] has been chosen to be the pri-
mary DECOS tool for behavior modeling and develop-
ment, which is described in this section.

SCADE

Based on a formally defined data-flow notation [18],
SCADE offers strong typing, explicit initialization, explicit
time management (delays, clocks, etc), and simple
expression of concurrency (data dependencies). By
means of a graphical data flow graph editor, it supports
model-based development. This not only allows for si-
mulation at model level, accompanied by dedicated
testing [19] or formal proof techniques by the SCADE
Design Verifier [20] to prove safety properties, it also
enables qualified code generation, using the KCG code
generator. KCG has been certified against DO178B
level A [4] and IEC 61508 at any SIL level.

The basic SCADE modeling elements are predefined
operators and user-definable nodes. Both have input
and output parameters, through which they are connec-
ted with other nodes and operators (see Fig. 8). Of
course nodes can be nested. Fairly obviously, nodes will
be used to represent DAS jobs.

To assure that "job nodes" adhere to their interface defi-
nition in PIM, SCADE's UML gateway is used to import
PIMs into SCADE. And to enable usage of behavior
models developed in Simulink4, another SCADE gateway
can be used to import Simulink models into such nodes
(see clause "Simulink Import" below). In the following,
these gateways are addressed.

Fig. 8: Importing PIM and Simulink models into SCADE

4 http://www.mathworks.com/

PIM-IMPORT

The SCADE UML gateway is a flexible tool for import
and reuse of software architectures specified in other
modeling languages as SCADE node skeletons. It
allows for easy addition of extension modules to support
any modeling language that has similar architectural
concepts as UML: Architectures consist of functional
blocks, with one or several levels of hierarchical
decomposition; and blocks are connected at specific
interaction points, with corresponding communication
protocols defined.

The SCADE UML gateway is being extended to support
PIM-based modeling by adding a new module specifically
tailored for DECOS PIM, which realizes the following
mapping:

• Each DAS represents a namespace for its contained
jobs.

• Jobs of a DAS are the architectural blocks of the
DAS.

• Ports (grouped in interfaces) of a job are the inter-
action points of the corresponding block.

• Event-triggered and time-triggered messages form
the protocols at the interaction points.

SIMULINK-IMPORT

If the behavior of the DAS jobs is originally modeled in
Simulink, it has to be imported into SCADE, to "fill the
contents" of the nodes created by the PIM to SCADE
gateway. The DAS jobs behavior can be defined in se-
veral Simulink models, and/or in several parts of a
Simulink model. The current version of the Simulink
translator only allows one Simulink import (one part of
one Simulink model), so it is upgraded to support this
requirement. When a modification of a Simulink job mo-
del is made, thanks to this "modular translation" feature,
only the respective part needs to be re-imported.

Since re-translation may introduce incoherencies in the
SCADE model, semantic inconsistencies (on names,
types, or used clock units) are automatically checked by
the SCADE checker.

NATIVE BEHAVIOR MODELING

Instead of importing Simulink models, job behavior can,
of course, also be modeled in SCADE directly. Besides
a rich set of basic operators (arithmetic, boolean, set,
temporal etc.), SCADE offers a number of libraries with
predefined nodes, which can be easily extended.
DECOS takes advantage of this feature by providing an
own library of DECOS specific nodes; for instance for
fault-tolerant treatment of sensor input.

SCADE Simulink
Gateway

1 job 1 SCADE node

SCADE
PIM

Gateway

PIM
model

Interface
adaptation

INTERFACE ADAPTATION

The input/output interface of a job at PIM-level is made
of a set of state messages and/or event messages carry-
ing information about various state variables together
with validity flags provided by the platform. (PIL's validity
number is mapped to boolean, with 0 mapped to false
and any positive value mapped to true). A single mes-
sage can carry information about an arbitrary number of
state variables and is therefore represented as a struc-
tured value with many fields, the first field being the
validity flag for the whole message.

Various application-level strategies exist for handling
fault tolerance. The simplest one is to do the actual
computation with the latest valid values of the state
variables as extracted from input messages and then
propagate the validity flags to dependent output mes-
sages.

Usually, the first step during behavior computation is to
check the validity flags of messages and extract the
values of the various state variables that they carry.
Then the actual computation is performed, often through
an auxiliary node coming from an import from Simulink.
The PIM gateway automates parts of this strategy, as
follows:

In the SCADE model, the state variables (and possibly
also the event flags) as extracted from the I/O messages
must be connected to the right inputs and outputs of the
auxiliary node doing the computation. This task is tedi-
ous and error prone, which is the reason why the PIM
gateway does the state variable extraction automatically,
by creating corresponding local variables in the SCADE
job. If the names happen to be consistent in the PIM
versus in the algorithm node, a simple “connect by
name” command in the SCADE editor will be enough to
complete interface adaptation in just one click.

Besides state variable extraction, the other aspect of
interface adaptation is type conversion: Indeed, the
state-variables are typed by PIM-level types, which are
opaque from a SCADE point of view (they are “imported
types” in SCADE terminology), while the computation
node itself is normally using various SCADE primitive
types. Values of state variables must therefore be con-
verted, mapping each opaque PIM-level type onto the
most appropriate SCADE primitive type. The mapping is
expressed as SCADE-dedicated PIM annotations. For
each PIM types, the annotations provide its name as a
SCADE imported type, the name of the most appropriate
SCADE primitive type on which it should be mapped, and
the name of the two conversion operators (from PIM type
to SCADE type and vice-versa). Most of the time, the
conversion operators can be implemented by a simple
cast at C-level. The PIM gateway uses this information
to automatically insert type conversions between the
values as extracted from input/output messages and the
values as manipulated by the algorithm node.

Extraction of state variable information and type
conversions are the two facets of interface adaptation.
Most of this step is automated already, relieving the user
of some tedious manual work, while limiting the risk of
introducing errors.

TESTING

A particular strength of SCADE is its provision of power-
ful tools for simulation and testing. In addition to an
intrinsic simulation feature with a broad variety of control
possibilities (single step, time range, etc.), it offers a set
of dedicated tools like SCADE MTC for evaluating test
coverage or model checking by means of DESIGN
VERIFIER™ by Prover Technology.

In DECOS, two further tools are under development for
testing SCADE models. One allows for checking the
correct use of physical units and dimensions in SCADE's
data-flow models [21], the other serves for simulating
complete DASs based on their PIMs. This can be used
to quickly evaluate whether, e.g., temporal data like
periods and phases of job executions or message trans-
fers are sufficiently complete, or to examine whether the
integration of modeled job functionality into a DAS does
not provoke unintended emergent system behavior. It
also allows simulating effects of faults like failing mes-
sage transfers at application level.

CODE GENERATION

As already mentioned, KCG is used to generate the code
from each individual SCADE node job. To get the code
of the complete distributed application, the job code must
be linked to the middleware code via the PI API.

Since SCADE nodes do not access DECOS services via
the PI API directly, but instead work on ‘context objects’
which contain their input and output parameters, they
have to be embedded into so-called wrappers, written in
C, which at each execution of the job

• fetch received messages and put them into the input
fields of context objects,

• activate the node code,
• forward output fields of context objects to PI API as

send messages.

Since node code may not always produce requested out-
puts, a specific flag mechanism is implemented to inform
the wrapper which messages to send.

At the moment, the wrappers do not handle type
conversions, which are to be done in the SCADE model
itself using imported type conversion operators, as ex-
plained previously. Pushing type conversions into the
wrapper code would simplify the SCADE model and
remove the need for imported types and conversion
operators in the SCADE model. This improvement is
currently under study.

DEPLOYMENT

As the final step in the tool chain, all parts (application
code, either generated from SCADE or written manually,
generated middleware and configuration data) are put
together into executables for the target platform. For the
primary DECOS platform (EEE on TriCore TC1796) this
is a single file per node which can be loaded into the
flash memory of the node.

Typical DECOS systems are built from parts contributed
by/bought from different vendors and put together by the
system integrator, e.g. a car manufacturer. While com-
ponents developed by the integrator itself are usually
available in source code, third party vendors in general
only provide the subsystems PIM, C header files and
precompiled object files or libraries, together with
documentation for the integrator. To keep these parts
organized, a standard project directory structure is
defined (see Fig. 9 for three DASs and a cluster with four
nodes).

Fig. 9: DECOS deployment directory hierarchy

The EEE build environment expects all source code in
one single build directory per node. Therefore, using a
global (static) deployment control makefile, augmented
via a sub-makefile generated from PSM, with respect to
the specific allocation, only the necessary input files are
put into the build directories. Subsequently, the com-
piling and linking steps for EEE applications are done for

each node and produce binary files to upload into the
nodes.

TOOL-CHAIN INTEGRATION

ASSEMBLING THE TOOL-CHAIN

As shown in the previous sections, a rather wide variety
of tools are involved in the DECOS tool-chain. In order
to ease the handling of all these tools, VIATRA [9] is
used as "backbone" for PIM capturing and PIM→PSM
transformation. It not only allows for developing model
transformation conveniently, it is also possible to
generate code with it, e.g. PIL, as well as to develop
domain-specific editors, which e.g. ease PIM creation.
So, basically four tools constitute the DECOS tool-chain
– GME, VIATRA, SCADE, and the TTP/TTX-tools, as
indicated in Fig. 10. The interchange formats among
these tools is also shown in Fig. 10. Boxes denote
interactive activities, rectangles denote automated steps.

Fig. 10: DECOS tool-chain: involved tools and interchange
formats

bound PIL
C

CRD-Editor
(GME)

CRD

XML
PIM-Editor
(VIATRA)

PIM

Candidate
PSM

VIATRA
DECOS

Model Store

Code
Information

(XML)

PIM marking
(VIATRA)

Candidate
PSM

Python

Scheduling/
OS-config.

(TTP/TTX-tools)

Behaviour
Modelling
(SCADE)

Marked PIM
XML

Job Allocation
(VIATRA)

Simulink/
Stateflow

Models

.mdl

Compile/Link

Executables

Wrapper &
Node Code

C

Config. Data
C

Arch.Serv.
Lib(src, bin)

Wrapper and
Appl. Code
Generation
(SCADE)

PIL Generation

Makefiles
make

Makefile
Generation

USING THE TOOL-CHAIN

As stated above, the tool chain is used by both the
system integrator and the subsystem developer/vendor.
While the subsystem vendor has to perform the same
steps as the system integrator to test the built sub-
system, the main development steps done by the vendor
using the tool chain are:

1. With PIM DSE in VIATRA: Define PIM.
2. With SCADE:

a) Import PIM.
b) Fill job skeletons with behavior (either import

from Simulink or model in SCADE).
c) Validate models.
d) Generate code.

3. Manually: add I/O code.
4. (With build environment: build object code/libraries).

The system integrator will mainly use GME, the PIM-
PSM-mapping editor, the TTP/TTX tools, and the com-
mand line build system (probably facilitating gnumake,
and for the DECOS primary platform, the TriCore 1796
by Infineon, Altiums tasking compiler and linker. The
system integrator will basically perform the following
activities:

1. With GME: build/adapt the CRD for the target cluster
2. With Eclipse + Viatra + PIM-PSM-mapping editor:

a) Build a new eclipse project (with DECOS project
wizard) and import pre-existing files (CRD,
PIMs).

b) Create a new PSM.
c) Map PIM datatypes to platform datatypes.
d) Define interface types (e.g. virtual CAN API for

legacy CAN applications).
e) Define job type (e.g. for jobs running on other

nodes connected via CAN).
f) Attach non-DECOS jobs to physical fieldbus in-

terfaces.
g) Connect I/O-jobs to I/O resources (sensors/actu-

ators).
h) Connect gateways for inter-DAS communica-

tions.
i) Manually restrict the possible allocations, if re-

quired.
j) Run automatic allocation.
k) Run TTP/TTX-tools scheduler input file genera-

tion.
l) Run PIL code generation and makefile gene-

ration.
m) Put job sources and library object files into their

respective places in the project.
3. From build command line: running make automati-

cally takes care of the following steps:
a) Import schedule input data into DECOS version

of TTP/TTX-tools and create schedule as well as
configuration data for EEE.

b) Copy middleware (PIL, FTL) and application
source code as well as prebuilt libraries and dri-
vers to the node build directories according to
allocation.

c) Compile and link everything together into the
binary file for each node, together with control
files for uploading them with the debugger.

CONCLUSION

The paper presents a tool-chain for the design, mode-
ling, development, testing and deployment of integrated
embedded applications of mixed criticality. The exis-
tence of such a tool-chain is an important prerequisite for
the migration from federated to integrated distributed
embedded systems as targeted within the DECOS
project.

In this paper we presented a strict model-driven
approach by using models for all design and develop-
ment phases and steps, from which all required source
code – application, middleware, and system architecture
configuration – is generated. It is presumably the first
time that for (dependable) embedded, distributed sys-
tems such a purely model-based approach has been
realized.

REFERENCES

1. Herzner, W., Schlager, M., LeSergent, T., Huber, B.,
Islam, S., Suri, N., Balogh, A. “From Model-Based
Design to Deployment of Integrated, Embedded,
Real-Time Systems: The DECOS Tool-Chain” Proc.
(“Tagungsband”) of Microelectronics Conference
ME’06, 11.-12.10.2006, Vienna/A)

2. Kopetz, H., Obermaisser, R., Peti, P., Suri, N. "From
a Federated to an Integrated Architecture for
Dependable Real-Time Embedded Systems." Tech-
nical report 22/2004, TU Vienna, July 2004.

3. Kopetz, H. and Bauer, G. (2003). "The Time-
Triggered Architecture." IEEE Special Issue on
Modeling and Design of Embedded Software

4. RTCA (1992) DO-178B: "Software Considerations in
Airborne Systems and Equipment Certification.
Radio Technical Commission for Aeronautics." Inc.
(RTCA), Washington, DC.

5. Schlager, M., Herzner, W., Wolf, A., Gründonner, O.,
Rosenblattl, M., Erkinger, E. "Encapsulating
Application Subsystems Using the DECOS Core
OS." Proc. of SAFECOMP'06 (26.-29.9.2006,
Gdansk/P), 386-397, Springer LNCS, vol. 4166,
Springer, 2006

6. Leiner, B., Schlager, M., Obermaisser, R., Huber, B.
„A Comparison of Partitioning Operating Systems for
Integrated Systems.” Accepted for publication at
SAFECOMP’07 (18.-21.9.2007, Nuremberg/G)

7. OMG. "Model driven architecture, A technical
perspective." Technical report, OMG Document No.
ab/2001-02-04, Object Management Group.

8. Pataricza, A. "Report about decision on meta model
and tools for PIM specification." DECOS deliverable
D 1.1.1, Dec 2004.

9. Csertan, G., Huszerl, G., Majzik, I., Pap, Z.,
Pataricza, A., and Varro, D. "VIATRA: Visual auto-
mated transformations for formal verification and
validation of UML models." Proc. of the 17th IEEE
Int. Conf. on Automated Software Engineering (ASE
2002), 267–270, IEEE (2002)

10. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garret,
J., Thomason, C., Nordstrom, G., Sprinkle, J., and
Volgyesi, P. "The Generic Modeling Environment."
Proc. of WISP, Budapest Hungary, May 2001

11. Huber, B., Obermaisser, R., and Peti, P. "MDA-
Based Development in the DECOS Integrated Archi-
tecture – Modeling the Hardware Platform." Proc. of
the 9th IEEE Int. Symp. on Object and Component-
Oriented Real-Time Distribued Computing (ISORC),
2006.

12. Islam, S., Lindström, R., and Suri, N. “Dependability
Driven Integration of Mixed Criticality SW Com-
ponents." Proc. of the 9th IEEE International Sym-
posium on Object and Component-oriented Real-
time distributed Computing (ISORC), 485-495, 2006.

13. Fernandez-Baca, D. "Allocating Modules to Proces-
sors in a Distributed System." IEEE Trans. on Softw.
Eng., 15(11), 1427–1436, 1989

14. Weißenbacher, G., Herzner, W., Althammer, E.
"Allocation of Dependable Software Modules under
Consideration of Replicas." ERCIM Workshop on
Dependable Software Intensive Embedded Systems,
Porto, Portugal. Sep.2005

15. Islam, S., Csertan, G., Herzner, W., LeSergent, T.,
Pataricza, A., and Suri, N. "A SW-HW Integration
Process for the Generation of Platform Specific
Models." Proc. of ME´06, 194-203, ÖVE Schriften-
reihe Nr.43, Oct. 2006

16. Vinter, J., Eriksson, H., Ademaj, A., Leiner, B.,
Schlager, M. „Experimental Evaluation of the DE-
COS Fault-Tolerant Communication Layer“ Accepted
for publication at SAFECOMP’07 (18.-21.9.2007,
Nuremberg/G)

17. SCADE Suite Technical and User Manuals, Version
5.0.1, June 2005, Esterel Technologies

18. Halbwachs, N., Caspi, P., Raymond, P., and Pilaud,
D. "The Synchronous Dataflow Programming Lan-
guage Lustre." Proc. of the IEEE, 79(9), 1305–1320,
September 1991.

19. Dion, B., Gartner, J. "Efficient Development of Em-
bedded Automotive Software with IEC 61508 Objec-
tives using SCADE Drive." Proc. of VDI Conf. of
Electronic Systems for Vehicles, Baden-Baden, Oct.
2005

20. Bouali, A., Dion, B., and Konishi, K. "Using Formal
Verification in Real-Time Embedded Software
Development." Proc. of Japan SAE, Yokohama,
2005

21. Schlick, R., Herzner, W., Le Sergent, T. "Checking
SCADE Models for Correct Usage of Physical Units."
Proc. of SAFECOMP'06, Sep. 2006, Gdansk/P, 358-
371; Springer LNCS, vol. 4166, Springer, 2006

CONTACT

Wolfgang Herzner: wolfgang.herzner@arcs.ac.at
Rupert Schlick: rupert.schlick@arcs.ac.at

Martin Schlager: martin.schlager@tttech.com
Bernhard Leiner: bernhard.leiner@tttech.com

Bernhard Huber: huberb@vmars.tuwien.ac.at

Andras Balogh: abalogh@mit.bme.hu
György Csertan: csertan@mit.bme.hu

Alain Le Guennec: alain.leguennec@esterel-
technologies.com

Thierry Le Sergent: Thierry.LeSergent@esterel-
technologies.com

Neeraj Suri: Suri@Informatik.tu-darmstadt.de
Shariful Islam: ripon@deeds.informatik.tu-darmstadt.de

ABBREVIATIONS

API Application Programming Interface
CAN Controller Area Network
CRD Cluster Resource Description
DAS Distributed Application Subsystem
DSE Domain-Specific Editor
EEE Encapsulated Execution Environment
ET Event-Triggered
FTL Fault-Tolerance Layer
GME Generic Modeling Environment
HSM Hardware Specification Model
KCG Qualified Code Generator
MDA Model-Driven Architecture
MTC Model Test Coverage
NP Non-deterministic Polynomial-time
OCL Object Constraint Language
PIL Platform Interface Layer
PIM Platform Independent Model
PSM Platform Specific Model
SCADE Safety-Critical Application Development

Environment
TT Time-Triggered
TTP TT Protocol
UML Unified Modeling Language
VIATRA VIsual Automated TRAnsformations
VN Virtual Network
WCET Worst-Case Execution Time

