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Abstract—Performance bugs, i.e., program source code that
is unnecessarily inefficient, have received significant attention
by the research community in recent years. A number of
empirical studies have investigated how these bugs differ from
“ordinary” bugs that cause functional deviations and several
approaches to aid their detection, localization, and removal have
been proposed. Many of these approaches focus on certain sub-
classes of performance bugs, e.g., those resulting from redundant
computations or unnecessary synchronization, and the evaluation
of their effectiveness is usually limited to a small number of
known instances of these bugs. To provide researchers working
on performance bug detection and localization techniques with
a larger corpus of performance bugs to evaluate against, we
conduct a study of more than 700 performance bug fixing
commits across 13 popular open source projects written in C
and C++ and investigate the relative frequency of bug types as
well as their complexity. Our results show that many of these
fixes follow a small set of bug patterns, that they are contributed
by experienced developers, and that the number of lines needed
to fix performance bugs is highly project dependent.

Index Terms—Software Engineering, Performance, Testing

I. INTRODUCTION

Performance is among the most important non-functional
properties of programs [1], [2]. Unfortunately, performance
bugs accompany the software development process like func-
tional bugs and software quality is equally deteriorated by
those, e.g., in the form of decreased end-user interaction,
wasted computing resources, or even DoS attacks [3]. A
variety of performance diagnosis tools and approaches have
emerged over the past decade to assist developers with the
identification and localization of a wide range of performance
bugs in different scenarios [4]–[7]. While it is expected
that these tools/approaches cannot eradicate performance bugs
entirely, it remains unclear which performance bugs are how
well addressed by these tools or to which degree these tools are
being used in practice. Therefore, it is important to investigate
which types of performance bugs get fixed (and how) to guide
future research in this area.

For this purpose we have conducted a large scale study
on 733 performance bug fixing commits across 13 popular
open source projects. To assess how well existing tools and
approaches support developers with the detection and removal
of performance bugs, we investigate the duration between the
introduction and removal of performance bugs as well as the
expertise of the bug fixing developer and the bug complex-

ity in terms of lines modified by the fix. If performance
bug detection and removal are well addressed by existing
approaches or tools, they must be expected to have a short
performance bug fix time. Similarly, with proper tool support,
even inexperienced developers should be able to identify and
remove performance bugs. Besides these measures, the number
of the changed lines in bug fix commits also indicates how
complicated performance bug fixes are.

Since tools and approaches for performance bug detection
and localization usually specialize for certain classes of per-
formance bugs, we perform a classification of the performance
bug fixing commits to assess which classes dominate the bugs
being fixed.

Besides assessing the alignment of existing tools and ap-
proaches for performance bug detection and localization with
characteristics of performance bug fixing commits, we hope
that our study can serve as a benchmark that future tools and
approaches can be evaluated against, similar to CoREBench
[8] or BugSwarm [9] for correctness bugs and we make our
entire data set publicly available for this purpose1. Despite
the relatively large number of subjects in our data set, there
are applications that require even larger numbers of defects
to obtain statistically significant evaluation results. For these
scenarios we envision the creation of performance mutants,
along the lines proposed in recent work [10] and proposals
[11], and provide insights to support the creation of perfor-
mance mutants that resemble performance bugs fixed in real
world projects.

Summing up the above discussion, our study makes the
following contributions:

• We present results from a large scale study of 13 open
source projects from different domains with a total of 733
manually analyzed performance bug fixing commits.

• Using data from this study we assess the alignment of
the current state of the art in performance bug detection
and localization with performance bugs that get fixed in
practice.

• The result of our study provides a database of per-
formance bug fixes to serve as a benchmark for the
further development and improvement of performance
bug detection and localization techniques.

1https://yqchen.gitlab.io/perf-bugs/



• We discuss how the presented work can serve as the basis
for performance mutation operators, but also why this
basis is not (yet) sufficient for a practical performance
mutation approach.

The remainder of the paper is structured as follows. After
reviewing related work in Section II, we discuss the method-
ology adopted in this study in Section III. We then discuss the
categorization of performance bug code patterns in Section IV,
followed by an analysis of other performance bug fixes (fix
duration, developer experience, changed lines) in Section V,
a discussion of the threats to validity in Section VI, and a
conclusion in Section VII.

II. RELATED WORK

A. Performance Bugs for Evaluating and Training Detection
and Localization Approaches

Performance bugs have been studied extensively in recent
years and a large number of detection and localization ap-
proaches have been proposed. Interestingly, their efficacy has
often been evaluated on applications with previously unknown
(or disregarded) rather than known performance bugs [6],
[12]–[14]. A great advantage of such an evaluation is the
potential discovery of previously undiscovered bugs. While
the detection of every single formerly unknown performance
bug is a great achievement, only few bugs are found by each
individual approach and bugs from many approaches would
need to be combined to form a suitable performance bug data
set to evaluate future approaches against. Unfortunately, newly
found bugs are commonly described in insufficient detail in
(space constrained) research articles to enable their reliable
extraction as a reusable performance bug data set, which is
what we target with our study.

A number of articles on approaches to detect or localize
performance bugs use actual performance bugs or performance
bug simulations to demonstrate the aproaches’ efficacy [15]–
[17]. These evaluations commonly focus on few bugs (between
15 and 70 in the cited articles) and do not report the relative
occurrence of the targeted bug types compared to other bug
types or the complexity of the targeted bugs.

Other articles explicitly state certain performance bug pat-
terns they attempt to detect or localize [18]–[22]. Some of
these patterns are highly application dependent (e.g., [19]). We
attempt to map the patterns in our study to existing patterns
based on the information provided in the respective articles.

PerfLearner successfully uses 300 randomly sampled perfor-
mance bug reports from a total of 1383 reports across three
projects to generate performance test frames that are evaluated
against 10 other reported performance bugs [23]. The authors
of PerfLearner report that extracting and reproducing these 10
performance bugs took approximately 400 work hours, which
illustrates the complexity of reproducing performance bugs
and relating them with performance bug reports. We avoid
these problems in our study by directly targeting performance
bug fixing commits. A downside of this decision is that we
cannot quantify the performance impact of the bugs we study.

We deem this tolerable, as such quantifications are highly
sensitive to changes in the studied programs’ operational
environment, such as hardware and software configurations.

B. Empirical Studies of Performance Bugs

A number of studies target the assessment and characteriza-
tion of performance bugs [4], [24]–[27] similar to our study.

Zaman et al. compare quantitative characteristics of per-
formance and security bugs in Firefox [24]. Their automated
analysis of more than 180 000 bug reports, out of which 4293
are performance bugs, reveals that performance bugs take more
time to fix and are tackled by more experienced developers.
Our study targets a smaller sample of performance bugs, but
from a larger variety of projects, which are manually analyzed
to confirm they are indeed performance bugs and characterize
them according to how they hamper performance. Zaman et al.
also present a smaller scale qualitative study of 400 randomly
sampled performance and non-performance bug reports from
Firefox and Chrome, which reveals that the performance bug
reports tend to suffer from poor reproducibility [25].

Jin et al. present an empirical study of 109 randomly
sampled performance bug reports from five applications. Their
categorization according to how these bugs are fixed resembles
the categorization we present in this study with the main
difference that our categorization focuses on the intended
semantics of performance bug fixes instead of their syntactical
appearance, as we elaborate in Section III-B.

Nistor et al.’s comparison of 210 performance bugs against
non-performance bugs in three software projects shows that
performance bug fixes are equally likely to introduce new
functional bugs as non-performance bugs and that performance
bugs are more difficult to fix than non-performance bugs [26].

Han and Yu conclude from a study of 193 manually in-
spected performance bug reports and related changelogs across
three projects that performance bug observability is highly
configuration dependent, while fixing performance bugs does
require source changes [27]. This supports our decision to
focus our study of performance bugs on source code changes.

C. Bug Collections

We expect our data set of fixed performance bugs to serve
as a basis for the evaluation of future performance bug
detection and localization approaches, similar to existing data
sets for correctness bugs. CoREBench [8] is a collection of 70
regression errors from four open source projects that have been
extracted with the goal to serve as a more realistic alternative
to mainly hand-seeded bugs in the Siemens test suite [28] and
the SIR [29]. BugSwarm [9] is a collection of Python and Java
correctness bug fixes mined from Travis-CI logs of GitHub
projects and reproduced in isolated environments. Contrary
to our data set, these two projects ensure that each of their
bugs are reproducible. The reason why we cannot guarantee
reproducibility is that the magnitude of latencies induced
by performance bugs heavily depends on (a) configuration
parameters of the software project [27] and (b) the complexity
of inputs used to trigger the bugs [3]. It is likely for the



same reasons that performance bugs are reported to be more
commonly detected and fixed via code reasoning than dynamic
tests and that they sometimes “magically” disappear [26].
We have, therefore, decided to focus on bug fixing commits
rather than bug reports in our study. Neither CoREBench nor
BugSwarm cover performance bugs.

III. METHODOLOGY

We investigate performance bugs in real-world projects to
assess how well performance bugs targeted by detection and
localization approaches are aligned with the bugs that get fixed
in practice. Due to the difficulties that performance bug repro-
ducibility poses (see Section II), we identify performance bug
fixing commits by manual inspection. To limit the correspond-
ing overhead we pre-filter and sample commits according to
criteria discussed in Section III-A. Section III-B details how
the identified performance bugs are classified and how this
entails deviations of the derived taxonomy from existing ones.
We then introduce the performance bug complexity metrics we
use in this study: a measure of performance bug fix duration
in Section III-C, a measure of experience for performance bug
fixing developers in Section III-D, and a bug fix complexity
measure in Section III-E.

A. Selection of Projects and Commits

TABLE I: Total commit counts for each project

Project Total
NetworkManager 209

pulseaudio 106

grep 123

rsyslog 136

lvm2 123

llvm 4567

git 1107

clang 860

gecko-dev2 4329

openssl 169

systemd 327

libgcrypt 145

linux 18975

We start the choice of projects we target in our study from
the top 100 popular projects from the Debian repository3 that
are written in the C programming language. We base our
selection on the “vote” data of Debian’s popularity contest,
which reflects the regular usage of the projects. Our focus on
C is motivated by the observation that performance critical
code is commonly written in languages that are “close” to the
underlying hardware platform and that compile to native ma-
chine code. Moreover, as a language that dominates operating

2The project name for the next Firefox version in development
3https://popcon.debian.org/by vote

systems and other important parts of virtually every software
stack, C has a high practical relevance. This is also reflected
by the observation that the top 100 C projects in Debian’s
popularity contest are among the 133 top projects when no
restriction is made on the programming language. In addition
to these projects, clang, llvm, and linux are also selected
as survey targets, because they are widely used large and
complex projects with numerous commits and contributors.
Thus, the performance of these three projects is expected to
be of relevance for a large user base.

We identify performance bug fixing commits in the selected
projects by searching for a number of keywords in the commit
messages, as listed below along with matching text examples.

• performance “This patch improves the performance by
. . . %”

• speed up “These changes speed up the processing of”
• accelerate “This patch accelerates”
• fast “After the patch it is . . . times faster”
• slow “Before the patch it is slow in function”
• latenc “The latency of . . . is reduced ”
• contention “This patch reduces the contention of”
• optimiz “The optimization of the function”
• efficient “The patch makes function . . . more efficient”
We exclude those projects from our candidate list, (1) for

which we cannot easily access commit messages because we
cannot unambiguously identify or access the official devel-
opment repository (21 projects), (2) that are Debian specific
and not used on other distributions in order to avoid a
corresponding bias (4 projects), and (3) that have less than
100 commits that match our keywords (65 projects).

The last of these criteria has been added to exclude projects
that do not have a particular performance relevance. For
instance, libcap2 implements operations to get and set
POSIX capability states, which are not particularly perfor-
mance critical. Accordingly, the project does not have a single
commit message matching the aforementioned keywords and
is, hence, excluded from our study. The 13 projects meeting all
our criteria are listed in Table I along with the total matching
commit counts. The complete table with matching counts
for each keyword can be found on the our data set website
provided in Section I.

The keyword-based detection mechanism for performance
bug fixing commits is susceptive to false positives, e.g.,
performance could also match a feature commit stating “This
patch does not introduce a performance regression”. Hence,
all matched commits need manual investigation. As some the
projects like clang, linux, or gecko-dev have thousands
of matching commits, we limit our manual assessment to a
random sample of 200 commits for those projects.

B. Taxonomy

Performance bugs can be categorized by various criteria, e.g.
the work by Jin et al. [4] studies syntactical representations of
performance bugs. This study, instead, classifies performance
bug fixes by the semantics behind these code changes. For
instance, the code in Listing 2 shows the introduction of a



new API from the syntactical perspective. The goal of the
taxonomy developed in this paper, in contrast, focuses on
how the newly introduced function and its usage affect the
performance of the implementation. In Listing 2, the newly
introduced try_fgrep_pattern() function introduces a
more efficient matcher, which only applies for certain sce-
narios. If such a scenario is encountered, this light weight
matcher provides a faster execution path that speeds up the
character pattern matching process. Therefore, this commit is
tagged “fast-path” as the code change introduces a shortcut to
speed up execution for certain scenarios (a detailed discussion
is provided in Section IV-A).

We give preference to a manual semantic classification of
performance bug fixing commits over a purely syntactical
taxonomy to obtain comparability of bug fixes that transcend
project or developer specific preferences, such as coding styles,
to which purely syntactical taxonomies are sensitive.

C. Bug Fix Time

To determine the need for better tool support, we extract
a number of metrics in our analysis of the identified com-
mits. The first metric captures the latency to fix performance
bugs. Intuitively, the more time developers spend on fixing
a performance bug, the more difficult the performance bug
is. However, this metric may be misleading in a cross-project
comparison, as projects evolve at different speeds. For exam-
ple, if project A has hundreds of commits every day while
project B has only a handful of commits every week, the
performance bugs in project B are likely to take longer than
in project A, although the performance bugs in project B may
not be any easier to detect and fix than those in project A.
Consequently, we also take the number of commits between
the introduction and the fixing of performance bugs in a project
into consideration, to determine whether the project is actively
maintained. We define the metric fix time commit frequency
(FTCF) to present the accordingly normalized fix time as:

FTCF = ncmt( (tintro, tfix] ) (1)

where tfix is the time stamp of the fix commit, tintro is
the time stamp of the commit which introduces the fixed
performance bug, and ncmt denotes the number of commits in
the specified interval. The larger the FTCF value is, the longer
is the fix time if projects have the same level of activity in
terms of commit rates. If a project has a commit rate that
is twice as high as that of another project, then its FTCF is
also twice as high for an identical time interval, indicating
that the corresponding bug fixing time is actually slower. The
reasoning behind this is that in intensively maintained projects,
bugs should also be detected and fixed faster. To obtain the
FTCF, we need to identify the bug introducing commit that
corresponds to an identified fix. We basically follow the widely
used approach to infer bug inducing commits outlined in [30],
but assume that each modification in the bug fixing commit is a
necessary modification to fix the bug. Consequently, we search
for each modified line in the bug fixing commit the commit
that last changed that line before. To be conservative and rather

under- than over-estimate the actual fix time interval, we select
the commit that is temporally closest to the fixing commit from
this set as the bug introducing commit, because that is the last
commit that made a change that then required a fix.

D. Seniority of Fixers

We also consider the expertise of the developers, who are
fixing performance bugs, as an indicator of the fixing effort.
If performance bugs are mostly fixed by more experienced
developers, this indicates that better tool support for the de-
tection and localization of performance bugs may be required
or that the existing tools require a high expertise to be used
effectively. To quantify the developer expertise, we measure
the time ∆dev between the bug fix at time tfix and the first
commit of the fixing developer dev at time tdev(1).

∆dev = tfix − tdev(1) (2)

By comparing the experience ∆dev among the developers
in the project, it is clear whether the fixer of performance
bugs are relatively more experienced in the project or not.
The comparison should only cover those developers who are
actively contributing to the project at the time of the fix. Thus,
the set of developers, who are candidates for contributing the
fix, is:

Cdev = {dev|tdev(1) ≤ tfix ≤ tdev(n)} (3)

where tdev(n) is the time stamp of the last commit contributed
to the project by developer dev. Using the expertise measured
as ∆dev across all developer candidates dev ∈ Cdev , we
can judge the relative expertise of a developer contributing
a bug fix within a project. However, using such project wise
ranks may not be accurate in reflecting the skill of bug fixers
in a cross project comparison, because the difference in the
total number of developers varies significantly among the
projects. For instance, assuming fixer A is ranked 10 out of
20 developers in a project, while fixer B is ranked 500 out
of 1000 developers in another project, fixer A may not be
more skilled than fixer B despite the higher absolute rank
number. Moreover, the absolute value of the time difference
is obviously misleading as projects are started at different
times and, thus, have different lifetimes, which can introduce
significant offsets in the ∆dev values that are more strongly
affected by the project than the actual developer experience.
To quantify the skill of bug fixing developers and make them
comparable across projects, we introduce a project seniority
metric to evaluate the skill. The first concern of the seniority
is the time when the performance bug is fixed and when is
the project started. The time difference between the project
initialization and the bug fix is noted as ∆base and defined as:

∆base = tfix − tinit (4)

where tinit is the time stamp of the first commit in the project.
The seniority of dev at tfix is defined as:

Sdev =
∆dev

∆base
=

tfix − tdev(1)

tfix − tinit
(5)



Given a bug fix commit, the skill of the fixer can be repre-
sented as the seniority. To have a relative comparison across
the project, the seniority of the fixer denoted as Sfix is
compared to a mean value of the seniority of all developers,
given a performance bug fixing commit. In our study we select
the median to aggregate the seniority vector of a project and
the seniority difference is defined as:

∆S = Sfix −median({Sdev|dev ∈ Cdev}) (6)

This seniority measure reflects the experience of the bug fixing
developer relative to the first commit of the project and relative
to other active developers in the project and is suitable for a
cross-project comparison.

E. Number of Changed Lines

The number of changed lines directly indicates how com-
plicated a bug fixing commit is. Usually simple changes
with a small number of lines modified are more likely to
be diagnosed by tools. If a pattern of performance bugs
involves a lot of small sized commits, the current tool support
probably has not covered this form of performance bugs yet
and new tools on such problems are needed. The number of
changed lines is also relevant for our longer term goal to
create performance mutants to test performance bug detection
and localization approaches against, because they indicate
to which degree traditional mutation operators (and their
implementation in mutation tools) that are commonly applied
to individual statements of a program are sufficient to simulate
realistic performance bugs. Similarly, the type of change is
giving an indication about the nature of performance mutation
operators. If performance bug fixes tend to add rather than
remove lines, the corresponding mutation operators would
need to remove parts of the source code in order to introduce
performance bugs. Otherwise, mutation operators would have
to insert buggy code to create performance mutants. Therefore,
we provide detailed data for the studied bug fixing commits,
i.e., the total number of affected lines along with ratios of
added, removed, and modified lines.

IV. THE SHAPE AND VARIETY OF FIXED PERFORMANCE
BUGS

During the manual investigation of the commits identified in
our keyword-based search, we found that many performance
bug fixing commits follow certain patterns. Based on this
observation, 7 common patterns have been identified. Among
these patterns, two (asm and async) are project specific and
require detailed knowledge of the respective subsystems in
the project. These patterns are not likely to be found in
other projects and introduce a certain project-based bias to
the presented results. Therefore, the discussion of these two
categories is kept brief and combined with the discussion of
the generic misc class of bug fixing commits that do not match
any of the larger pattern classes in Section IV-F.

A. Fast-path

A fast-path is a construct to avoid repeated or slow compu-
tation when possible. We limit the fast-path notion in this study
to control flow based fast-paths and classify other avoidance
techniques as other patterns. The control flow based fast-
path pattern can have different syntactic representations. A
simple form of skipping heavy computation is demonstrated
in Listing 1. The if statement is a typical fast-path avoiding
heavy computations when they are not needed. Real-world

Listing 1: Simple fast-path example

int foo(int bar) {
if (some_cond(bar))
return fast_path();

return very_heavy_computation(bar);
}

occurrences of this pattern are usually much more complicated
and obfuscated. For instance, fast paths may be needed in
loops, where programs tend to spend most of their time [31,
p. 655]. If heavy computations are encapsulated in functions
that are called within a loop body, existing profilers cannot
identify the inefficient code inside loops, as profilers rank
functions with aggregated execution time. Hence, tools to
analyze loops are helpful to identify such cases. Nistor et
al. studied memory access patterns and proposed Toddler to
detect inefficient loops [32] while Song et al. detect inefficient
loops more effectively by combining both static and dynamic
analysis on root causes [33]. Tsakiltsidis et al. [34] listed
a string of python anti-patterns, which include a couple of
examples that we classify as fast-path, e.g. using if branches
to circumvent heavy computations imposed by logging. To
avoid slow-path execution, developers usually have to manu-
ally implement the fast-path and ensure that both paths are
functionally identical. A fast-path implementation may, for
instance, apply a different algorithm to achieve the same result
as the slow-path. An example is commit 290ca116c9174 in

Listing 2: Example in grep

+ static int
+ try_fgrep_pattern(int matcher,
+ char *keys,
+ size_t *len_p) {
+ /* Implementation */
+ }
int main(int argc, char **argv) {
...

+ else if ((matcher == G_MATCHER_INDEX ||
+ matcher == E_MATCHER_INDEX)
+ && 1 < n_patterns)
+ matcher =
+ try_fgrep_pattern(matcher,
+ keys, &keycc);

execute = matchers[matcher].execute;
...

}

the grep project. Listing 2 shows a simplified diff of this

4http://git.savannah.gnu.org/cgit/grep.git/commit/?id=
290ca116c9172d97b2b026951fac722d3bd3ced9



commit. The commit fixes a performance regression when
multiple regular expression patterns are provided to the pro-
gram. The generic matcher instance matches slowly, which is
why the function try_fgrep_pattern() is implemented
to “peek” if provided regular expressions can be matched by
a light-weight matcher. If they can, the code simply uses the
light-weight matcher and else falls back to the generic one.

B. Arguments

Some commits change the values of arguments passed to
a function so that the control flow can take an existing fast-
path in that function. In a more generic sense, this pattern
represents those optimization that bypass heavy or redundant
computations by controlling the input value. For instance,
when the input value for bar in Listing 1 is chosen so that
some_cond(bar) is more likely to return a non-zero value,
the performance of function foo() would improve.

As we will see in Section V, this pattern occurs in all
targeted projects. We observed that many operations are
controlled by flag arguments, i.e., bit fields passed to the
processing function to control its behavior. The flag passed to
the do_fork() function in the Linux kernel, for example,
specifies whether the processing fork should copy the page
table or file descriptors etc. By setting or clearing bits in the
flag, the function execution may behave differently, including
the execution of a fast-path instead of a slow-path. In a broader
sense, any global state of the program can also be regarded
as arguments passed to every function in the program. Thus,
like fast-path pattern in Section IV-A, arguments related per-
formance bugs also have a wide range of syntactical represen-
tations and often require complex reasoning to set arguments
or global variables in a way that improves performance, but
does not entail functional deviations.

C. Cache memoization

The result of a computation should be stored if it is needed
onward to avoid redundant re-computations of the same result.
A trivial loop iterating over a string like in the following
example is unnecessarily slow when the code is compiled
without compiler optimizations.
for (char *c = str;

c - str < strlen(str);
c++) { /*...*/ }

The loop keeps calculating the (unchanged) length of the
dynamically allocated str to test whether the iterator has
reached the end of the string. Although most modern compilers
can move the call to strlen() outside the loop body
by performing a loop invariant analysis [31, p. 641], the
optimization does not cover all cases. If the duplicated calls to
strlen() are hidden in a wrapper function, the success of
the compiler optimization depends on the wrapper returning
an invariant value and the ability of the optimization to infer
that. We refer to performance bug fixes that “cache” the result
of such computations for future usages as cache memoization.
Intuitively, cache memoization effectively solves the redun-
dancy in the previous duplicated string length computation
example. The pattern name is coined in the work by Toffola et

al. [35], which lists opportunities to cache computation results
in JavaScript.

In C/C++ projects, cache memoization optimizations are
also frequently observed. The commit 3548068c22f85 in
clang exemplifies a typical cache memoization situation. All
modifications are applied to the Sema class (semantics) of the
Objective C frontend. The patch adds a selector variable named
RespondsToSelectorSel in Sema to cache a selector
(not shown in Listing 3) and modifies a callback function
(Sema::ActOnInstanceMessage()) in Listing 3. The
callback tests if the event related selector Sel equals the
contextual unary selector and removes the selector from the
warning pool in the case of equality. Instead of fetching the
contextual unary selector every time the relevant event is fired,
the optimized version tests the equality of Sel and the cached
contextual selector, and fetches the contextual selector only
when it is not yet cached.

Listing 3: A simplified cache memoization example in clang

- IdentifierInfo *SelectorId =
- &Context.Idents.get("resp");
- if (Sel ==
- Context.Selectors.
- getUnarySelector(SelectorId))
+ if (RespondsToSelectorSel.isNull()) {
+ IdentifierInfo *SelectorId =
+ &Context.Idents.get("resp");
+ RespondsToSelectorSel =
+ Context.Selectors.
+ getUnarySelector(SelectorId);
+ }
+ if (Sel == RespondsToSelectorSel))})

// remove selector

D. Data Access

Different data structures yield different data access over-
heads, e.g., retrieving unsorted data without an index in a
vector or list requires a linear search, while accessing data
from hashed maps only introduces the overhead of hash
functions. To speed up data accesses, many projects provide
developers with a set of predefined data structures optimized
for project specific usages. However, depending on the com-
plexity of the project and the variety of data structures, it
may not be easy for developers to anticipate how these data
structures are best used during development. In llvm for
instance, llvm::DenseMap pre-allocates a large bulk of
memory for faster iteration on small key value pairs6. As a
substitute of std::map<KeyT, ValT> from the standard
library, DenseMap yields better performance for the case in
commit f28cb39e4ca07, as shown in Listing 4. The effect
of such a change is usually difficult to predict upfront without
intimate knowledge of the data structure and the context in
which it is used. We assume that it is for the same reasons
that this category of performance bug fixes is less covered in
existing work.

5git commit id: 3548068c22f809e5bc64b83d2c3622018469256c
6http://llvm.org/docs/ProgrammersManual.html#llvm-adt-densemap-h
7git commit: f28cb39e4ca07c387dd270ce123753f898a75d5c



Listing 4: A simplified DenseMap example in llvm

class GlobalsModRef : public ModulePass,
public AliasAnalysis {
// ...

- std::map<const Value *,
- const GlobalValue *>
- AllocsForIndirectGlobals;
+ DenseMap<const Value *,
+ const GlobalValue *>
+ AllocsForIndirectGlobals;

E. Synchronization

Multicore processors have brought significant performance
boosts for parallel and parallelizable programs. Despite the
processing speedup, multiple processors accessing the shared
memory simultaneously have raised the problem of possible
race conditions. To surmount the problem, memory accesses
are synchronized by synchronization primitives to guard crit-
ical sections, in which accesses to shared memory are serial-
ized. As serialization diminishes the performance gains from
parallel processing, improperly serialized program parts can
become performance bottlenecks, e.g., when a critical section
protects thread private data (e.g., stack objects) or the critical
section is protected by inefficient synchronization primitives,
as these primitives themselves yield differing overheads.

In C/C++ projects, mutex-like locks are the most commonly
used synchronization primitives, while spinlocks are widely
used in operating system kernels. Since a mutex may block
the execution of the program, low CPU utilization could be
regarded as a rudimentary indicator of possible performance
problems [5]. Besides CPU utilization, developers nowadays
also profile the waiting time of each thread on a lock [6], [7]
to localize where locks are mostly contended.

In the projects we assess in this study (as we will see in
Section V-A), synchronization related performance problems
are relatively infrequent compared to other performance bug
fixes (but also take more effort to fix). Our investigation
in related projects shows that developers nowadays tend to
minimize the amount of shared data to avoid race conditions.
Linux kernel developers also tend to use the lockless RCU
(Read-Copy-Update) mechanism [36] to prevent heavy weight
synchronization.

F. Miscellaneous

Some of the targeted projects introduce low level assembly
implementation of algorithms. We refer to such optimization
as the asm pattern. In particular, cryptographic libraries rely
on the fine tuned inline assembly implementations to utilize
CPU specific hardware features for speeding up en- and
decryption operations. In the two cryptographic libraries we
investigate in this paper (textttlibgcrypt and openssl) there
are profound optimization patches using new CPU features
in these two projects8 as demonstrated in Figure 2. Apart
from cryptographic libraries, the Linux kernel also features
optimizations of inlined assembly in the sampled commits.

8openssl uses perl for inlined assembly, so 139 commits involving
inlined assembly are not counted in our statistics
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Fig. 1: Distribution of performance bug patterns across all investigated
commits

Another less common pattern is the optimization for I/O
heavy scenarios. To avoid the time spent on blocking I/O,
the optimization uses non-blocking counterparts of the I/O
operations and waits for the operation in an asynchronous
handler. This pattern is thus labeled async and is observed
in systemd and NetworkManager.

Some commits apply fundamental changes to a project to
improve performance. Such commits involve changes of the
software architecture and highly rely on specific contextual
knowledge of the project. Therefore, this category is of limited
relevance for the goal of our study and we do not discuss this
category in further detail.

V. PERFORMANCE BUGS CHARACTERISTICS

In the following we discuss the results of our empirical
study of 733 manually investigated performance bug fixing
commits from 13 open source projects. The distribution of per-
formance bug patterns is discussed in Section V-A, followed
by a discussion of the effort for fixing performance bugs in
Section V-B, Section V-C and Section V-D.

A. Bug Pattern Distribution

To assess the relative frequency of different performance
bug fixes, we categorize all fixes according to the patterns
described in Section IV. Figure 1 shows the result of the
classification across all investigated performance bug fixing
commits and Figure 2 shows the pattern distribution for each
project. The number on each bar is the number of performance
bug fixing commits for the respective project.

From Figure 1 we observe that the most dominant form
of fixed performance bugs is the “fast-path”, which accounts
for 43 % of all sampled commits in our survey. As discussed
in Section IV-A, this pattern corresponds to a wide range
of syntactical representations and, intuitively, fast-path is a
straightforward way to circumvent slow operations. The sec-
ond most frequent category is composed of the idiosyncratic
performance bugs that do not match any common pattern.
The argument pattern is the third most frequent pattern con-
tributing 14 % of all performance bug fixes. As discussed in
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Fig. 2: Distribution of the identified performance bug patterns relative to the number of investigated commits (stated on top of the bars) for each project.

Section IV-B, C and C++ developers often use flags to control
dynamic behavior and, thus, tweaking flag arguments passed
functions can also optimize the performance.

Surprisingly, performance bug fixes involving inline assem-
bly language account for 10 % of all investigated bug fixing
commits. However, as Figure 2 shows, the assembly pattern
fixes only occur in three projects, with a strong majority in a
single project, i.e., libgcrypt. In libgcrypt the most
frequent performance optimizations are gained by utilizing
new CPU features to boost various cryptographic algorithms.
The few assembly optimizations in linux involve subtle fixes
of the crucial procedures written in assembly. From these
observations we conclude that assembly based performance
bug fixes are strictly limited to very specific application
scenarios.

The cache memoization and data access take the most of the
remaining code pattern shares, accounting for 8 % and 6 % of
the patterns. Although these numbers are not particularly high,
it is important to note that the patterns occur across almost all
projects in our investigation.

Synchronization problems are the least common perfor-
mance bug pattern fixed in the investigated commits. Synchro-
nization related performance bugs, in particular those related
to lock contention, have been addressed by previous research
[5]–[7]. This work, however, is relatively new and we do not
expect the developed techniques to be already part of the
standard tool set of open source developers. From the commits
we investigated, our impression is that synchronization related
performance bugs either are a relatively rare occurrence or that
they just do not get detected and fixed. Firefox, for instance,
was once a project suffering synchronization related perfor-
mance bugs [5] while in our investigation no synchronization
problems have been sampled. Another example is linux,

where the synchronization fixes in the sampled commits are
not related to lock contentions, but substitute locks with
lockless RCUs [36].

The least frequent performance bug fix pattern we observed
is to make tasks asynchronous. Such optimizations only apply
for very specific scenarios, where either some procedures are
I/O heavy or the result of the procedure is not needed for some
time.

B. Performance Bug Fix Duration

The effort devoted to fixing performance bugs is a sig-
nificant indicator to prioritize performance problems to be
addressed in future research. As discussed in Section III-C, we
use the number of commits between the bug introducing and
fixing commits to indicate the performance bug fix duration.
Figure 3 shows this number (FTCF) across various patterns,
where the y-axis is scaled logarithmically due to some outliers
with high values.

The boxes in Figure 3 show that the median fix time of
most patterns lies between 10 and 100 commits, with the
exception of asm and cache memoization. As discussed in
Section IV-F, asm basically utilizes new CPU features. Based
on our observation that most commits in the asm category
replace less efficient assembly instructions by more efficient
ones, this indicates that applying new CPU instructions to
improve assembly code performance needs less time than
optimizing inefficient code written in a higher order language.
Another quickly fixed bug pattern is cache memoization.
Therefore, redundant computations of invariant results seem
to be easy to identify and straight-forward to repair.

Synchronization related bugs have largest discrepancy in
FTCF and a 75 % quartile that is two orders of magnitude
higher than the median. In Section IV-E we observed that
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Fig. 3: Performance bug fix duration for different bug patterns measured by
FTCF (see Section III-C)

modern synchronization optimizations often either adapt the
RCU mechanism or alter the synchronization across concur-
rent threads. Substituting existing reader-writer locks with
RCU is likely to require little effort, while reasoning about
and fixing an inefficient synchronization without introducing
a race is likely to require more time.

Another observation is that both the fast-path and arguments
patterns have a high number of outliers. On the one hand this
shows that the majority of performance bugs can be fixed very
fast, on the other hand a small amount of such bugs need
significantly more time to fix. This observation indicates that
our data set comprises few difficult cases of these classes that
appear to be challenging in addition to the larger group of
simpler cases.

C. Performance Bug Fixing Developer Experience

The second metric indicating performance bug difficulty (se-
niority in Section III-D) reflects the experience of developers
who fix performance bugs. The baseline of the seniority metric
is 0, when time between the first commit of the bug fixing
developer and the bug fixing commit is the median across
the respective time differences for all candidate developers
who could have fixed the bug at that time. Figure 4 shows
the seniority of fixers for each of the patterns. All boxes
in Figure 4 have the median greater than 0, which means
that performance bug fixing developers usually fall into the
group of more experienced developers. Few boxes cross the
0 mark, indicating that for most projects less than 25 % of
the performance bug fixes are contributed by the 50 % of the
developers who have most recently joined the project. This
indicates that fixing performance bugs is likely to require a
certain degree of familiarity with the project code and that
existing performance diagnosis tools may be difficult to use
for less experienced developers.

D. Performance Bug Fix Size

The number of lines that a bug fixing commit consists of is
another measure how complex the performance bug fix is. Fig-

arg
um

en
ts asm asy

nc

da
ta 

acc
ess

fas
t-p

ath

mem
oiz

ati
on misc

syn
chr

on
iza

tio
n

Patterns

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Se
ni

or
ity

Fig. 4: Seniority of bug fixing developers across performance bug patterns.
The metric captures the distance of a project-local seniority metric from the
median seniority of all candidate developers for the fix on the same project.
A seniority of 0 indicates experience matching the median, positive seniority
higher experience, and negative seniority lower experience.

arg
um

en
ts asm asy

nc

da
ta 

acc
ess

fas
t-p

ath

mem
oiz

ati
on misc

syn
chr

on
iza

tio
n

Patterns

100

101

102

103

104

Nu
m

be
r o

f M
od

ifi
ed

 L
in

es
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mance bug patterns

ure 5 shows the number of modified lines across the patterns9.
Although different patterns yield different complexity in terms
of the code changed, the most frequent patterns have relatively
low numbers of changed code lines. Complex code changes
comprising hundreds of lines, such as for asm and async, are
either project specific or less common. This essentially means
that performance bugs can be generally fixed by touching a
relatively small amount of source code.

Since we envision performance mutations to support future
work on performance bug detection, localization, and repair, it
is also meaningful to study in which form performance bugs
are fixed to guide the creation of corresponding mutation oper-
ators. Figure 6 shows the type of changes across performance
bug fixes. The most dominant code change type to fix perfor-
mance bugs is the addition of source code lines. Consequently,
mutation operators resembling the identified performance bugs
should mostly focus on code removal. This finding is not
surprising, as fast-path implementations usually entail the

9Estimated by diffstat -m
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deletion, modification) in performance bug fixes by bug pattern

addition of logic to identify the condition under which the
fast-path can be executed and the actual implementation of
the faster operation. Unfortunately, generating and adding
semantic-preserving code must be expected to be simpler than
ensuring that code removals are semantic-preserving, which
we consider the main challenge for the realization of realistic
performance mutations given the presented observations.

VI. THREATS TO VALIDITY

There are a number of threats to the validity of the conclu-
sions presented in this paper.

First, we apply a number of heuristics to infer various per-
formance bug characteristics. Our FTCF metric to approximate
fix duration in a project-agnostic way requires knowledge of
the bug introducing commit and this is based on the unverified
assumption that in general each line of a bug fixing commit is
necessary for the fix. This is a conservative assumption and,
as a consequence, the exact fix times underlying Section V-B
could in fact be longer and performance bugs more difficult
to fix.Similarly, we approximate developer experience by the
duration a developer has been active on the project before
contributing the bug fixing commit. This may not accurately
reflect developer experience if the developer has been actively
developing other projects before. However, our manual investi-
gation of the bug fixing commits show that fixing performance
bugs often requires detailed project knowledge, which is less
likely to be transferable from other prior projects.

Another threat lies in the criteria of the presented taxonomy,
as the borders among semantic categories are fuzzy. In order
to limit the impact of this threat we make our entire data set
publicly available10 for reuse and cross-validation.

The third threat comes from the fact that this study focuses
on C projects with the exception of llvm and clang,
because we assume that C is mostly used for “low level”
programming for which performance is of a higher concern.
In industry, C++ is also used for low latency applications
where performance matters. While it is possible that different

10https://yqchen.gitlab.io/perf-bugs/

language features result in different syntactic manifestations of
performance bugs, we do not expect this to significantly affect
the presented results, as the presented taxonomy explicitly
abstracts from syntactic details. Accordingly, the performance
bug distribution of llvm and clang is similar to the C
projects according to Figure 2. Therefore, the project coverage
bias is unlikely to defy the results in Section V.

The last threat is attributed to the selection of popular De-
bian packages ranked by votes, because there is no guarantee
that the votes really reflect the popularity of these packages.
Nevertheless, the number of projects investigated is large
enough to compensate the drawbacks of possibly selecting less
popular projects.

VII. CONCLUSION

In this study, we assess the alignment of current research
and tool development in the area of performance bug detection
and localization with actual performance bugs derived from
733 performance bug fixing commits across 13 open source
projects written in C and C++. We manually investigated these
commits to confirm they actually constitute performance bug
fixes and to group them in semantic categories according to
how they intend to achieve a speed-up of the modified code.
In summary, we found that more than half of the studied
performance bug fixes introduce fast-paths in the control flow
or tweak arguments to trigger the execution of existing fast-
paths.We define a set of three complexity metrics suited for
cross-project comparison, which are related to bug fix dura-
tion, developer experience of bug fixing developers, and the
amount of code changed by the fix. The empirical assessment
of these metrics shows that usually 10 to 100 commits lie
between the introduction and removal of performance bugs,
that performance bugs tend to be fixed by more experienced
developers, and that the lines of code that performance bug
fixes comprise greatly vary across different bug categories.
From these observations we conclude that performance bugs
are fixed in a relatively short time for active projects, but that
existing tool support does not effectively target less experi-
enced developers, which is a strong motivation to develop
more effective and intuitively usable tools. We also found
that performance bug fixes usually entail 10 to 100 changed
lines of code, most of which are code additions. Finally, our
results provide important insights about the distribution of
performance bugs in software projects and about the complex-
ity of these bugs. Besides guiding work on performance bug
detection and localization approaches, this data is valuable for
the generation of realistic performance mutants to support a
fault-based assessment of these approaches.
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